Zeitschrift: Commentarii Mathematici Helvetici
Herausgeber: Schweizerische Mathematische Gesellschaft

Band: 56 (1981)

Artikel: Level sets of univalent functions.
Autor: Hayman, W.K. / Wu, J.-M.G.

DOl: https://doi.org/10.5169/seals-43250

Nutzungsbedingungen

Die ETH-Bibliothek ist die Anbieterin der digitalisierten Zeitschriften auf E-Periodica. Sie besitzt keine
Urheberrechte an den Zeitschriften und ist nicht verantwortlich fur deren Inhalte. Die Rechte liegen in
der Regel bei den Herausgebern beziehungsweise den externen Rechteinhabern. Das Veroffentlichen
von Bildern in Print- und Online-Publikationen sowie auf Social Media-Kanalen oder Webseiten ist nur
mit vorheriger Genehmigung der Rechteinhaber erlaubt. Mehr erfahren

Conditions d'utilisation

L'ETH Library est le fournisseur des revues numérisées. Elle ne détient aucun droit d'auteur sur les
revues et n'est pas responsable de leur contenu. En regle générale, les droits sont détenus par les
éditeurs ou les détenteurs de droits externes. La reproduction d'images dans des publications
imprimées ou en ligne ainsi que sur des canaux de médias sociaux ou des sites web n'est autorisée
gu'avec l'accord préalable des détenteurs des droits. En savoir plus

Terms of use

The ETH Library is the provider of the digitised journals. It does not own any copyrights to the journals
and is not responsible for their content. The rights usually lie with the publishers or the external rights
holders. Publishing images in print and online publications, as well as on social media channels or
websites, is only permitted with the prior consent of the rights holders. Find out more

Download PDF: 03.12.2025

ETH-Bibliothek Zurich, E-Periodica, https://www.e-periodica.ch


https://doi.org/10.5169/seals-43250
https://www.e-periodica.ch/digbib/terms?lang=de
https://www.e-periodica.ch/digbib/terms?lang=fr
https://www.e-periodica.ch/digbib/terms?lang=en

Comment. Math. Helvetici 56 (1981) 366—403 0010-2571/81/003366-38%01.50 + 0.20/0
© 1981 Birkhiuser Verlag, Basel

Level sets of univalent functions

W. K. HaymaN and J.-M. G. Wu*

1. Introduction

Let w={f(z) be a univalent (one to one analytic) map from A:|z|<1 onto a
domain (2 in the closed complex plane. By a level set of f we mean the preimage
of f~'(2 NL) for some straight line or circle L. Piranian and Weitsman asked in
[7] if every level set of f has finite length. Here we give an affirmative answer. We
shall denote by A, A, ... positive absolute constants. If E is any set, §(E) is the
diameter and |E| is the length or one-dimensional Hausdorff measure of E. Then
our result is

THEOREM 1. If E is a subset of a level set of a univalent function, then

|E|= A8(E)<2A, (1.1)
where A,<103.

A special case of the theorem when (2 is a Lipschitz domain was proved in [8].

Our argument is rather lengthy and falls naturally into three parts. In the first
part (Sections 2 to 5) we assume that E is the full level set . The components,
i.e., maximal connected subsets of <y, will be called level curves and denoted by v,.
We shall then prove in Section 5,

Yo(p)=A;=2.1x10". (1.2)

About three weeks after we obtained this result a proof of (1.2) was obtained
independently by Gehring and Jones [1]. It is also worth noting that Jones [4] has
constructed a bounded analytic function on A for which every level set |w|=R is
either empty or has infinite length. Thus the analogue of Theorem 1 for bounded
functions is false.

In the second part (Sections 6 to 10), we prove that for any individual level

* Research of the second author is partially supported by the National Science Foundation.
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Level sets of univalent functions 367

curve vy, we have
lnl=A,<10". (1.3)

These two parts make up the bulk of the paper.
In the third part (Section 11) we complete the proof of Theorem 1. We show
first by an elementary transformations that (1.3) leads very simply to

Vil =2A,8(w). (1.4)

Using this and (1.2) we deduce at once that

V=Y Il =24, Y 8(v)=2A,A,. (1.5)

A similar argument to that leading from (1.3) to (1.4) then shows that if E is any
subset of y we have

|E|<=4A,A,8(E)

and this gives Theorem 1. This part is relatively short.

Our arguments in parts I and II are based on harmonic measure. If D is a
domain and E is a subset of the closure D of D, we denote by w(z, E, D) a
function which is harmonic in D\ E and has boundary value 1 on E and zero on
dD\\ E. Thus if E is a subset of D, w(z, E, D) is the harmonic measure of E with
respect to D at z. Clearly w(z, E, D) increases with expanding E for fixed z and
D and with expanding D for fixed z and E. If no confusion is likely because D is
fixed we sometimes write simply w(z, E).

2. Elementary lemmas on harmonic measure

The only property of the vy, which we shall use in order to prove (1.2) is that
the vy, are arcs in A with end points on the boundary of A, which satisfy the
separation condition involving harmonic measure which is described in Lemma 1.
However, in order to use Lemma 1 we need various other properties of harmonic
measure.

LEMMA 1. If v, are the components of the level set y and v} =vy\ Y then

(O(Z, 'Y;c’ A) <%’ ze Yk- (21)

We recall that w = f(z) maps A onto the domain 2. Then v, is mapped onto an
arc | of L and v} is mapped onto the remainder I' of L N{. Clearly we may



368 W. K. HAYMAN AND J.-M. G. WU

assume that L is the real axis, and (2.1) is equivalent to
ow, ', Q)<3, wel (2.2)

in view of the invariance of harmonic measure under conformal mapping. To
prove (2.2) we construct the reflection 2* of  in L and define U to be that
component of 2 NN*, which contains I. Write

ow)=ow, ', Q), o*(w)=o(w)+o(w);

then w*(w) is harmonic in U. Let £ be a boundary point of U. Then, since (2 is
simply-connected, ¢ cannot lie in I'. Thus £ is either a boundary point of 2%, in
which case w(¢) =0, w( €)<1, or a boundary point of 2%, in which case w(£)=0,
w(£)<1. Thus w*(¢)<1 and so w*(w)<1 in U. Taking for w a point on [, we
deduce (2.2) and hence Lemma 1.

