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Whitehead transfers for S'-bundles, an algebraic description

Hans J. MunkHOLM and ERrRik KJAER PEDERSEN

§0. Introduction

Let F—~E->B be a bundle of finite complexes. D. Anderson [1] defines a
geometric transfer homomorphism f%;, : Wh (r;B)— Wh (7, E) which maps the
Whitehead torsion of a homotopy equivalence g: K — B to the Whitehead torsion
of the induced homotopy equivalence g*(E)— E. (Actually Anderson works with
PL bundles, but by topological invariance of Whitehead torsion [4] this is no
longer necessary.) Similarly there is a homomorphism f,’;o:ﬁo(ZmB)—»
Ky(Zw,E) [6] relating the finiteness obstruction of a complex dominated by B to
the finiteness obstruction of the total space of the pullback. The homomorphisms
f&n and f¥ are known in some cases e.g. if the bundle is trival [9], [8] or when
some assumptions are made on the behaviour of fundamental groups [7], [11],
[12]. The case F=S' turns out to be of particular interest since knowing the
geometric transfer homomorphisms in this case enables one to compute it in a
number of other cases (see §7). In this paper we give a complete algebraic
description of the geometric transfers in the case F=S" and also compute it for
other fibres such as lens spaces, $3/Q(8), tori, see Theorems 7.1, 7.2, 7.3.

We prove

THEOREM A. Let S'— E — B be an orientable S*-bundle with fundamental
group sequence Z— mw—>p—>1 and let xe Wh(p) be represented by an nXn
invertible matrix A over Zp. Choose A and B, matrices over Zar, reducing to A and
A respectively, and let te m be the image of 1€Z. Then AB=1I1—(t—1)C for
some n xn matrix C over Zm and {¥,(x) is given by the 2n X 2n matrix

5

which determines a well defined element of Wh (7).

We also compute fy, in case the bundle is not orientable, see Theorem 2.1
and Theorem 3.1 for the exact formulation.

404
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The theorem has various corollaries (Corollary 5.2):

THEOREM B. Let S' — E — B be an orientable fibration with m,B finite and
B finitely dominated. Then E is homotopy equivalent to a finite complex.

This theorem was known in case of a product S'-bundle or with the assump-

fe ; :
tion that the exact sequence 0 — Z/ker iy — 7 E— B is the reduction of an
integral extension 0 > Z — 7 — m;B.
A corollary of Theorem B is the following (Theorem 7.2):

THEOREM C. Let M be a differentialbe manifold with 0 Euler characteristic
and M — E — B a bundle with structure group a compact connected Lie group. If

B is finite and B is finitely dominated then E is homotopy equivalent to a finite
complex.

Given a bundle of manifolds S'— E — B various authors have defined
transfers K_;(Zm,B) — K_;(Zm,E), Wh (7,B) - Wh (7, E) using concordances.
It is easy to see [14] that these transfers agree with the ones considered here, and
thus our computations extend to computations of concordance transfers.

§1. The algebraic S'-transfer map

Let S be a ring (with unit, not necessarily commutative). Assume given an
automorphism s — s' of S and an element o € S with o' =0, os =s'c, for all s € S.
Then the right ideal (o) generated by o is a twosided ideal. Let p:S — S/(o) be
the projection. If M, (S) is the ring of n X n matrices over S then s — s* extends to
an automorphism, A — A', of M,(S) with cA=A‘c. Also M,(S/(0))=
M, (S)/(o).

THEOREM 1.1. In the above situation Ehere is a well defined homomorphism
p* : K,(S/(0)) = K,(S) given as follows: If A € Gl(n, S/(c)) then

ra=(( )

where A, B, Ce M, (S) are chosen to satisfy

(i) p(A)=A
(i) AB=I —Co
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Moreover,

(iii) p* is natural, i.e. if f:S— S’ maps o to o' and f(s') = f(s)' then

Ki(S)—2> Ky(S)

Ip” ](p')#

Ki(S/(0)) = K(S'/(o")

commutes
+(iv) pPpx(x)=x—x', x € K(S)
where x — x' is induced by s — s*

(v) Let §— §' =(s') be the induced automorphism of S/(c), and let y — y* be the
induced automorphism on K,(S/(c)). Then psxp*(y)=y—y' for all ye
K(S/(a)).

(vi) If o is not a zero divisor then S/(o) has a free, finitely generated resolution over
S and the resulting classically defined transfer map K,(S/(o)) — K,(S) coin-
cides with p*.

Warning. Note that p# depends on the element o and the automorphism
s — s', not just the projection p.

A —
Proof. Let M(A,B, C) = (O'I B?)° If we have AB=1I,—Co then BA =

I, — Do for suitable D and
— —_ + t
M(A, B, C)M(—B, -A, D)= ( OI” _‘:(}D A )

Hence M(A, B, C) is invertible.

If, for fixed A, B one chooses a different C, say C,, then (C—C,;)o0 =0. The
identity

(I,1 (C-—Cl)A')(A ~C)~_(A ——C1)
0 I, ol, B' ol, B

shows that [M(A, B, C)] is independent of the choice of C.
Any change in A and B has the form A;=A+A,0, B,=B+B,0 for
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arbitrary A,, B,e M,(S). It may be compensated for by letting C,=
C—- A,B'— AB,— A,0B,. The identity

([ s v i) B G
0 I /\el, B'/J\0 I,/ \oI, B!

shows that [M(A, B, C)] is independent of the choice of A and B. If Ee

Gl (n, S/(g)) is an elementarl_r_natrix then E = p(E) for some elementary matrix
EeGl(n, S). Also p(AE) = AE and (AE)XE'B)=1I,— Co. The identity

(f)" (qu)')(f g ;C)(g ?)z(:IE (E—:‘CI:B)‘)

shows that A and AE give rise to the same element in K;(S). Similarly one treats
EA and A.

