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On J. H. C. Whitehead’s aspherical question I

JOE BRANDENBURG and MICHEAL DYER

Abstract. A connected, finite two-dimensional CW-complex with fundamental group isomorphic to G
is called a [G, 2];-complex. Let L <G be a normal subgroup of G. L has weight k if and only if k is
the smallest integer such that there exists {l;,..., [, }= L such that L is the normal closure in G of
{l;,..., L}. We prove that a [G, 2];-complex X may be embedded as a subcomplex of an aspherical
complex Y =X U{e?,...,e?}if and only if G has a normal subgroup L of weight k such that H = G/L
is at most two-dimensional and def G =def H + k. Also, if X is a non-aspherical [G, 2];-subcomplex of
an aspherical 2-complex, then there exists a non-trivial superperfect normal subgroup P such that G/P
has cohomological dimension <2. In this case, any torsion in G must be in P.

0. Introduction

A [G, 2])-complex X is any (finite) connected two dimensional CW-complex
with fundamental group isomorphic to G. Sometimes we will abuse the notation
and say X €[G, 2]). Let X be a connected subcomplex of an [H, 2]-complex Y.
J. H. C. Whitehead’s question is this: if Y is aspherical, is X also aspherical? [W,,
p. 428].

The question seems very hard. We say that a group G satisfies the (finite)
Whitehead condition (G € WCy;,)) if any [G, 2]-complex X, which is the subcom-
plex of an aspherical (finite) 2-complex, is aspherical. Thus G € WCy, iff for any
[G, 2]s-complex X, either X is aspherical or, if not, then no [H, 2] -complex
Y > X is aspherical. The philosophy of this paper is to isolate properties of a
group G which imply that G e WC or WC;.

There are a number of results in this direction. W. Cockcroft [C, Theorem 2]
showed that if G is one-relator group, then G has WC. One crucial observation
he made was: Let X be a [G, 2]-complex such that the Hurewicz homomorphism
h,:m,X — H,X is non-zero. Then no 2-complex Y > X is aspherical. It follows
that any group G which admits a [G, 2]-complex X which is the subcomplex of an
aspherical 2-complex has H,G free abelian. (Here H,G means the homology of
G with coefficients in the trivial module Z.)

Let Xmin(G,2)=min{x(X)| X is a [G,2];-complex}. A complex X whose
Euler characteristic x(X) is minimal is called a minimal [G, 2];-complex. For
simplicity, all [G, 2]-complexes will have a single vertex, and this will be the base
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432 J. BRANDENBURG AND M. DYER

point for all homotopy groups. Any [ G, 2]-complex has the (simple) homotopy type
of such a complex.

We observe for later use that WC; can be proved or disproved for a particular
group G as follows: choose your favorite minimal [G, 2],-complex X and, if it is
not aspherical, check that no [H, 2];-complex containing X is aspherical (see
Lemma 1.4).

It follows from Cockcroft’s result above that if X <Y, where Y e[H, 2] is
aspherical, then X is a minimal [G, 2];-complex. To see this, we simply observe
that if X is any non-minimal [G, 2]);-complex, then h,:mX — H,X is not zero.
For let Y be a minimal [G,2]-complex, with x(Y)<x(X). Let 3,(—)=
im {h,: m,(—) — H,(—)} be the image of the Hurewicz homomorphism. Then, by
a result of H. Hopf, H,G=H,X/3,X=H,Y/3,Y. Because H,X and H,Y are
finitely generated free abelian groups with rank, H,Y <rank; H,X, we must have
3,X#0.

J. F. Adams’ approach [A, p. 483] was to assume that a non-aspherical
X<Y=XU{e2|aeoA}, with Y aspherical, and to study L =ker{mX — 7, Y}.
Adams proved that H,L is a free abelian group and L is not transfinite
metabelian; i.e., L has a non-trivial (normal) subgroup P which is perfect
(H,P = P** =0). This shows that any solvable group has WC.