If 2 is the region —0 <arg z<2mw—6, where 0<6 <, and [ and I’ are the
negative and positive real axes, we have w(w) = (7 —0)/(27w —0) on [, so that (2.1)
is sharp.

Our next lemma is a special case of the Milloux—Schmidt inequality [3, p. 109]
and [6, p. 107].

LEMMA 2. Let m be an arc in Ag ={z ||z| <R}, which passes through the
origin and has one end point on |z|=R. Then

4
w(z,m, Ag)=1 - arctan (|z|/R)".

We also need a variant of Hall’s Lemma [2]. It is pointed out by David Drasin
that a theorem which bears some resemblance to Lemma 3 in disks was proved by
Maitland [5].

LEMMA 3. Suppose that H={z | z =x+iy, y >0} is the upper half plane. Let
E be a relatively closed set in {0<y<a/100} and let E*={x|x+iye E} be the
projection of E on the real axis. Then for Im z =a,

w(z, E, H)=3w(z, E*, H).

As in the proof of Hall’s Lemma we may assume that E is the union of a finite
or countable set of line segments [, which are parallel to the real axis and whose
projections have at most endpoints in common. This is also the only case of
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Lemma 3 which we use. Further we assume, as we may, that a=1. If
L ={t+ib, a, <t=a}}

we define for ze H

1 1
UG =5- o j G(z, 1) de,

where

Z
G(z,{)=1log ;

=1

is the Green function in H. When {=t+ib, z=x+iy, we set |[z—¢|=1r,|z—t|=p
and assume that y=1=100b. Then

1 z = ( 4b) 1 ( 4by)
— =— +— |==— +—=
blog {‘ log | 1 = >2b1 1 o
2y/( 4by) 2y/( 1) 252y
=2 1+—F )=z /(1+=|=——5.
p2 p2 >p2 25 26 p2
Thus
U=21y I "—ya = e w(z, E™). (2.3)
26 T U,

Next, we prove, following Hall, that

2
Uz)<Z+Z, zeH (2.4)
4 7

We recall that

—1—10 Z-
b gz

Sou(ie%)

The right hand side decreases with increasing b when z and r are fixed and so
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assumes its maximum value for b=y —r if r<y and for b =0 when r=y. Thus

1 >
B—log —Z—:—Z =M(r, z),
where
2
M(r,z)= log (—X-l), r<vy
y—r r
2
M(r, z)=—;g, r=y

Also M(r, z) decreases with increasing r and so

1
E log

-——‘ M(r,z) if |z—¢l=r

In particular this inequality holds if { =t+ib, where t—x = Fr. Thus

U(z) sl .wM(r, z)dr

“0

Iy [o =]
) Llog (g-z—-1> dr+-—1—l 2%’dr.
™

3

b y-r r md, r

The second integral is 2/7. To evaluate the first integral set y —r =ty, then

¥ - +
1 1 (Zy r) dr____L log 1 t) dt
™ y— r -t/ t

Z (2n + 1)2 4'

This proves (2.4). Now the maximum principle yields

U(z)= (—"f +%)w(z, E), zeH. 2.5)

4

Combining (2.3) and (2.5), we conclude for y=1,
m 2\, *) = 2 *
w(z, E)= Z+:; LBw(z, E¥)=3%w(z, E*)

and this proves Lemma 3.
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LEMMA 4. Suppose that E is a subset of the real axis, that a >0 and that I is
the interval [—10a, 10a]. Then if

w(ia, E, H)<7/8
we have
|I\E|=135 .

Write E'=I\E, |E'|=2n. We suppose without loss of generality that a =1.
Then if A(t) denotes the measure of E'N[—t, t] we have

o 1 [1dA()
w(l’E)“wJ; 1+

Our hypotheses imply that A(t) <2 min (¢, ). Thus

o 2 M dt 2
w(l’E)S_’f;L 1+t2=;tan n.

Also
7 x . . ) 2 -1 —1
> w(i, E)=w(i, I)—w(l,E)zg(tan 10—tan™'m).

Thus

2 2 1
~tan 'm=—tan '10—-{=3——tan '{5>&{——,
T T s Sar

7]>'i%_ild>0-09>11_2-

This proves Lemma 4.

LEMMA 5. Suppose that m is an arc in {z ||x|=32,0<y <1} which connects
the lines x = ¥32. Then if 1<y,=2, we have

w(i)’O9 n, H) >%—g'
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Let | =32. Let n,, m, denote the segments {—[+iy,0=y=<1}, {l+iy,0<y=<1}
respectively. Let m;, m, denote the segments {—l—1=<x=-1+1,y=0} and
{l-1=x=<I1+1,y=0}. Then

w(z,mz)=30onmn; and o(z,m)=3 on s
Thus for ze H

o(z, 1)+ 0(z, M) =2(w(z, 13) + ©(z, 14)).

Finally if ms denote the segment {—l=<x =1, y =0} then the maximum principle
shows that for z = x,+iy,, where y,>1,

o(z, n5) = w(z, n)+w(z, ) +o(z, 1),
so that
o(z, N) = w(z, ns)— 2(w(z, N3) + ©(z, Ny)).