Finally, it is easy to deal with stabilisation. Altogether we have shown that
p”:K,(S/(c)) = K,(S) is a well defined map.
The homomorphism property is obvious when one uses

RN ()

to define the sum.

The naturality property is obvious. If AeGl(n, S) and A =p(A) then one
may take B=A"', C=0. Hence the formula in (iv). Finally (v) holds because

paimcaBon=[ (5 1S,)]-tA-tar

In case o is not a zero divisor then S/(o) has S—r—"——>S——p——>S/(cr)—->0 as a

resolution by left S modules, so p gives rise to a classical transfer map
tr, : Ki(S/(0)) = K,(S), see e.g. Bass [17] p. 451. The commutative diagram

B 1 b
s"ds" S"@S" ——— (S/(o))"

}(‘?ﬁ 59 l;}" ) lfi

SnEBS"—I——'b-—)Sn@S" —— (S/(a))"
(d‘ 1,,) (po")
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shows that
tr, (AD = p*(AD.
In fact the identity
e o N7 5)-G )
Y PA\V R | I B I O
shows that

G, )

vanishes. (Note: When we deal with left modules we have matrices on the right of
row vectors in the description of homomorphisms.)
We proceed to introduce the example we are most interested in.

EXAMPLE 1.2. Let

Z—>a-25p—>1 (€)

be an exact sequence of groups with t=i(l)ew. Let w:p—>{x1l} be a
homomorphism with gtg™! =t“®® for all ge . Also let R be any commutative
ring. By abuse of language we write p : Rm — Rp for the homomorphism of group
rings induced by p:m—p. Now S=Rw and o=t—1 together with the au-
tomorphism given on generators g€, by

g,z{—gt“1 if w(p(g))=-1
g if w(p(g)=1

is an example of the situation described in Theorem 1.1.

The resulting homomorphism p”*: K;(Rp) — K;(Rw) induces (when R=7Z) a
homomorphism (still called) p* : Wh (p) — Wh () which still satisfies (iv) and (v).
In this case the naturality shows that the following diagrams commute

Ki(Rm) 2> K, (R'm) K, (Rm) == Ky (Rmy)

Pk

Ki(Rp) 5> Ki(R'p)  Ki(Rp) 5> Ki(Rpy)
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Here f:R — R’ is a ring homomorphism and ¢, ¢ are group homomorphisms
making

Z T
|
T

77—

v

T €&

v

¢

1 > 1

commute and having w,(¢(g)) = w(g), g € p. Note that the element t =i(1) e 7 can
be of finite or infinite order. Call the order k. If k>2, then the extension (&)
determines w uniquely. If k =1 or 2 then p* depends also on w though this fact is
suppressed in the notation. The choice of a generator for Z is immaterial. In fact,

replacing t by t~! can be compensated for by changing A to At™!, B to tB and C
to —Ct. The identity

(g‘ —(;n)((t“/‘&fll)In (tBC)t“‘)(t(I)n ——t?lln)z((t—/‘i)ln ;3?)

shows the desired.
In case k < one may change t to t" where (r, k) =1. This gives a new exact
sequence

L—>m—sp—>1 (8,)

and an S'-transfer map which we shall call p#,: K (Zp) — K (Z).

§2. Whitehead torsion and linear S'-bundles

Let f:E— B be a locally trivial S'-bundle with structure group O (2) (for
short: a linear S'-bundle) over a connected, finite CW complex B. There results a
pair (¢, )

Z=7T1(Sl)—i‘"’n'=’”1(E, eo) = p=m(B, by) —> 1 (€)
w : (B, by) = p — {1} = Aut (m,(S"))

where p is induced by f. Thus, from Section 1, we get p”: Wh (p) — Wh ().
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Next, let X be a finite CW complex containing B as a deformation retract,
with retraction r, say. Then E is a deformation retract of Y =r*(E). The pairs
(Y, E) and (X, B) have Whitehead torsions 7(Y, E)e Wh (), 7(X, B)e Wh (p).
We shall prove

THEOREM 2.1. In the above situation one has

(Y, E)=p*7(X, B).

Proof. First consider the case where (X, B) is in simplified form ((4.7) of
Cohen, [5]), i.e.

X=BU (,'91 e ) (L:J e'“) (2.1)

Here we take r to be an even integer > dim B. The cells e} have characteristic
maps ¢; : 1" — X with ¢](8I") = b,. There is a commutative diagram

(2.2)

which we proceed to explain. The horizontal maps are coverings, universal ones
being indicated by a ~. The map f is the pull back of f. If X — BO (2) classifies f
then X -—-;——>X ——>BO (2) deforms into BS!. Therefore, we can assume that
f:Y—X is a principal S' bundle. Let u:S'XY — Y be the corresponding
action. If, as in Section 1, k is the order of t =i(1)e then Y— Y is a prmmpal
Z/kZ bundle (Z/kZ =1Z, if k =) The action p lifts to an action @:S'XY—>Y
where S'=R/kZ (=R if k =x). And f is the corresponding principal S*-bundle.
Finally ¢% and ®? lift ¢}, and ¢ extends ®% S'-equivariantly, i, being given by
io(x) = (0, x). Also note that E=Y | B is an S'-invariant subspace of Y.



Whitehead transfers for S!-bundles, an algebraic description 411

We pick basepoints é,€ E< Y and b,e B < X, compatibly, and above e, and
by,. We use them to identify 7 and p with the covering transformation groups on
Y and B in the standard way (see e.g. §3 of Cohen, [5]).

We go on to describe the cellular chain complexes C*(f(, B) and C*(?, E).