In [Co], J. Cohen points out that Adams’ perfect subgroup P <L is actually
superperfect; i.e., H,P =0. He also shows [Co, Theorem 3] that if G a group of
cohomological dimension 3 and type FL (that is, Z has a finite resolution by
finitely generated free G-modules) such that H;G =0, then G has WC,.

In [GR, Theorem 4], M. Gutierrez and J. Ratcliffe show that if X<
Y(Y€[H,2]) which is aspherical, then X is aspherical if and only if the
cohomological dimension of G=2 and G has type FL.

In [H], J. Howie shows that any torsion element x € G(x" = 1) is contained in a
finitely generated perfect subgroup of L. We show that, in fact, all the torsion of G
is contained in Adams’ superperfect subgroup.

Finally, in his thesis [Be] W. Beckmann shows that locally finite groups have
WC.

Specifically, we show the following

THEOREM 1. Let X be a non-aspherical [G, 2]-subcomplex of an aspherical
2-complex. Then there is a nontrivial superperfect normal subgroup P (Adams) such
that G/P has cohomological dimension <2.

COROLLARY. Any torsion in G must be in P.
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As a second result we characterize when one may add 2-cells to a [G, 2};-
complex to obtain an aspherical complex. Let F, denote a free group of rank n.

THEOREM 2. Let X be a minimal [G, 2);-complex. One may add n 1-cells
and k 2-cells to X to obtain an aspherical 2-complex if and only if G *F, has a
normal subgroup L which is a free-crossed G-module of weight k (see 3.2) such
that (1) there is an aspherical [G/L, 2);-complex and (2) def G + n =def (G/L)+k.

COROLLARY. Let X be a minimal [G, 2];-complex. One may add two-cells
to X to obtain a finite contractible space if and only if weight G =def G.

The groups in the corollary are of interest because they are (higher) knot and
link groups, according to a theorem of M. Kervaire [K]. These groups are all
E-groups in the sense of [St,], [St,] and [B]. From this it follows that the derived
series of G has many interesting properties; such as, each element G* in the
derived series for G is an E-group, and the derived length of G is severely
restricted.

The paper is organized as follows. In section one we study complexes X for
which the Hurewicz map h,: m,X — H,X is zero and reprove a crucial lemma of
W. Cockcroft and R. Swan about minimal aspherical complexes. In section two
we study necessary and sufficient conditions for the inclusion X <Y to induce the
zero map on the second homotopy groups. In section three we prove Theorem 2
and in section four, Theorem 1. We defer examples and applications of these
results to a later paper.

To fix notation, let G be a group and let ZG be the integral group ring of G.
Let IG denote the augmentation ideal, the kernel of the map € :ZG — Z.

1. Cockcroft complexes and the Cockcroft-Swan lemma

DEFINITION 1.1. A connected CW-complex X is called Cockcroft if and
only if the Hurewicz homomorphism h:m,X — H,X is trivial. A group G is
Cockcroft if and only if some [G, 2]-complex is Cockcroft.

Note that any non-minimal [G, 2],-complex is not Cockcroft. It follows that
any group G having H,(G; Z) not free abelian is not Cockcroft. It was shown in
[C, lemma 1] that for any non-Cockcroft [G, 2]-complex X, any Y = X U{e2} has
m,X — m,Y not zero. It follows that non-Cockcroft groups have WC.