Setting z =iy, where 1=y,=<2, we obtain

2( ) L, 1+1 _11——1>
w(z,n)zw tan > 2 tan > +2 tan >

2 42 ., 4
=1-— (tan 17+2tan 112+3)

ar

4(1 4) s
>l——\|-+5—)>1.
1w112+3 19

This proves Lemma 5.

3. Construction of segments

The inequality (2.1) is the only property of the level curves which we use in
order to complete our results. It is convenient to work in H rather than A since
the noneuclidean metric is easier to visualize in H. We consider in the first
instance only those level curves which lie entirely in the square

Ry:0=x=1, O=sy=1. (3.1)
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More precisely we assume that w = F(z) is a univalent map from H into the
complex plane, whose image does not contain the whole real axis L in the
plane, and denote by I those components of F~'(L) which lie entirely in R,. (The
simpler case L < F(H) will be considered at the end of Section 11.) If

ll’cz U lja

j¥*k

it follows from Lemma 1, the invariance of harmonic measure and the fact that
w(z, E, H) increases with expanding E that

w(z, I, H)=% on |,. (3.2)

Apart from (3.2) we only use the fact that the [, are arcs which lie in R, and have
both end points on the segment 0=x=<1,y=0.

It proves convenient to replace each [, by certain horizontal line segments g
of diameter comparable to the diameter of . We can do this at the cost of
replacing 3 by 15 in (3.2). Using Lemma 3 we shall deduce that the projection of a
suitable subset of |J;«; g; has harmonic measure less than § on g, and so by
Lemma 4 must leave uncovered 135 of a neighborhood of the projection of q.
From this we can deduce that the sum of the diameters of the q, and so that of
the [, is bounded by a (very large) absolute constant and (1.2) will follow.

Let m, n be integers such that

n=10, 0<m=2"
We shall call a dyadic segment the set

gimn):(m—1)27""<x<m2™, y=600-2"" (3.3)
The projection

Jm,n):(m—1)2""<x<m2™, y=0 (3.4
of g(m, n) on the real axis will be called a dyadic interval. We note that two
dyadic segments are disjoint, unless they are identical. Two dyadic intervals are
disjoint unless one is contained in the other. Also all dyadic segments lie in R,

LEMMA 6. If |, is a level curve in R, there exists a dyadic segment q, such that

8(a)>107°8(1,) (3.5)
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and
o(z, I, H>1% forall z on q,. (3.6)

Let x;, x, be the lower and upper bounds of x on [, and let h be the upper
bound of y on [,. We write x,—x, =2d and distinguish two cases.

(i) Suppose first that d >40h. In this case we define n to be the largest integer
such that

d

27>
24,000’

and then define m to be the largest integer such that
m2 " =3(x; +x,).

Let q(m,n) be the corresponding segment given by (3.3), and suppose that
{=€&+ineq(m, n). Then

_i< <£
40 "0

Also if xo=3(x;+x,), we have for {=&+in on q(m, n)

£ — xg| =27 <(12,000)"! d< g.

Thus [, has a subarc I’, lying in the rectangle

d
— &l <32 & N L
|x g‘ <40d7 0 y 409

and joining the sides x =&F32d/40) of this rectangle, since by hypothesis

h =d/(40). Now it follows from Lemma 5, d/40<m=d/20 and conformal in-
variance that

w(£9 lk) = (0({, l’) > %ga
which gives (3.6). Further, using our choice of n we see

8(L)=(h?+(2d)»)V?>=2d(1+(&)»)*< 50,000 - 27",
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which yields (3.5). Thus Lemma 6 is proved in this case.
(i) Suppose next that d =<40h. We choose for n the least integer such that

600-2""<h,
and set n=600-27", so that
h/2<m=h.

Since [, has endpoints on the positive axis we see that [, contains a point
{o=&ytin. If £,=0 we choose m =1 and otherwise we choose for m the smallest

integer such that m - 27" = ¢,. Then if { is any point on q(m, n), defined by (3.3),
we have

|£ = &Lol=27" =n/600<n tanz(%)

Now [, contains a subarc I’ lying in the disk Dy :|z — 5| <m and joining the point
¢, to the circumference of D,. Hence Lemma 2 shows that for { € q(m, n),

oG b )= (G I, H) = o, I, Dy)
4 w18

4 \/|£—£o| w18
=1 warctan - =1 7619

Also 8(1)=((2d)*+h?»?*=h(1+(80)*)2
<81h<81-1200-2™".
Thus (3.5) and (3.6) are satisfied and Lemma 6 is proved.

We now prove the required separation property for the segments g, which is
the analogue of Lemma 1.

LEMMA 7. Let g, be the segments defined in Lemma 6 and write

a.=U g;

j#*k
Then we have

w(z, q{o H) <T7§a Z € (.-
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We note that
w(z, ) tw(z, l})=3, ze H. 3.7

For if z lies on [, the inequality holds in view of (3.2) and if z lies on [, where
j# k, we have

o(z, l)=w(z ) =3

so that (3.7) still holds. Also the left-hand side of (3.3) is zero on the boundary of
H and is harmonic in H except on the . Thus (3.7) follows from the maximum
principle.

Using (3.7) and (3.6), we deduce that

w(z, l)=3-15=% on gq. (3.8)

Further we have on g;, where j# k, from (3.6)
1=w(z, q}) <isw(z, lj)_<.%§w(z, I%).
Thus
o(z, q)<Bo(z 1) for zegqi (3.9)

and (3.9) trivially holds on [} and on the boundary of H. Thus (3.9) holds in H.
Combining (3.8) and (3.9), we deduce on g

and this proves Lemma 7.