2.A. The description of C(X, B)

The cell e} lifts to a cell of X, say é;, with characteristic map ¢; (compare (2.1)
and (2.2)). The translates under p, gé;, form a cell decomposition of (X, B), i.e.

X=1§u(u gé})U(U gé;“) (2.3)
i.g j.2

where the cell gé} has characteristic maps go: 1" — X

Now let «, e H,(I",3I") be the standard generator. Then Cx(X, B) has a
Zp-basis consisting of

x;=(@Dx)eC(X,B), j=1,2,...,n; wv=rr+l 2.4)

Using this basis we see that C(X, B) takes the form
(Zp)" «<— (Zp)", where A eGl(n,Zp).
Of course, A is invertible because X deforms to B.

2.B. The cells of (Y, E)

Let us fix the following ranges for the various indices used

j and [ range over 1,2,...,n,
g and h range over p,

a and B range over Z/KkZ,

v ranges over r,r+1

Also choose a set map o :p — m splitting p: 7 — p and having o(1) =1.

The map o(g)y}: S'xint (I') = Y then trivializes the restriction of Y to the
cell g&% < X. We give S' the obvious cellular structure with vertices a and 1-cells
(o, @ +1), a € Z/kZ. The product structure on S*xint (I) can now be transported
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into Y by means of o (g)y;. Thus we get the cells
e”(j, g a) = o(g)¢j ({e} Xint (I)) (2.6)
e”"(j, g [a, @ +1]) = o ()¢ (&, @ +1) Xint (I")) (2.7
with characteristic maps
1", & &) =@} (e XI'): I" > Y (2.8)
172G, g [a, a + 1) = 0 (@)Y} (ifarn X ): I = V. (2.9)

Here i,:%*—>S8' and ip.41;:I'—=S' are given by i,(*)=a, iges11(s)=
s+a(eR/kZ). It is clear that the cells of (2.6-7) form a cellular structure on
(Y, E).

2.C. The  action on the cells of (Y, E)

Recall, e.g. from MacLane [10], that each element of 7 is uniquely of the form
o(g)t* (g a ranging as in 2B). And the group structure is given by

o(h)o(g) = o(hg)t"*™® (2.10)

to(g) = o(g)t*® (2.11)
where y:pXp —Z/kZ is a 2-cocycle representing the characteristic class of the
extension Z/kZ — 7 — p.

Also, note that under the action i:S'XY — Y one has p(l,=)=t: Y- Y. It
follows that

wi(s, -)=yi(s+1,-), se§! (2.12)

and from (2.12) together with (2.10-11) and (2.8—9) one easily computes the
action of the general element o(h)t® € 7 on the cells of (Y, E). One gets

o(h)t® - n*(j, g, @) =n"(j, hg, a + w(g)B +v(h, g)) (2.13)

a(h)t® - ", g [o, a +1]) = n"*'(j, hg, [a +w(g)B +y(h, g),
a+1+w(g)B+v(h 2)). (2.14)
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Especially
o(h)tf - *(j, 1,0)=n"(, h, B) (2.15)
a(h)t® - 0", 1,[0, 1) =n"""(, h,[B, B+ 1)). (2.16)

Thus there is a Z 7 basis for C*(?, E) consisting of the elements
Yio=1"(, 1,0)x(,), and (2.17)
yiomn=n""G, 1, [0, 1Dx(t,+1) (2.18)
2.D. The boundary in C4(Y, E)

We want to prove

PROPOSITION 2.2. Using the Z basis given in (2.17-18) Cy(Y, E) takes
the form

(Z?T)n 67\—)—' (Z'TI")" @(ZTI)" (T—T,—A——; (Z':r)"

t—1

where A € M, (Z) has p(A)= A €Gl (n, Zp) (cfr. (2.5)).

Proof. Let us use superscript (i) to denote the i-skeleton of any CW complex.
Also, if b, is a given R-basis for a free R-module M, and if m e M let us write
(m, b.) for the coordinates of m relative to b. (here R will be Z or Zr). The
commutative diagram

H, (I'x I (I x ) 25000 (Y04 ¥9) = G, (Y, E)

) o

H.OUI'XI'), (I'x I PuI'xeaI'—H,(Y", E)=C,(Y, E)

= (incl,k)”l
v m"G,1,0Un"(,1,1)4

H,{0, 1}x1",{0, 1} xaI")

together with (2.15) shows that

ayito1=(t—1Dyjo. (2.19)
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Similarly one proves
@Yoy Yo =38;(t—1). (2.20)

Let A=(A;)e M, (Z7) be given by
Vo = Z Apyio. (2.21)
{

Under fy y}o maps to x} so a comparison with (2.5) reveals that
p(A)=A. (2.22)

Thus all that is now left to prove is

Oyiioap Vit =—(Ap) e Zm. (2.23)
Let

Ay = é atfa(h)t®,  atfelZ. (2.24)
Then

(Ap)' =Y. aPa()t® - Y alfo(h)tP! (2.25)

where Y* means the sum over all h, 8 with w(h)==1.

In order to prove (2.23) we change to integral bases. For Cx(Y, E) an integral
basis consists of

v (U, & a)=n"(, g a)x(¢,), and (2.26)

v G, g [, a+ 1) =0"""(j, g [, a@ + 1]Dx(t,41). (2.27)
In terms of these the known formula, (2.21), becomes

@y, 1,0), y'(l, h, B)) = af. (2.28)
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And the desired one, (2.23), becomes

hg 2 _
r+2(: r+1 — —aj if w(h) =1
@y, 1,10, 1]), y"'(1, h, B)) {ag,sﬂ i o(h)=—1.

(2.29)
We shall prove (2.29) for the case w(h)=—1 (the other case being slightly easier).

Consider the diagram (2.30).