EXAMPLE 1.2. Any finitely generated one-relator group is Cockcroft. Let G
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be the group presented by {x;, ..., x,; r} and let X be the model associated with
the presentation. Write r = Q9 where Q is not a proper power in the free group
F(xy, ..., x,). By a theorem of Lyndon [L], m,X =ZG(Q —1) as a left G-module,
where Q is the image in G of Q under the natural projection F—> G. As the
Hurewicz map h:m,X — H,X is given by restricting the augmentation € : C,X =
ZG — G, X =2, we see that h=0. Note that if X is a subcomplex of an
aspherical two-complex Y, then X must be a Cockcroft [G, 2]-complex. This
follows because if [XvV Sg)U{e2}=Y is aspherical, then the Hurewicz
homomorphism m,(XvV Sg) — Hy(X vV Sp) is zero [C, lemma 1]. That X is
Cockcroft is clear from the commutative diagram:

772X e SEnnanae HzX

! M
m(X vV Sg)— Hy(X vV Sp).

Observe that if X and X' are minimal [G, 2];-complexes, X is Cockcroft iff X
is.

The following theorem characterizes in several different ways the property that
X is Cockcroft.

PROPOSITION 1.3. Let X be a [G, 2]-complex. The following are equivalent:

(@) hy,:mX—> H,X is zero.
(b) The Hopf epimorphism H,X — H,G is injective.
(¢) The natural inclusion H;G — ZQ®;m,X is surjective.

Proof. This follows from the exact sequence of [D], which is just a fancy
rewrite of two theorems of H. Hopf:

0— H,G — Z®g m,X —> HyX — H,G — 0,

where h, is induced by h,. [

We now prove the following key lemma of Cockcroft and Swan [CS, p. 197].
LEMMA 1.4. Let X and X' be minimal [G, 2];-complexes. Then X is aspheri-
cal iff X' is.

Proof. As X and X' have the same Euler characteristic, it follows from
Schanuel’s lemma that m,X® ZG" = m,X' @ ZG" for some integer n >0. Then
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m,X =0 implies that
m X' — ZG" —» ZG"
is exact, which yields that 7, X' =0 by a theorem of 1. Kaplansky. [

The proof of Lemma 1.4 clearly breaks down if X is an infinite, but Cockcroft,
[G, 2]-complex. We conjecture that the lemma is still true for such complexes.

If G is finitely presented, then one may show from Lemma 1.4 that either all
minimal [G, 2];-complexes are subcomplexes of finite aspherical 2-complexes or
none are.

LEMMA 1.5. Let G be a finitely presented group. Let X, X' be minimal
[G, 2);-complexes and Y =(XvViL,S))U{ei,..., e} be aspherical. Then one
may add m one-cells and n two-cells to X' to obtain an aspherical complex. [

2. Killing 7,X — m,Y for X a subcomplex of Y

DEFINITION 2.1. For any subgroup A <G, let K, =ZG - IA be the left
ideal in ZG generated by {a—1|a e A}. Note that if A is a normal subgroup of
G, then K, is a two-sided ideal. In any case, K, =ker {ZG — Z(G/A)} induced
by the coset function G — GJ/A.

DEFINITIONS 2.2. Let M be any (left) submodule of a free G-module. The
Fox ideal of M, F(M), is the two-sided ideal in ZG generated by the coordinates
of each element (of a generating set) of M. We say that a subgroup A <G kills M
if the Fox ideal F(M) is contained in the kernel K,. Note that F(M) is
independent of any chosen basis.

EXAMPLE. For a [G, 2]-complex X, G itself kills m, X iff F(m,X)< K = IG.
This happens iff the Hurewicz map h,: m,X — H,X is zero.

Now let X€[G, 2] be a subcomplex of an [H, 2]-complex Y. Let +: X—>Y
denote the inclusion map and L =ker 7r,(1). If C4xX is the cellular chain complex
(considered as left G-modules) of the universal cover X of X, let Ry =
ker {9,: C;X — C,X =Z G} be a so-called relation module for G.

THEOREM 2.3. The following are equivalent:

1) iy:mX—>mY is zero,
(2) the Fox ideal F(m,X)< K; (L kills m,X),
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(3) the Hurewicz homomorphism h; :m,X — H,X; is zero, where X; is a
covering of X corresponding to the subgroup L.