Let S be a collection of distinct dyadic intervals I on the real axis. Suppose
that a,, a,, a; are positive numbers such that a; =1, 0<a,=1, 0<a;=1.If I'is
an interval |x —x,| <3 |I|, we write al for the interval |x — xo| <1a |I|. We shall say

that S satisfies the hypothesis P(a,, a,, a;) if for every I € S there exists a set e(I)
such that

e(Dca,l (3.10)
le(D|=aya, |I| (3.11)
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and if I' is any interval of S such that |I'|<a; |I| we have
ehNI'=¢. (3.12)

We shall prove in Lemma 9 that such a collection S necessarily has finite total
length. Thus in order to prove that Y 8(l.) is finite, it is sufficient, in view of
Lemma 6, to prove that the projections J, of the q, onto the real axis satisfy
P(a,, a,, a;) for suitable constants a,, a,, a;. We proceed to deduce this result
from Lemma 7.

LEMMA 8. The projections J, of the dyadic intervals q, are all distinct and
satisfy P(12,000, 135, 150)-

It follows at once from Lemma 7 that g, N gL = ¢ so that the different g, are
disjoint. Thus their projections are not identical. Suppose that q =q,, and let
Zo=Xxo+600 - 27" be the midpoint of q. Let J be the projection of q on the real
axis and let E be the union of all those q; whose length is less than 1072 - 27"
Then it follows from Lemma that

(20, E) = w(zq, q}) <15

Also by our construction E lies in 0>y >6 27", Thus if E* is the projection of E
on the real axis, we deduce from Lemma 3 and conformal invariance that

(O(Z(), E*) S%w(ZOa E) <:78-'

It now follows from Lemma 4 that if I is the interval 12,000J, i.e.
|x — x0| <6000 - 27", then

|\I— E*| =5 |I| = 12,000 - 35 |71
Letting e(J) =I\\E*, we conclude Lemma 8.

We can now obtain a bound for the sum of the diameters of the [, in R, by
proving

LEMMA 9. If the collection S of dyadic intervals I satisfies P(a,, a,, a;) then

Y [[|=K(ay, a,, a;) <288 = (5 +log —2 ) (3.13)
S a, a,as
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Thus if I, are the level curves in R,, we have

Y. 8(L)=10°K(12,000, 125, 755) < 10°. (3.14)

If I is a dyadic interval, then I =J(m, n) for some m and n as in (3.4); we call
n =n(I) the index of I. Thus |I| decreases with increasing n(I).

4. Proof of Lemma 9
We first assume that if J(m, n) and J(m’, n") are intervals of S then
m=m'(mod k;) and n=n'(modk,), (4.1)

where k,, k, are the least integers satisfying respectively

k,=3a, (4.2)
and
1 48
2k22;—+ aal. (43)
3 2

If S does not satisfy (4.1) we shall divide S into at most k,k, subclasses each of
which satisfies (4.1) and sum over each subclass separately.

Let F, be the subset of all points of (0, 1) which are covered by at least v
distinct intervals of S. Evidently F, is the union of a finite or countable set of

intervals in S. Also F, < F,. Let I, be a component of F,. We proceed to show
that

lI,NF, .= (1 “‘;’%) Ty (4.4)

To see this, suppose that n(I,) = n, and let n, be the least index greater than
n, of intervals of 'S which meet 3I,. We call V; the class of all such intervals of
index n,. We note that by the first relation in (4.1) the intervals 3a,I,, where
I, e V,, are disjoint. We now define

H,=3I,\ U 3a;1,.
Vv,
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More generally if the class V. of intervals I, with index n, has been constructed
we write

Hk Z%IO\\ (U 3a111 U U 3a1I2U c U U 3a1[k) (4.5)
\'8 VvV, Vi

and define V, ., to be the union of all intervals of S, meeting H, and having least
index n,.,>n,. By our construction ny ;> n,..

This process continues indefinitely or stops, either because H, is empty or
because H, meets no intervals of S with index greater than ny,. We then define

H=NH, V=UV,

where intersection and union are taken over all k for which H, is defined. We
now distinguish two cases.
(i) Suppose that |H|=3|I,|.

We note that no point of H meets any interval I of S having index greater than
no. For suppose contrary to this that I is such an interval of least index n. Let k be
the largest integer for which n, <n and H, is defined. Then I meets H; and so
belongs to the class V, ., and thus I is disjoint from H,,, contrary to hypothesis.
Thus in case (i) H does not meet F, ., and

o NVF, | =|I\H|=2 L.
Since F,.,< F,,,, we deduce (4.4) in this case.

(ii) Suppose next that |H|<3|I,|.
In this case we see that

>3 Lol

U Ba,I)

Thus

1
2Nz 1 (4.6)

Suppose that I is an interval in V. Then by hypothesis a,I contains a set e(I) not
meeting any interval of S having length less than as|I|, i.e., no interval of S
having index greater than n, in view of (4.1), (4.3) and the fact that I has index
n.. We note that the sets e(I) corresponding to distinct intervals I are disjoint,
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since the intervals a,I are disjoint by (4.2), (4.5) and the fact a, =1. Thus using
(3.11) and (4.6) we deduce

L‘_/J e(D|= ; le(D|=a,a, Z |} 2% \Io|. 4.7)

A\’

We have just seen that e(I) corresponding to I € V, meets no interval of S having
index greater than n,. Next suppose that e(I) meets an interval I' e S having index
n, ho<n<n,. It follows from (4.1) that n <n, —k,, so that

|I'|=2%|I|.

On the other hand, I' cannot contain I since otherwise I' would meet H, _,; and
have index less than n,, contrary to hypothesis. Thus e(I) N I' must lie in one of
two subintervals of I’, which adjoin the end points of I' and have total length

(a;+ D) |I|=2a,-27%|I'.