By (2.28) the left hand vertical composition maps ¢,,; to aj®*'¢,. Similarly
(2.29) means that the right hand vertical composition maps ¢,,, to ali® '¢,;.
Thus, if we can fill in dotted arrows so that the squares commute up to the sign

indicated then we are through. The action @:S'X Y — Y induces a map
a:(I', aT) A (T, T0) > (F, 7+

where we include (I',dI") into (S*,{0,1}) via i, We put 3,(x) = as(t, AX).
Since

I'xmr+1(j,1,0) ~
IIXIH-l_____________)IlXY

|

Ir+2 —_ Y"'
n"%(j,1,[0,1]

commutes, so does the upper square in (2.30).

1N\ —
H, ., (I, eI - > H, ,(I"*2,3I""?)
7\r+\(j, 1,0)*1 @ lnr +2(L1’[0»1D*
~ - 5 B }
Hr+1(Y<r+1)7 Y(r)) """"""" . S . > Hr+2(Y(r+2), Y(r+1))
"’ S :

\L \4
22

H,(Y®, YO ¢'(L b, B+ 1)-> H, (¥, Y0 — (1, b, [B, B+1)

0 LB+ " @ LB, + 1D5"

N v

Hr(Ir’ aIr) LA > r+1(Ir+19 aIr+1)

Diagram 2.30.
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If we let Ty(s)=1—s5 for seI'< S then

~ [ ~
I'XY—Y

Tyxa(h)P+! lw(h):"“ =g(h)t®
Y

Il)(?——_-—-)
I

commutes. In fact

f(1—=s ac(Wt** 'x)=ac(W)t* '@ —1, x)

=a(h)t®a(s, x).
Hence
I'xr = r+t
Ty xn'(l, h,B+l)l ln’“(l, h,[B,B+1]) (2.31)
I'xyY — Y

also commutes. Consequently @& induces a map

b:(I', oI A(Y®, YO —e"(, h, B+ 1)) =(Y*P, YOV — e Y(L, b, [B, B+1])).

We let 3,(x) = bx(t;Ax). Then the middle square in (2.30) commutes up to the
sign —1 because

A AX)=—1;Ax € H (YD, YO P —e (L, b, [B, B+1])).

And the bottom square in (2.30) commutes up to the sign —1 because of (2.31).
This finishes the proof of Proposition 2.2.

2.E. Completion of the proof of Theorem 2.1
As in Section 1 we may choose B, C e M, (Z1) with AB=1,—C(t—1). Then

(t—1,—-A") is split by (ﬁC

B'>' Thus (from the definitions in §§15, 19 of Cohen,
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[S] we see that

A C

(Y, E)= [(t— 1 —-B

)], (B, X)=[A].

This finishes the proof in the special case considered so far.
Using the special case repeatedly we see that

In the situation of Theorem 2.1, if X is a CW expansion of B then

(Y, E)=0. (2.32)
Also, if the pairs (X, B) and (X;, B) have equal torsions then X and X, both

expand to a common expansion of B. Therefore, arguing as in Anderson’s proof
of 2.1 of [1], we see that
For fixed f : E — B 7(Y, E) depends only on 7(X, B). (2.33)

Since it is known (see e.g. (7.4) of Cohen’s book [5]) that any 7€ Wh(p) is
realized by a pair in simplified form the proof is now complete.

§3. Relation to Anderson’s geometric transfer
In this section we consider PL fibre bundles f : E — B with fiber S*, as defined
by Anderson [2]. Anderson, [1] proves that any such gives rise to a map

f*:Wh (7,(B)) > Wh (7,(E)) - we shall call it a geometric transfer map - such
that

For any homotopy equivalence h:B,— B (B, a finite polyhedron) (3.1)
one has f*7r((h))=1(h) where h:h*E — E covers h. '

In this context we also have p = fy: 7 (E) — m(B) and the algebraic S'-transfer
map p” :Wh (7,(B)) = Wh (7,(E)). As a corollary of Theorem 2.1 we get

THEOREM 3.1. For any PL fiber bundle f: E — B with fiber S* one has
f*=p*:Wh (7(B)) = Wh ((E)).

In fact, Pedersen, [15], proves that f* depends only on the exact sequence

Z = m,(S") —> m(E) —> m(B) —> 1 (8)
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and the orientation map
o :m(B)— {x1}.

Now any pair (&, @) can be realized by a PL fiber bundle (fiber S') with structure
group O (2). Thus we may assume that Theorem 2.1 applies to f: E — B. Also,
any 7€ Wh (m,(B)) has the form 7(X, B) for some X2B, and if i:B— X,
r: X — B are the inclusion and retraction respectively then = 7(X, B) = ig't(i) =
ret(i)=—7(r).

Thus

f*r=—f*r(r)=—7(F =1(Y, E)=p”r(X, B)=p”r.

Remark 3.2. Instead of comparing p* with Anderson’s f* one might also redo
Anderson’s work, [1], in the context of locally trivial S'-bundles f: E — B over
finite CW complexes. One proves that any such gives a well defined map
f*:Wh (,(B)) = Wh (m,(E)), and that f* depends only on the fundamental
group sequence and the orientation map (as in Pedersen, [15]). The above
argument then proves that f* =p* also in such a context.

§4. The Bass-Heller-Swan homomorphism

Let p be a group. In [3], Bass, Heller and Swan define a split epimorphism
¢ :K(Z(pXZ)) — Ky(Zp). The splitting h:Ky(Zp) — K(Z(p XZ)) is given by
h([P])=[P[s, s7'], |]. Here s is the generator of Z, P is any finitely generated
projective Zp module, P[s, s~ '] its extension to a Z(p XZ) =Z(p)[s, s~*] module,
and [ is left multiplication by s. It is easily seen that there are “reduced editions”
forming a commutative diagram

Ry(Zp) —> Wh (p XZ)

ok

IZQ(ZP)
In this section we shall give the following homotopy theoretic interpretation of ¢.