(4) The natural surjection 3,: C,X — Ry induces an isomorphism Z®, C,X —
ZQ@; R of free G/L-modules.

Proof. Let (ZH)**! denote @, . (ZH),. Consider the universal covering X of
X, the cellular chain complex Cy(X) of X (viewed as free left G-modules and
homomorphisms), and the cellular chain complexes CyX; =ZQ®; C4X — CyY
(viewed as free G/L and H modules, respectively). Let N = G/L denote the image
of m,(i):G— H and 1n:G — G/L be the natural map. Also let

v=(Xv V ) Ulellcn

BeRB

Consider the following commutative diagram:

1T2X >“—'—""_)sz i > C1X~ il > ZG E— Z
l . l i} v
= 1Q0; s 1®3,
hL Z®L CzX > Z®LC1X“‘——_—'—') Z®L ZG _—> z
ZN
v I
a% L
H2XL>—""_‘—) CZXL > C1XL > C()XL - > 7
% v
I v oY v Y I
Y>—>C,Y : >C,Y : >ZH —— Z

ZHR\C, X, DZH™! ZH®\C, X DZH™

The chain map % C,X =(ZG)™ — C,Y factors as
ZG™ =CX —» C,X; =ZN™>—>ZH"®ZH"' = C, Y.

with the first map being ©Zn:ZG™ — ZN™. Hence, the kernel of i,:m,X —
m Y is mX N(K )™, Also, H,X; >> m,Y (it is a direct summand as Z-modules).
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So iy:mX —m,Y is zero if and only if h : mX =mX;, — H,X, is zero. This
happens if and only if 7, X < K7*, which in turn is true if and only if F(r,X) < K;.
In order to prove (4)<> (1), consider the following exact sequences (see [D]).

hy
Z®L772X — HZXL'-—___» H2L

1]

ZR, X —> IR, C,X —» Z.&, R.

It is easily shown that both squares commute. Also

h h
'772X "“l"—) H2XL faCtOI‘S as Ter Sr—. Z®L '772X _L—) H2XL.

Hence
172X—-(—)-—> m Y mX 2, H, X,
SZR®, mX — H, X,
SLR. mX—> IR, C,X. O

Note 2.4. The proof of Theorem 2.3 shows that conditions (2), (3), and (4) are
equivalent for any (not necessarily normal) subgroup L < G, provided we restate
(4) as an isomorphism of (not necessarily free) G-modules. In fact, it is clear that
(2)—(4) are hereditary in the sense that, if they are true for some subgroup L <G,
then they hold for any subgroup M <G containing L.

3. Subcomplexes of aspherical complexes

DEFINITION 3.1. Let G be a (finitely presented) group. G is at most
(finitely) two-dimensional if and only if there exists an aspherical [G, 2]y -
complex.

For any group G and element g € G, denote the image of g in G* by g.

DEFINITION 3.2. Let L be a normal subgroup of G (L <1G) with quotient
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H. L is said to be a free crossed G-module of weight k (k <) if and only if there
exists elements {g,, ..., g} <L such that L is the normal closure {(g;,..., &)g
of {g;} in G, H,L is a free H-module with basis {g,,..., &}, and H,L =0.

It is a very nice theorem of J. Ratcliffe [R, Theorem 2.2] that this is equivalent
to the usual definition of a free crossed G-module (in this setting). The normal
generators {g,, ..., &} of L are called a basis for the free crossed module L.

An interesting special case is when G is a free crossed G-module of weight k.
Examples of weight 1 self free crossed modules are knot groups. By a theorem of
M. Kervaire [K], any finitely presented self free crossed module of weight k is the
fundamental group of a k-link of 3-spheres embedded in S°.