Thus we see that the total length of the intersections of the e(I) with intervals I'
of S having index n, such that n,<n(I')<n(I) is at most

Y a2t % I < a2 % |1, (4.8)

where Y is taken over all the maximal intervals I' in S of index greater than n,
and containing some point x € I,,. For these intervals I’ are disjoint and lie in I,
and so have total length at most |I,|. Thus if e’(I) is the subset of e(I) meeting no

intervals of S of index greater than n, and different from n,, we deduce, using
(4.7) and (4.8) that

IUe'D=|U ed)|—ay - 2% I

> (ﬁz-——a121""2) IL,). 4.9)
Using (4.3) and (4.9) we deduce that
' %

Also a point x in e'(I) lies in no interval of S having index n > ny, n# n(I). Thus
x¢ F,.,. Hence in this case (4.4) holds, so that (4.4) is true in all cases.
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We write
a,

06=1——,
24

and deduce by induction that since |F,|=1, we have

lFZVlS‘FZI,-—l‘Sevnl, V= 1
Again
o0 oo . ~ 2
ZIIlzzlFV‘=2(|F2v‘+lF2v—ll)52Zev 1=_—_".
s 1 1 1 1—-0

Thus with the hypotheses of Lemma 9, together with (4.1) we have

2 48
S 2

Also in the general case, when (4.1) is not satisfied we can divide the intervals of S
into at most k;k, subclasses each of which satisfies (4.10) so that we always have

Y 1| <48k, ky/a,=K(ay, a,, as).

S
Using (4.2) and (4.3) we obtain

k,=3a,+1=4a,,

k,= ! log (50a1)+1<% (log( ! )+S>.

log 2 a,as a,as;
We deduce that
3
K=<2.4.48% (5+10g ( . >)=288ﬂ (5+log ! >
2 a, a,as a a,as;

This proves (3.13).
Next it follows from Lemma 8, that if the class S consists of the projections of
the q,, we may take

—_ __1 —_1
a, =12,000, as = 135 as = 1po-
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Thus

Y gl =288 - 12,000 - 120(5 +1log (1.44 x 108))
<10,

Using (3.5) we obtain
Y 8(I,)<10%.

This completes the proof of Lemma 9.

5. Proof of (1.2)

Let vy, now be the level curves of a univalent function in A. We divide vy, into
3 subclasses. Consider first those v,, which lie entirely in

A =ANKx>—15). (5.1
We consider the transformation

w—u+iv——i(l:-£)+
5\1+z

lni((l“lzlz)‘ﬁ)’)‘kl
2 5 |1+ 2z 2°

Clearly A corresponds to the upper half-plane H in the w plane and the subset
(5.1) maps into the unit square R, given by (3.1) with (u, v) instead of (x, y). The
level curves v, in 4, correspond to level curves [, in R,. Also

dw 2 }

%dz “SHazp 0 0 A
and so

dz

—|=<

aw 10

in the image of A,. We deduce that

8(vi) =108(1y).
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Using Lemma 9, we obtain

218(7,() <10, (5.2)

Similarly if A,=AN(x<3i;) and Y, denotes the sum over those vy, which lie
entirely in A, we obtain

Zza(yk) =10, (5.3)

Consider now the remaining level curves vy,. Each of them must contain an arc
¥, with end points on x = 15 in A and hence meets the imaginary axis at finitely
many points iy, with |y, |<1. We choose the least such y,, and enumerate the v,
in order of increasing y,. We proceed to prove that if y, =<0 then

Yier1 = Vi > 70- (5.4)

Suppose that (5.4) is false for some k. We note that ¥y, separates iy, ., from the
arc.

—16<x <1o, y=—v1-x? (5.5)
in —fg<x<ik. Let A, be the disk

|z =iy | <15
and let A} be that component of A, \ ¥, which contains -iy,.;. Then A} cannot

contain any point of the arc (5.5). Thus since y, =<0, we deduce that A} < A.
Hence if ¥, = ¥, N A, we deduce that

w(iYR+1a :}:’ka Al'c)sw(iyk+l9 :;ka A)Sw(i}’k+19 Yies A)S%

in view of Lemma 1. On the other hand ¥, contains an arc m, joining z = iy, to
the boundary of A, and so we deduce that

O (Y115 M Ak) = 0(iYg 115 }z’ka A) = 0(iyr41, ’:;’k» A}) 5%-

Now we apply Lemma 2 and deduce that

|3

1 2 1
Ye+1~ Yk =10 tan” < >7g.
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Thus (5.4) is true after all and less than 70 different vy, can meet the negative
imaginary axis. Thus there are at most 140+, in our remaining group and if ),
denotes the sum over these, we have

2, 3(y)<300.

On combining this with (5.2) and (5.3) we deduce (1.2).

6. Preliminary reductions

We now embark on the proof of (1.3). We confine ourselves to the following
special case to which the general result can easily be reduced. We assume that (2
is the interior of an analytic Jordan curve I' and that I is a segment [b,, b,] of the
real axis in {2 whose endpoints by, b, lie on I. We denote by vy the image of I
under the conformal map

z=F(w)=f"'(w)

of £ onto A and shall show that vy =+, satisfies (1.3). In this part we work with
the geometry of (2 rather than that in H or A. If w is a point of {2 we write

d(w)=inf |w—{| 6.1)

Lell

for the distance from w to I'. We start by constructing a function ¢(u) which is
comparable to d(u) on I but behaves in a smooth manner. We shall then dissect
the interval I into a sequence of intervals I;, and with each I;;, we associate an
arc Iy, of I, such that length of the image of I;;, by F(w) is comparable with that
of I;. The I, will be disjoint and so their images have total length at most 27
and from this (1.3) will follow.

We set w=u+iv.