THEOREM 4.1. Let X be a finite, connected CW complex with fundamental
group p. Any 7€ Wh (p XZ) is the Whitehead torsion, 7(g), of some map g: Y —



Whitehead transfers for S!-bundles, an algebraic description 419

X % S! where

(i) Y is a connected, finite CW complex with Z=g (X x1) a connected
subcomplex

(i) g|Z:Z— X X1 induces an isomorphism on fundamental groups.

For such a g let

Y =45 XXR

1«1 lx X exp

Y — Xx§'

be a pull-back, and put Y, = g (X X[0, 0)). Then

(iii) g,:Y,— X x[0, o) — X induces an isomorphism g.4:m(Y.,)— p,
(iv) Y, is finitely dominated with finiteness obstruction given by g, 4(w(Y.))=
¢(1) € Ko(Zp).

Proof. Certainly T=1(g) for some homotopy equivalence g:Y — X xS’
where Y is a finite complex. Replacing Y by a regular neighborhood of Y in some
RN we have Y a compact manifold. Then make prog: Y — X x S'— S! smooth
and transverse to 1 to ensure that Z=g (X x1) is a submanifold. Finally do
“ambient surgery’’ to ensure that Z be connected and that (ii) holds, and
triangulate the pair (X, Y) to obtain (i).

It follows easily from (i) and (ii) that Y, and Y_=g (X Xx(—%,0]) are
subcomplexes with g: Y, NY_— Z a homeomorphism. An application of van
Kampens theorem then gives the following pushout diagram of groups

771(?+)
m<?+ni>=p/ SNl
f ’"'1(Y~) §

Here j,i, =j_i_=id with the identification indicated. Since this implies that
m(Y,) is a semi direct product K.X,, p it follows that the inclusion p—
(K*K_)X, +, p is an isomorphism. Thus K,={1} and j,:m(Y,)—p is an
isomorphism. This proves (iii).
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To prove (iv) we consider the cellular complexes of the universal coverings of
XXR and Y as well as their restrictions to X X[0,>) and Y,. They fit into a
diagram with short exact rows

C*(X X[0, ©)) —> M(y,) —> C*—l(?+)

Cx(XXR) — M(y) — Cx_((Y).

Here M(y) is the mapping cone of y = gy : Cx(Y) — Cx(X xR), and M(y,) arises
similarly. By definition 7 is the Whitehead torsion, 7(M(7y)), of the acyclic simplex
M(vy) with its Z(p X Z) basis coming from the cells of Y and X x S lifted to Y and
X xR. Also X x[0, ) has the homotopy type of X so Cx(X %[0, )) is equivalent
(over Zp) to a finite free chain complex. Hence it suffices to prove that M(y,) is
dominated (over Zp) by a finite, free chain complex, and that its finiteness
obstruction is @(7). _
Now we may choose the lifted cells in Y and X xS'=XxR so that:

If b;1,...,b.u is the preferred basis for M;(y) over Z(p XZ) and
s € Z is the generator for Z (written multiplicatively) then

{bijsk |j=1,2,...,k(i);k=0, 1, 2,...} (4.1)

is a basis for M;(y,) over Z(p).
In fact, in each pXZ orbit of cells in Y or X x S! one chooses a cell e so that
ec Y or Xx[0, ®) but s 'e is not. After this observation the following proposi-

tion finishes the proof of Theorem 4.1.

PROPOSITION 4.2, Let
d, d,_, d,
D=(Dn-—->Dn_1——->"—->Do)

be an acyclic chain complex of finitely based Z(pXZ) modules. Let b, =
{bi1,..., b} be a preferred basis for D, and let D{¥ be the Z(p) module
generated by all b, s, (j=1,2,...,k(i); k=0,1,2,...). Choose an integer N so
big that sNd,(D™M)< DY, for all i, and let

s

™) ) S ) R )
D™’ =\D,”"— D2y —> " - > Dyg
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be the resulting chain complex of Zp modules. Then D™ is finitely dominated with
finiteness obstruction w(D™) = ¢(7(D)) in Ko(Zp).

Proof. We use induction on n. For n =1 Bass, Heller and Swan show that
Cok (s™d,) is a projective over Zp, and they define ¢ by letting ¢(7(D))=
[Cok (sNd,)]. Since D™ is equivalent to the trivial complex Cok (s™d,) we have
the desired conclusion. Let n>1 and write E for the chain complex Dy D,
concentrated in degrees 1 and 0, F for Dy—> D, in degrees 2 and 1. Also
choose a splitting o of d,:D; — D, and let

_ 4 2 = d,.n
D= (Dn ——f:"—"» v (03) D2®D0 (02 1) D1®Do Do)

p=(p,——- -——@——>D2®D0—ﬁ’—’i—>1)1>.
The obvious short sequences
0—-D—-D—F—0, 0>E—>D—->D—0
(which are compatibly based over Z(p XZ)) show that
(D) =7(D) =7(D).
Also, for N large enough, we have short exact sequences
0— DM D™, N _, 0, 0— E™M 5 D™ _, D‘(N)__> 0

of Z(p) chain complexes. Now F™ and E™ are finitely dominated with vanishing
finiteness obstruction. Also, by the inductive hypothesis, D™ is finitely domi-
nated with w(D™) = or(D). It follows that D, and then D, are finitely dominated
with w(D®™) = w(D™) = w(D®™), which finishes the proof.