Note that if L is a free crossed G-module of weight k, then L is a free crossed
L-module of weight k - |G/L|. Furthermore, if L is a free crossed L-module of
weight k and H is any group, then, for G = L * H, the normal closure N of L (in
G) is a free crossed G-module of weight k. To see this, notice that N is the free
product %,_.yhLh™ in G and that 1-N—> G —> H— 1 is a split extension.
H,L=7% so HIN=ZH*; H,L =0 implies H,N =0. If the normal closure of
{l,..., L.} in L is equal to L, then ({l,,...,LL}))s=N.

As another example, one may show the following proposition.

PROPOSITION 3.3. Let G be a 1-relator group with presentation
{x1,...,x,; Q%, where Q is not a proper power. Let e, (Q) denote the exponent sum

of Q with respect to x;. Then G is a free crossed G-module if and only if [q=1 and
E=gcd{e, (Q)}=1] if and only if [H,G=2Z"""]. O

Note. Let G be a finitely generated 1-relator group. Any two 1-relator
presentations of G have the same number of generators. This follows because the
models associated with both presentations are Cockcroft (Example 1.2) and are
therefore minimal.

Let def G denote the deficiency of the finitely presented group G. The
following theorem characterizes when one may add finitely many one-cells and
two-cells to a [G, 2];-complex X to obtain an aspherical 2-complex. Let F; denote
a free group of rank L

THEOREM 3.4. Let X be a minimal [G, 2]¢-complex. One may add | 1-cells
and k 2-cells to X to obtain an aspherical two-complex Y if and only if (1) there
exists a normal subgroup L < G * F; which is a free crossed G * F;-module of weight
k having H=(G*F)/L at most finitely two-dimensional and (2) def G+1=
def H + k.
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Note that this theorem is true whether X is aspherical or not. For another
equivalent condition see Theorem 3.6.

Proof. (=) Suppose X<Y =(XvVi.; S})U{e%,...,e2} and Y is aspherical.
Consider the homotopy sequence for the pair (Y, X), where X=XU Y®:

w3(Y) — m5(Y, X) - ’"'2()?) — m(Y) = my(Y, )_() 2 7"1()—() — m(Y)—0.

J I | [
0 0 G*F, H

The group m,(Y, X) is a free crossed ,(X)-module on the characteristic maps for
the k added two cells. We let L =im d. Then H = G/L is at most 2-dimensional.
Because x(X) = Xmin(G, 2), x(Y) = xmin(H, 2) and x(X)+k —1=x(Y) we have (as
x(X)=1—-def G) k+def H=def G +1.

(&) Let X be a minimal [G, 2];-complex and identify 7 X with G. Let
{g1,...,&/} be a basis for L<G#*F, as a free crossed G *F,-module. Attach
e7,...,erto X=Xv\!_, S! using maps o; : S! = X* which represent g, € G *F,
(i=1,...,k). Then X<Y=XU{e?...,e?} has m;Y=H at most a finitely
two-dimensional group. Thus there is an [H, 2],-complex W which is aspherical.
Because def H=def G—k+I=1-x(Y)=1—x(W), we have x(Y)=x(W)=
Xmin(H, 2). Therefore, Y is aspherical by Lemma 1.4. [J

Note. One sees from the proof that really only the following was used:

G *F, has a normal subgroup L of weight k over G *F, such that

(a) G*FJ/L is at most finitely 2-dimensional and

(b) def (G*F)/L]+k=def G+1.

That L is a free crossed G *F,-module of weight k is a consequence of the
above statement.

COROLLARY 3.5. Let X be a minimal [G, 2];-complex. One may add k
two-cells to X to obtain a contractible space if and only if det G =k = weight G.
This is true iff G is a free crossed G-module (= higher dimensional link group) of
weight k which is Cockcroft.

Proof. The first statement follows by specializing Theorem 3.1 to [ =0 and
H ={1}. To see the second, we observe that a group G with H,G =Z* and which
is Cockcroft has H,X = H,G =Z* '  So H,G =0 implies def G = k. A similar
argument yields the converse. [
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We would ask, more generally, what does the fundamental group G of a
subcomplex X of a finite contractible space Y look like? By the above corollary, we
see that G *F, is a higher dimensional link group with def (G*F)=def G+1=
weight (G * F;). Does this imply that def G =weight G? It is easy to see that such
groups are E-groups (see [B], 123-130, for facts about E-groups).