By our construction the line u =c meets I" for by =<c=b, and we write

bo(w)=int{v|lu+ivel}, by=u<b, (6.2)
Further we define

d(u)= ‘Hlefl {do(uy) +15 lu; —ul}. (6.3)
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Clearly ¢(u)=0, with equality only at the endpoints b,, b, of I. A point u e I will
be called a spike-point if

@ (u) = do(u).
Evidently the endpoints b,, b, are spike points.
In order to establish our results we proceed to subdivide I into intervals
bounded by spike points. We prove first
LEMMA 10. If u is a point of I and d(u), ¢(u) are defined as above then
d(u)=33(u).
Suppose that w, = u, +iv, is a point of I" such that
|lwy—u|=d(u).
Then

D (1) = do(uy) +15 luy —u|=<|vq| +15 |u; —ul

=[1+G)"? |w;—u|=33d(w).

This proves Lemma 10.

LEMMA 11. We have for u,, u,el

| (u)) — ()| =75 lu—uyl.
Suppose that us;€I. Then

Do(Us) + 15 [uy — us| = do(us) + 75 Uy — us| +15 luy —wy|.
Taking lower bounds for varying u; we obtain

& (uy) =< P (up) +15 [uy —uy|.
Interchanging u; and u, we obtain

& (uy) = d(uy) +15 |uy — uyl

and so we deduce Lemma 11.
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Lemmas 10 and 11 are not true if we use ¢, in place of ¢.
LEMMA 12. The set of spike points is a closed non-empty subset of I.

Since b, b, are spike points, the set is certainly non-empty. Next we note that
since I’ is closed the function ¢, defined by (6.2) is lower semi-continuous. Also
we see by Lemma 11 that ¢ (u) is continuous. Thus h(u) = ¢o(u) — ¢(u) is a lower
semicontinuous nonnegative function. To see that h(u)=0 we just set u; =u in
(6.3). Hence the set where h(u)=<0 is closed and this is the set of spike points.

It follows from Lemma 12, that the complement in I of the set of spike points
consists of a finite or countable set of open intervals J. In each of these intervals
¢(u) has a particularly simple form.

LEMMA 13. Suppose that a, a’ are spike points in I such that a <a', and that
the interval (a, a’) contains no spike points. Then for a<u<a’',

¢(u) =min {¢o(a) +15(u—a), ¢o(a’)+15(a’—u)}.
Since a is a spike point we have for a,<a, a, €1,
dolar) +1s(a—ay) = dola).

Thus for a <u <a', we deduce that

do(ay) +i5(u—a,) = dola) +15(u — a) + dola;) — do(a) +15(a —ay)
= ¢o(a) +H(u—a). (6.4)

Similarly if a,>a’, we deduce that

dola) +15(a;—u) = dgla’) +15(a’ —u). (6.5)

Next we note that in the definition (6.3) of ¢(u) we may allow u, to range only
over spike points in I. For since ¢y(u) is lower semicontinuous the infimum in
(6.3) is attained for some u, in I If u, is not a spike point we can find u, such that

doluy) + ili ‘uz - “1' < o(uy).
Thus

doluy) +'1'1§ |u - uzl = ¢o(uy) +i% |u2-— ull +ili lu - ull

< o(ur) +15 [u—uy| = ()
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and this contradicts the definition of ¢ (u). Hence if a <u <a' there exists a spike
point u,, such that

& (u) = do(u;) +15 |uy —ul. (6.6)
In view of (6.4) and (6.5) we may suppose that a=u,=a’, so that u;=a or
u, =a’, since (a, a’) contains no spike points. Using Lemma 11, we see that u, is
that one of a, a’ which gives the smaller value of ¢(u) in (6.6).
7. A dissection of the interval [

Suppose first that the interval I contains no spike point other than the end

points by, b,. In this case we write a,=b,, a,=b, and deduce from Lemma 13
that

¢(u)=7min(a—a,, a,—a), a,<a<a,. (7.1)
Thus we deduce from Lemma 10 that in this case

Zmin(a—a,, a,—a)=d(a), a,<a<a,. (7.2)
Suppose next that I contains at least one spike point a,, such that b, <ay,<b,.
Having chosen a, we define other spike points g; inductively as follows. If a; has
been defined, j=0, we define a;,; to be the smallest spike point such that

a;,.1=a;+64¢(q;). (7.3)

We deduce from (6.3)

Go(by) +15 |ba— ;| = $(a))
1e.

b,—a;=12¢(aq;),

so that a;,,=<b,. Thus either at some stage a;,; = b,, in which case we stop the
procedure, or else the a; are defined for all positive j and

a;,—>b,, as j— +oo,
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Similarly if, for some nonpositive j, a; has been defined we define a;_; to be the
largest spike point such that

a;-1=a;—64(a)). (7.4)

If a;>b,, we deduce again that a;_,=b,.
The relevant properties of our subdivision are given in

LEMMA 14. The interval I can be divided into a finite or countable set of
subintervals [a;, a;,,], where the a; are spike points with the following properties

a;+1 — a; =4 max {¢$(q;), ¢(a;.1)}. (7.5)

Further, if d(a) denotes the distance of a from the boundary I' of D, we have for
a<a<aj,

d(a)=%min {max [¢(q;), ¥(a—q;)], max [$(a;,1), 3(a;,,—a)]. (7.6)

If a,=by, a;,1=>b,, (7.5) is trivial and (7.6) follows from (7.2). Thus we may
assume that a, is a spike point in I and that the remaining a; are defined by (7.3)
and (7.4). We concentrate on (7.3) and j=0 for definiteness. The case j<O0 is
similar.