§5. The K,- and Wh transfer maps related by the Bass—Heller-Swan
homorphism

Let f:E— B be a Hurewicz fibration with fibre S' and connected, finitely
dominated base B. Let

Z=m(S)Y>m=m(E)—p=m(B)—1 (8)

o :m(B)— {x1}
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be the associated pair as in Section 1. In [6], Ehrlich showed that f gives rise to a
homomorphism f*:Ky(Zp)— K(Zm) taking w(B) to w(E). And in [15],
Pedersen proved that f* depends only on the pair (&, w). We shall give the
following algebraic description of f*.

THEOREM 5.1. For any Hurewicz fibration as above, the diagram commutes.

IZO(an') «—~— Wh (7w X7Z)
f* (F* > 1)*

Ko(Zp) —— Wh (pxXZ)

COROLLARY 5.2. Let f: E— B be an orientable S'-fibration with B finitely
dominated and connected. If m,(B) is finite then E has the homotopy type of a finite
complex.

Proof. If w,(E) is infinite, then ker (p) =7Z so € is pseudoabelian, in the sense
of Ehrlich, [7]. Hence the result follows from Ehlich, [7] (or see Munkholm and
Pedersen, [12]). Compare also with the proof of Proposition 6.1.

Now let 7 =m,(E) be finite. Then an easy application of Milnor’s Mayer—
Victoris sequence shows that py:K(Zm) — Ko(Zp) is onto. Thus the general
element of K,(Zp) has the form [p4P] for some Z module P which admits a
stable inverse Q, i.e. P Q=(Zw)". Now

h([p*P]) = [(p*P)[Sa S——l]’ ls]
= (p X l)*[P[S? Sbl]: ls]
But by (iv) of Theorem 1.1 (p X 1)#(p X 1) =0 in the orientable case. It follows
that f*=0 as claimed.

Proof of Theorem 5.1. Since the given data (€, ) can be realized by a PL fibre
bundle, and since f* depends only on (4, w) we may assume that f is a PL fibre
bundle. By Theorem 3.1 it then suffices to show that

Ko(Z ) <*— Wh (7 X Z)

If * If * the righthand vertical arrow is
associated with the bundle crossed

Ko(Zp) <—Wh(pXZ) with S
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commutes. And that is an easy consequence of the description of ¢ given in
Theorem 4.1.

§6. Some computations

We have so far been unable to answer the following

Basic question. Does there exist an orientable extension Z — P p— 1 (with
p finitely presented, say) for which 0# p*: Wh (p) — Wh (7)?

For the unoriented case the examples of Pedersen and Taylor, [16], together
with Theorem 5.1 shows that one can have (p X 1)* #0. Since essentially nothing

is known about Wh (p) when p is infinite we have concentrated on the case when
p is finite.

PROPOSITION 6.1. If Z — 17—p->p—->1 is orientable and  is infinite, p is
finite, then p* =0:K,(Zp) — K,(Z).

Proof. If |p|=m then there is a commutative diagram
O—Z— 7 5 p—1

]

0—Z —pXZ > p—>1

where m is multiplication by m and i is an inclusion. One may realize this
diagram by

S! > E

T

S'/(Z/mZ) — E/(Z/mZ) — B

where the map f is a PL fibre bundle with fibre S*, hence a principal S'-bundle,
and the Z/mZ-action comes from the inclusion Z/mZ — S!. It then follows that
f*=i*f¥, ie.-in view of Theorem 3.1-p* =i*p¥. Since p,4 is onto a reference
to (iv) in Theorem 1.1 finishes the proof.
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For the rest of the paragraph assume that = is finite. Recall that Cl,(Zr) is
"defined to be the kernel of

SK\(Z7)—> & SK(Z,7) <> ® K\(Z,m)

where Zq denotes the g-adic completion of Z (see Oliver, [13]).

PROPOSITION 6.2. If Z— m— p—1 is orientable, and = is finite then
p*(K:(Zp)) = ClLy(Z ).

Proof. Since Qm — Qp splits as a map of Qw modules, p* =0:K,(Qp)—
K;(Qw). Hence, from Theorem 1.1 p*(K,(Zp)) < SK,(Z7) (=Ker (K,(Z7)—
K,(Qr))). Similarly py: Kl(iqw) — Kl(qu) is onto so the same argument finishes
the proof.

Now Cl,(Z ) is pretty well understood when # is abelian, so one might hope
to detect nontriviality of p* by projecting into an abelian group. However one has

PROPOSITION 6.3. Let Z — 7w — p — 1 be orientable and  finite. If h: m —
1 is a homomorphism into an abelian group then hyep” =0:K,(Zp) — K (Z 7).

Proof. Clearly we can assume that h is onto. Then, by the naturality in
Theorem 1.1(iii), we can assume that 7 is abelian and h is the identity. But any
such extension is the reduction of an integral extension so we have a commutative
diagram

i P,

Z—>
|
Z > T

i P

0 >

of abelian groups and with exact rows, and we only have to refer to Theorem
1.1(iii) and Proposition 6.1.