We also have (using the same geometric techniques)

THEOREM 3.6. Let X be a Cockcroft [G, 2]-complex. One may add (k = »)
2-cells to X to obtain an aspherical two-complex Y if and only if there exists a free
crossed G-module L <G (of weight k) which kills 7, X.

Proof. From the exactness of

mX = mY = my(Y, X) > m X

we see that w,Y =0 if and only if m;X —> m,Y is zero and m,(Y, X)—> 7, X is
monic. But, by the theorem of J. H. C. Whitehead [W,], m,(Y, X) is a free crossed
7, X = G module of weight k. [

Thus, a counter example to the Whitehead conjecture would arise if there is a
group G with a “large” free crossed module L as a subgroup (in the sense that L
kills 7w, X for some Cockcroft [G, 2]-complex X).

4. Extending Adams’ theorem
In this section we prove Theorem 1 of the introduction.

LEMMA 4.1. Let X be a [G, 2]-complex and 9,: C,X — C, X be the second
boundary operator considered as a left G-module homomorphism of free G-modules
CX. Let N be a- subgroup of G. Then 180,:ZQNC,X —>ZR®\C, X is a
monomorphism if and only if F(w,X)< Ky and H,N=0. This happens iff
Hz(XN) =0.

Proof. Recall that R is the image of 85:C,X — C,X and IG =im 6. From
the exact sequences

m,X — C,X » R, R» C,X>» IG, and IG»>ZG~> Z,
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we obtain the following sequences:

Tor}(Z, IG)= H,N

A\

N

hy - o« ’
TOI'I;I(Z, R) > Z®N772X -_—> Z®N C2X_—'>> Z®NR

H!JN 1®3, B 4.1)

\4

ZR.C. X

N

H,N=Tor{(Z,Z) > ZONIG > ZRNZG —>Z

Note that the triangles commute and that the vertical and horizontal sequences
are exact. Clearly ker (1®4d,) =a 'H,N. So H,N =0 yields ker (1®49,) =ker a =
im hy =0, if F(m,X)< Ky. Similarly ker (1®4d,) is zero yields a 'H,N =0 which
implies a« '(0)=im hy =0 and H,N=0. O .

DEFINITION 4.2 [St;]. A group G is called an E-group if H,G is torsion
free and the trivial G-module Z has a projective G-resolution

> P, >+ Py P> Py—>17,

such that the homomorphism 1Q®g 3,:ZQ; P, = Z Qg P, is injective.
It follows that if G is an E-group, then H,(G)=0.

For a given group G, we define P;G to be the maximal perfect subgroup of the
group G. It is uniquely defined as the group generated by the family of all perfect
subgroups of G. This subgroup is perfect because the group generated by any
family of perfect subgroups is perfect. Because the normal closure of a perfect
group is perfect, P,G is a normal subgroup of G. P, is clearly a functor from the
category of groups and homomorphisms to the category of perfect groups and
homomorphisms.

There is another way to define P,G. Let {G* | a ordinal} denote the derived
series: G* =(G*~") for a not a limit ordinal, G* = (3, G® for a a limit ordinal.
This sequence terminates [Dr, p. 20] at a perfect group, and since G* contains
any perfect subgroup of G, it terminates at P,G.
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The following theorem may have been known to J. F. Adams. It certainly
follows from his techniques, when applied to the derived series of L. See [A] and

[St.].

THEOREM 4.3. Suppose X is a non-aspherical [G,2]-complex such that
Y = X U{e?| a € A} is aspherical. Let L =ker {m,X — m, Y = H}. Then the maxi-
mal perfect subgroup P,L of L is superperfect, kills m,X, and is non-trivial.