We first prove (7.5). Suppose first that ¢(a;,,) <3é(a;). Then (7.5) follows
from (7.3). On the other hand if

d’(aj)<%¢(aj+l) so that l¢(aj+1)“'¢(aj)‘>%¢(aj+1)
we deduce from Lemma 11 that
‘aj - a]’+1| =12 l¢(ai+1)“¢(aj)‘>4d’(aj+1)-

Thus (7.5) holds in all cases.
Next we prove (7.6). Suppose first that

a;<a<=a;+6d(a).
Then Lemma 11 shows that

lp(a)—d(a)|=T(a—a)=31é(q).
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Thus in this case
d(a)=3é(a)=75(a—a;). (7.7)
Using Lemma 10, we deduce (7.6).

Suppose next that a; +6¢(a;) <a <a;,,. In this case it follows from (7.3) that
if b is the largest spike point such that b <a, we have

a,=<b<a;+64¢(a;).

Also the interval (b, a;,,) contains no spike point and so by Lemma 13, we
have

¢(a) =min {¢(b) +15(a —b), d(a;.1) +15(a;,, —a)}. (7.8)
In view of (7.7) applied to b instead of a, we have
¢(b)=2¢(a) =(b—a)).
Thus
¢(b)+15(a —b)=3¢(a;) +75(a —b) =15(a — a;).
Hence (7.8) yields in this case
¢(a)=min {max [3¢(a)), 5(a — a;)], max [3¢(g;.1), 15(a;..1 — a)]}.

Because of (7.7), this inequality also holds for q; <a <a;,,. Using Lemma 10, we
deduce (7.6). This completes the proof of Lemma 14.

Having obtained the points a; satisfying the conditions of Lemma 14, we now
proceed to a further subdivision as follows. Let (a;, a;.,) be one of the intervals
defined in Lemma 14. We write

a;o=3(a; +a;.). (7.9)

‘We then define a;, for positive k inductively by

A1 =3(aj1+ ajy), (7.10)
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provided that a;; ., so defined, satisfies

Q1= qj11— D (qj14). (7.11)
Otherwise we set this value of k+1 equal to k, and define

Qjx, = Aj+1.
If a;.,=>b,, so that ¢(a;,;) =0, the process continues indefinitely and we set

k,=o. Thus (7.10) defines a;,,, for 0<k +1<k,.
Similarly we define q;; for negative k inductively by

a1 =3(a; + ag). (7.12)
The process continues as long as a1 so defined satisfies

Q1= a;+ ¢(q)).
Otherwise we set k —1=k;, and define

a;k, = 4. (7.13)

In this way (7.9)-(7.12) define a;, for k, <k <k,. We deduce from (7.5) that

—o=sk, =-2 (7.14)
and

2=<k,=+o (7.15)
We define

Ly = (a1, G 1c+1)s ki+1<k<k,—2. (7.16)

If k, is finite we set
L = (c-15 Gics1)s k=ky+1, (7.17)
and if k, is finite we set

L = (ai Qjxc42)s k=k,—-2. (7.18)
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Thus I, is defined for k, <k <k,—1, i.e. certainly for k=-—1,0. Also the [,
cover I apart from isolated points.

8. An association of arcs [, of I' with [,
Suppose that k; <k =<0. We construct an arc of the circle
lw—a;|=l|a; — a (8.1)

starting from the point a;,. If g; is the left end point of I we start anticlockwise
into the upper half plane. Otherwise ¢¢(q;) >0 and one of the two points

a; + ido(a;) (8.2)

lies on I'. If a; +ige(a;) lies on I, we start the arc of (8.1) by moving in the
anticlockwise sense into the upper half plane; otherwise we move in the clockwise
sense into the lower half plane. In either case we continue along the circle (8.1)
until we first meet a point of I' which we denote by b, . Since I" contains points
inside or on the circle (8.1) namely one of the points (8.2), and since a;, lies
inside I" the point b;; certainly exists.

If k, <k <0, the points b,;, b, ., determine two arcs of I. We choose that arc
I';, which we reach first when going along the circles

lw“ajl"_‘r, laj,k"aj|<r<|aj,k+1_ai|

from the point a;+r in the anticlockwise or clockwise sense according as
a; +ico(a;) does or does not lie on I'. Thus we have associated with each interval
I; . defined by (7.15) or (7.16) an arc I, of I' if k, <k <O0. It follows from (7.13)
that at least one such k exists. The corresponding intervals I, cover the interval
La, a;0].

We proceed in an exactly analogous manner with the intervals
L;,0=k<k,—1. We go along the circle

IW_a;+1|=|aj,k“a,'+1| (8.3)

where 0=k <k, starting at the point a;;, until we meet I' at bj,. We then
associate with the interval I, 0=k <k,—1, one of the arcs [b};, b};.1] of
I, which we denote by Ij,. We move along circles |w—a;.,4|=r,
@ik — @i <r <|ajx — a;44| in the clockwise sense if a;,+i¢(a;.,) lies on I" and
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the anticlockwise sense otherwise and I, contains the first point of I' we meet
in this way. In general | I, is a proper subset of I

It follows from the construction that our interval I has been subdivided into a
finite or countable set of subintervals I, which are associated with arcs I, of I,
and no arc of I' is associated with more than one distinct interval of I. We
complete this section by proving that in this association distinct arcs are disjoint
except for endpoints. We show in the next section that the length of the image of
I, is not much greater than that of I,. From these two facts (1.3) will follow.

LEMMA 15. The arcs I, defined as above are pairwise disjoint except for
endpoints.

Let B;, denote the circular arc from a;; to by, or b/, defined as above. We
show that distinct arcs B;, are disjoint except for endpoints.

Let B be one of these circular arcs starting at a =a,;. Then B can contain a
semicircle s starting at a only if the other endpoint a’ of s lies outside I. For if a’
lies in I, then the segment aa’ together with s constitutes a closed Jordan curve ¢
in (. If a; is the midpoint of aa’, then our construction ensures that one of the
points a; Fi¢d(a;) lies on I' and so is in the same halfplane as ¢ and so by (7.11)
inside ¢, which is impossible since (2 is simply connected.