§7. Examples

In this section we infer consequences for the geometrically defined transfers in
bundles with other fibres than S*'. We remind the reader of some facts from [15]:
Let F— E-5'B be a bundle (structure group Homeo (F)) with B and F finite
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CW-complexes. Anderson [1] then gives a homomorphism f*:Wh(m;B)—>
Wh (71, E) that relates Whitehead torsion at total and basespace level. By the
fundamental group data of the bundle we understand the exact sequence 7 F —
mE — mB and the orientation homomorphism mE — 7w, (Homeo (F,%*))
(Homeo (F, *) = basepoint preserving homeomorphisms). The existence of univer-
sal examples with given fundamental group data [15] implies that f* above only
depends on F and the fundamental group data. This means that we compute f* in
general if we can compute f* for enough examples of bundles with F as fibre. The
results of [15] also tell us how many examples we need to compute with a given
fundamental group p in the base and a given orientation homomorphism p —
mo(Homeo (F)): Let Homeo (F) — F be the evaluation map and G1°°(F) < m,(F)
the image of the induced map. If it is possible to realize some fundamental group
data m,F — m — p compatible with the above orientation homomorphism and
with A =ker (7, F — m), then all such fundamental group data are classified by
H?*(p; G,(F)/A) (local coefficients) in the sense that this group acts (transitively
and faithfully) on the set of realizable fundamental group data. Also the image in
H?*(p; C(m(F)/A)) gives the corresponding action on the exact sequence [10]. So
if we are considering an orientable case the image in H*(p; C(m,(F)/A)) will be
the characteristic class of the extension m(F)/A — 7 —p. We now restrict
ourselves to orientable bundles. (Note: this does not imply that = E —

mo(Homeo (F, *)) is trivial.) We use these observations to compute some exam-
ples:

Let L=L(m;ay,...,a,) be a 2n—1 dimensional lens space given as S** ' =
{(z4,...,2,)€C"|Y|z|*=1} divided out by Z/mZ thought of as m’th roots of
unity and {€Z/mZ acting as {(z,,...,2,)=(*zy,...,{*z,) (the a;’s are rela-

tively prime and prime to m). S' acts on L by the formulae

z - [(z4,...,z)]=[("24, ..., &%2,)] where &M=z

We let s € (L) be the element obtained by letting S act on the basepoint. Let
L—-E—B be an orientable bundle with fundamental group data
Z/mZ - w5 p — 1. Consider the exact sequence

Z->m7—->p—1

where Z — 7 sends 1 to i(s). We then have homomorphisms pf,: Wh (p) —
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Wh (7) defined for any b prime to the order of i(s) (compare with the end of
Section 1).

THEOREM 7.1. The geometric Wh-transfer f* associated with the bundle
L — E — B is given by

f*=2 pt,

where a;b,=1 (mod m).

Proof. GT°*(L)=m,(L) since we have exhibited an S'-action on L which
applied to the basepoint gives a generator of m(L). Thus the transfer is com-
pletely determined by the exact sequence Z/mZ — m — p — 1 and we need to
construct appropriate examples. Let Z — m — p — 1 be the exact sequence above
and let S'— X — B be a principal S*-bundle realizing this fundamental group
data. (This is always possible by [12] or [15].) Clearly L — X X4: L — B realizes
the fundamental group data Z/mZ — w — p. (Notice we have carefully chosen a
generator of (L) thus exhibiting an isomorphism to Z/mZ.) We prove the
theorem by induction, using what amounts to an S'-CW structure on L. Let K be
an  S'-equivariant  regular  neighborhood of L(m;a,,...,a,_;)C<
L(m;a,,...,a,). Then X Xs: L — B is the union of two bundles A =X X K
and C=X Xg S'xXD? 2 (the S'-action on S'xD?"? given by z:(z,d)=
(z% - z,, d), intersecting in a bundle H=X X4 S'x 8?3, Siebenmanns sum
formulae for Whitehead torsion (see e.g. [S]) implies in obvious notation that

f* = rhe e 1t

(the sums computed in Wh (7) through the natural maps). However the S'-
equivariant map

Sl X SZn——3C Sl xD2n—2 — Sl
induces a bundle
X X1 $1x 8?3 5 X X S?

with fibre $2" 73, so by [11] f3 is 0 (because 2n — 3 is odd. Had we considered the
attaching of an even S'-cell we would get f=2f& and thus f& would be
subtracted leading one to think of an S'-CW-complex Euler characteristic).
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To complete the proof we only need to show f&=p} ,.
Since X X5 S'=X/(Z/a,Z) we get a diagram

S'—s SY(Z/a,Z)=S'—> L

| l

X—X/(Z/a,Z) —> X Xq L

| |

B ! > B > B

with a corresponding diagram of fundamental groups

y/ s Z —>7/mZ

l l l

T —— m(E/(Z/a,ZL))—> 7

l | |

P > p > p

The composite Z s Z/mZ sends 1 to 1 so Z—— Z/mZ must send 1 to

b, where a, - b, =1 (mod m). It follows by naturality of the algebraic S'-transfer
that f&=pf. , thus ending the induction step and the proof.

We now consider F = S$3/Q(8), a simple example with nonabelian fundamental
group. Let F— E — B be an orientable bundle with fundamental group sequence
Q(8) — m — p — 1. If the kernel Q(8) — r is nontrivial the sequence is split and
it is shown e.g. in [15] that f*: Wh(p) — Wh () is trivial. Otherwise since Z/2Z is
the center of Q(8) we may establish a pushout diagram

22227 —> 7™ —> p

R o

Q(8) >T—> P

Let h,:Z/4Z — Q(8), s =1, j, k be the inclusions sending the generator to i, j and
k respectively and consider the pushout diagram

227 —> T —p

ool

Z/47 — 7' 5 p (7.2)

Lol

Q®) —> 71— p
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Let a:Wh(p)— Wh () be the composite Wh (p) —— Wh (#)— Wh (') and
b, :Wh (p) — Wh (), s =i, j, k the composite Wh (p)——> Wh (') =% Wh ().

THEOREI\){I 7.2. The geometric Wh-transfer associated with the bundle
S3/Q(8) — E — B is given by

f*=2b,+2b,+2b,.—4a

whenever Q(8) — 7 is monic.

Remark. Note that the diagram

Wh (p) > Wh(),

N

Wh (77)

where Res is the restriction map, is commutative, so to prove f* =0 in a specific
case it would suffice to prove q” =0.