Proof. We first observe that L is an E-group because

1®, 3§3Z®L CzX“’ 7. ClX

I I

is monic (Lemma 4.1) and H,L =ZH"*. By Theorem A(i) of [St,] each term of
the derived series L* of L is an E-group; hence P,L is an E-group, therefore
superperfect. In fact, the argument of the theorem cited above shows that

1®F,L a§1z®P,L C2X - Z®P,L ClX

is monic, hence Pl‘% kills m,X by Lemma 4.1. P,L is non-trivial because, if it
were trivial then P;L kills m,X implies F(m,X)< Kp; =0. But F(m,X)=0 iff
m,X =0, which contradicts the assumption that X was non-aspherical. []

A group G has cohomological dimension =n (cd G=n) if H' (G; M)=0 for
all i>n and all ZG-modules M. Equivalently cd G <n if and only if the trivial
G-module Z has an ZG-protective resolution of length n:

0—-P,—>--+—>P —>P,—>Z-0. (*)

A group G has type FP (FL) if and only if G has a projective resolution (*) of
finite length with each P, (free) of finite rank.
If G has type FL, we define the (naive) Euler characteristic x(G)=

"_o(—1) rank,g P. In this case, let b,G =rank; H;G. Standard arguments show
that x(G)=Y"_, (—1)'b,G as well.

THEOREM 4.4. Let X be a [G, 2]-complex and P be any superperfect normal
subgroup of G such that P kills m,X. Then G/P has cohomological dimension <2
over Z. Furthermore, if X is a minimal [G, 2];-complex, then G/P has type FL and

Xmin(Ga 2) = X(G/P)~



J. H. C. Whitehead’s aspherical question I 443

Proof. Consider the chain complex CyX. In diagram 4.1 with P=N, we see
that H,P = H,P =0 together with h, =0 (if and only if Kp 2 F(,X)) shows that
the sequence

0->ZRpCo X >ZRpCi: X > ZRpZG -7 —0

is an exact sequence of ZG-modules. Because P is normal, ZQpZ G =Z(G/P) as
(G/P)-modules. If X is a [G, 2],-complex, then clearly G/P has type FL and

After proving Theorem 4.4, we noticed that R. Strebel had proved a similar
result for E-groups [St;]. However, groups arising as the fundamental group of a
subcomplex of an aspherical complex are not necessarily E-groups, as the second
homology group is not necessarily zero (it is free abelian). The results do not
imply one another, even though the basic trick is the same.

THEOREM 4.5. Let X be any non-aspherical [G, 2]-complex and X <Y, an
aspherical [H, 2]-complex. Then there exists a family of distinct non-trivial normal
superperfect subgroups P, <\G, i € I, such that cd G/P, <2 for i € I and such that the
smallest (normal) subgroup P=(P, |ieI) containing all P, kills mw,X. Hence, P,G
kills m,X.

Proof. X<XUY®P=XvVS.=X<Y=XU{e}. By theorem 4.3 there is a
superperfect normal subgroup P+ 1 in G *F, where F is a free group isomorphic
to m(\V SL). Also P kills m,X. Hence, by 4.4, cd G*F/P<2.

By Kuros’ theorem, we have P=3%, (uGu ' NP) for certain ue G*F. The
group P is superperfect implies that each uGu™'NP is superperfect. Let P, =
u '(uGu~'N P)u. Each P, is a superperfect normal subgroup of G. The group
P+# 1 implies that some of the P, # 1. Choose the family {P;} to be those P, # 1.

Consider the following diagram:

G*F—»G*F/P

I

uGu ' —>» uGu YYPNuGu™*

Thus uGu~'/P NuGu~'= G/P, has cohomological dimension <2 for each u. Note
that if any PNuGu ' =1, then G itself has cohomological dimension <2.

Let F;(M) denote the 2-sided ideal in ZG generated by the coordinates of
elements of the G-module Mc<(ZG)*. We know that Fg.{(mX)<Kp=
Z(G*F) - IP, where m,X=7Z(G*F)®m,X, by Theorem 4.3. It follows that
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Fg.(mX) = Fg.:(1,X), with 7,X considered as a G * F-module via the projec-
tion :G*F— G. Notice that P =n(P). The surjection Zn:Z(G *F) — Z(G)
clearly carries Ks=Z(G*F)-IP onto Kp=2Z(G)-IP. Also Fg.{mX)=
Fg.e(m,X) is carried onto Fg(m,X). Thus Fg.(7,X) < Kp implies F;(m,X) < Kp
and we are done. [

For the next corollary let X be a [G, 2]-complex which is not aspherical, but
which is a subcomplex of an aspherical [H, 2]-complex. Thus, there must exist a
non-trivial superperfect subgroup P <{G such that cd G/P <2. Because groups of
finite cohomological dimension are torsion free, we have

COROLLARY 4.6. Any element ge G such that g" € P (n=1) must be in P.
In particular, the torsion of G is contained in P. L[]

In [B, p. 122], R. Bieri shows that the center of a non-abelian group of
cohomology dimension <2 is cyclic. The exact sequence P > G —» G = G/P
induces a monomorphism

3GH(PNZG)»r> 3(G/P)

(8G is the center of G). If G/P is non-abelian, then 8(G/P) is 0 or Z; if G is
finitely generated, 3(G/P)=0, Z, or ZDZ (this last occurs only if G/P=ZDZ
is abelian).

COROLLARY 4.7. Let G be a finitely presented group, X be a minimal
[G, 2]s-complex, and P be a superperfect normal subgroup of G with the cohomolog-
ical dimension of G/P<2. Then 3G/(PN3G)=0, Z, or ZDZ, with this last
group occurring only if G = G/P is abelian. If def G =1 and P doesn’t kill w,X or if
P kills m,X and def G# 1, then 3G c P.

Proof. First, we assume that P Kkills 7,X and that def G#1. Then, by
Theorem 4.4, G has type FL and x(G)= x(X)=1—def G. The deficiency of
G+ 1 implies that x(G)#0. Then, by corollary 3.6 of [S], we see that 3(G) is
trivial. Hence P contains 3(G). '

We assume that def G=1 and that P does not kil m,X Let R;=
ker {ZZ®pCX - ZR®,C,_, X} (i=1,2). The cohomological dimension of G =<2
implies that R, is a projective G-module. Because P is superperfect, we have an
exact sequence

R2 > Z®PC2X~_—» Rl-
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This shows that R, and R, are both finitely generated projective G-modules.
Now at this point in the proof, we must use the Euler characteristic of a group
defined by J. Stallings in [S]. The rank of a finitely generated projective
G-module Q is a certain element rQ in the free abelian group T on the
set of conjugacy classes of G. Then pQ is defined to be the coefficient of
[1] in rQ. Accordingly, X(G) = ®i2=0 (-1 p(ZRp CiX) — PR, = Xmin(G,2) —pR, =
1—def G —pR,. It follows from proposition 1 of [DV] that pR,=0 and pR, =0
iff R, =0. Now P does not kill m,X implies that R, # 0. Thus pR,>0. Hence the
deficiency of G=1 implies that x(G)<O0 and the result again follows from
corollary 3.6 of [S]. O

We would like to thank the referee for simplifying the hypotheses of 4.7.
One may show that all the higher centers 83"G <P as well. To see that

82G < P, notice that the hypotheses of 4.7 imply that 3G = 1. Then the following
diagram commutes:

3G >—— P—» P/3G

ey

8G>— G —»G/3G.

|

G——G

Now B8G=1 implies that 3(G/3G)=P/8G and hence that 3>G=
n '8(G/BG)< P.
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