Proof of Theorem 7.2. We let S! act on the left of S?/Q(8) by z - [z, z,]=
[¢z,, £z,] where £ = z. Letting S* act on the base-point gives the central element
of m,(S*/Q(8)). The action has 6 singular orbits of the type Z/2Z and the induced
action of S'/(Z/2Z) at the singular orbits define elements of ,(S>/Q(8)) up to
conjugacy. We get i,j and k respectively at 2 points each. We have an S'-CW
structure on S3/Q(8) with 6 0-cells, 12 1-cells, and 8 2-cells, all 1 and 2-cells with
0 isotropy subgroup. We construct a principal S'-bundle S'— X — B with
fundamental group data Z — Z/2Z — & — p and consider

S'—5°/Q(8)

———

X —> X xg1 $3/Q(8)

(.___-—

B— B

The right hand bundle has the right fundamental group data and can thus be used
to compute f*. The decomposition of S*/Q(8) as an S'-CW complex gives a
decomposition of the bundle in S*-bundles which we sum using Siebenmanns sum
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formulae. The 0-cells give diagrams

S! >S! >S?/Q(8)

l

X——X xXg1 S' = X/(Z/2Z) —> X X5 S3/Q(8)

|

B B B

with fundamental group diagram (7.2) which gives the contribution 2b, +2b; +2b,
to f*. The contributions from the 1-cells are subtracted (see proof of Theorem
7.2) and the 2-cells added to give the result.

It has been essential to these two examples that the center of the fundamental
group was ‘“‘picked up” by an S'-action so therefore has to be cyclic. To remedy
this restriction slightly we consider F=T", the n-torus. Let T* — E — B be an
orientable bundle with fundamental group data Z" — 7 — p. Consider m; =
Cok (Z' — m) where Z'cZ" as the first i factors. We get exact sequences

p,
Z — 'n’i_l e Tri.

THEOREM 7.3. The Wh-transfer f*:Wh (p) - Wh (m) associated with the
bundle T" — E — B is the composition

#Hop #o-cop#
popo--op

Wh (p) = Wh (m,) ——> Wh (7o) = Wh ().

Proof. We may replace T" — E — B by a principal T"-bundle T" - X —> Y
with the same fundamental group data and use this to compute f*. The sequence
of S'-bundles

Sl ___>X/Tl __)X/Ti+l
now finishes the proof by referring to the main theorem.

If G is a compact connected Lie group and F a G-CW complex it is clear from
the above that we can compute the geometric Wh-transfer for any bundle
F — E — B with G as structure group, since the inclusion of the maximal torus
T < G induces an epimorphism of fundamental groups and we thus may produce
a bundle with the same fundamental group data and T as structure group, and
then may proceed as in Theorems 7.1 and 7.2. This general result we prefer not to
state since it uses the actual T-cellular structure of F and thus gets a very
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complicated form. In case of the K,-transfer and finite fundamental group of the
base however we know the geometric S'-transfer is 0 so in the inductive argument
we keep adding zeroes to obtain e.g.

THEOREM 7.4. Let M be a differentiable manifold with O Euler characteristic
and M — E — B a smooth bundle with structure group a compact connected Lie
group. If m,B is finite and B is finitely dominated then E is homotopy equivalent to
a finite complex.

Remark. In case x(M)# 0 the K,-transfer has been computed by Ehrlich [7].

REFERENCES

[1] D. R. ANDERSON, The Whitehead torsion of a fiber homotopy equivalence, Mich. Math. J., 21
(1974), 171-180.
[2] ——, The Whitehead torsion of the total space of a fiber bundle, Topology 11 (1972), 179-194.
[3] H. Bass, A. HELLER and R. G. SwaN, The Whitehead group of a polynomial extension, Publ.
Math. (LH.E.S.) 22 (1964), 61-80.
[4] T. A. CHAPMAN, Topological invariance of Whitehead torsion, Amer. J. of Math. 96 (1974).
488-497.
[5] M. M. CoHEN, A course in simple-homotopy theory, Springer Verlag, Berlin 1973.
[6] K. EHRLICH, Fibrations and a transfer map in algebraic K-theory, J. Pure Appl. Alg. 14 (1979),
131-136.
[7] ——, Finiteness obstructions of fiber spaces, Cornell University, Ph.D. thesis (1977).
[8] S. M. GERSTEN, A Product Formula for Wall’s obstruction, Amer. J. Math. 88 (1966), 337-346.
[9] K. W. KwuUN and R. H. SzczArBA, Product and Sum Theorems for Whitehead Torsion, Ann.
Math. 82 (1965), 183-190.
[10] S. MacLANE, Homology, Springer Verlag, Berlin 1963.
[11] H. J. MUNKHOLM, Transfer on algebraic K-theory and Whitehead torsion for PL fibrations, J. Pure
Appl. Alg., to appear.
[12] H. J. MunkHOLM and E. K. PEDERSEN, On the Wall finiteness obstruction for the total space of
certain fibrations, Trans. Amer. Math. Soc. 261 (1980), 529-545.
[13] R. OLIVER, SK, of finite grouprings, I, Inv. Math., 57 (1980), 183-204.
[14] E. K. PEDERSEN, Comparisons of Geometrically defined transfer homomorphisms, in preparation.
[15] ——, Universal Geometric Examples for Transfer maps in Algebraic K- and L-theory, J. Pure
Appl. Alg. (1981).
[16] E. K. PEDERSEN and L. TAYLOR, The Wall finiteness obstruction for a fibration, Amer. J. Math.
100 (1978), 887-896.
[17] H. Bass, Algebraic K-theory, W. A. Benjamin, New York 1968.

Dept. of Mathematics
Odense University

Campusvy 55
DK-5230 Odense

Received July 23, 1980/June 15, 1981



	Whitehead transfers for S1-bundles, an algebraic description.