Suppose now that B, B, are two distinct circular arcs starting at P,, P, and
first meeting at a point P of (2. Consider the curve y formed by going along 3,
from P; to P then along 8, from P to P, and returning along the segment P, P,.
By construction <y lies in {2 and the arcs PP, PP, have only endpoints in
common. Neither B8, not B, can meet the segment P, P, again since 8,, 8, have no
points in I other than P,, P, respectively. Thus v is a Jordan curve in (2.

We shall show that «y contains a point of I' in its interior and this leads to a
contradiction since {2 is simply connected. Suppose that P, lies to the left of P,. It
is not possible for the centres of both circular arcs to lie outside the segment P;P,,
for if the centres are on the same side, the circles are concentric and distinct® and
can certainly not meet, and if they are on opposite sides, P,P, is the shortest
distance between the circles. Suppose then that at least one centre, say a;, the
centre of the arc P, P, lies on P, P,. Suppose also that z; = a; +i¢(q;) lies on I'. We
distinguish a number of cases.

(1) Suppose first that neither 8, nor B, contains a semicircle. Then B, 8, both
lie in the upper half plane. We show that in this case the segment (a;, z;) lies inside
v. Suppose first that P, lies inside the circle s;, of which 3, is an arc. Then the

LIf P = q, is the centre of the arc at P,=a;, and P lies to the left of P,, then, by (8.1), P, =a; .,
where k' <k <0.
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centre of the circle having 8, as an arc must lie to the right of a; and so to the
right of P, since otherwise 8, would lie inside s,. Hence the segment [a;, z;] does
not meet B, and so z; lies inside 7.

Thus P, must lie outside s; and so does the whole arc ,, since if B, went
inside s;, B, would contain a semi-circle. Hence in this case the interior of vy
includes all points in the upper half plane and inside s, and so in particular z;
because of (7.11).

(i) Suppose that B, contains a semi-circle, but B, does not. Then B, lies
entirely in the lower half-plane and again the interior of y contains all points in the
upper half-plane and inside s,, and in particular z;.

(iii) Suppose that B, contains a semi-circle but that B, does not. If the centre
a, of the circle s, containing 3, lies to the right of P,, then the whole of s, lies to
the right of P,, and so cannot meet the segment [a;, z;]. Thus in this case z; again
lies inside v. If on the other hand a, lies on P,, P, then we have the case (ii) with
P,, P, interchanged. Finally a, cannot lie to the left of P,, since otherwise B, B,
would be arcs of concentric circles which cannot meet. For all circular arcs starting
from a point between a, and P, have centre a,.

(iv) If B,, B, both contain semicircles, they must reduce to semi-circles, since
otherwise they would have two distinct points of intersection. In this case 84, 8,
meet at P, which is to the right of P, and again the point z; lies inside ‘.

Thus in all cases B;, B, can have at most end points in common, since
otherwise vy contains a point of I' in its interior, which contradicts the fact that y
lies inside I

Suppose now that I, is an arc corresponding to an interval I;,. Let By, By,
be the arcs of the circles (8.1) if k <0, or (8.3) if k=0, to the points a;;, ;-
Then By, Bi.1, and the interval [a;,, a;,.,] determine a crosscut §;; in (2. In view
of what we have just proved distinct crosscuts §;; may have a common arc B, or a
common point a;;, but cannot cross each other. Thus if D,, is the interior of the
Jordan curve formed by §;, and I}, then two distinct domains D;; are disjoint.

In fact otherwise one of these domains would lie inside the other. However
our construction ensures that the interval I lies outside all the D;;, since none of
the B, meet I again. Hence points near I, inside D;, are exterior to all the other
domains D; .. Thus D;, cannot lie in D, - Now it follows that two distinct arcs

I';, are disjoint except for end points and this proves Lemma 15.

9. Images of intervals and associated arcs

Suppose that I, is an interval of the real axis and that I’} is the associated arc
of I We assume for definiteness that k <0. If k =0 the argument is similar. We
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recall from (7.9) to (7.11) that
a,=a;+2%Ya,—q), ki <k=0. (9.1)

We denote by w(w) the harmonic measure of I, with reference to the full
open set (2. We write

r=2""a,—a) (9.2)
and prove
LEMMA 16. If w, = a, +2°r, where —15=< 8 =<7, then w(w,)>exp {—30.9}.

Let B be the arc of the circle (8.1), joining a;, to an endpoint B;, of I';,. Let B’
be the corresponding arc of (8.1) with k+1 instead of k, which joins a,; ., to the
other endpoint B, ., of I;;. Then B, I;;, B’ and the segment [a;, a;; 1] form a
subdomain D;, of {2. We now define a domain D’ = D}, as follows. We define 6,
by

sin (160,) = . (9.3)
Then it follows from (7.6) of Lemma 14, that the sectorial region
2712 <|\w—a;| <21, larg (w — ;)| < 6, (9.4)

does not meet I" and so lies inside (2. Next it follows from our construction that
T;; contains an arc m;, joining the circles |w—a;| =27"?r in the annulus

27V r<|lw—a;| <2'r. (9.5)

We now define D' to be a subdomain of the annulus (9.5) determined by such an
arc m;;, and one of the rays arg (w—a;) = ¥0, and having the arcs 8, B’ as part of
its boundary. In other words if B, B’ start off in the clockwise sense we choose the
ray arg (w—a;) = +6, and otherwise the ray arg (w — q;) = —6,. We continue along
|w—a;| =2F"?r until we meet the first arc n;;.

We note that D’ constructed as above lies in the annulus (9.5) and contains the
region (9.4). Let w'(w) be the harmonic measure of n;; at w w.r.t. D', and let D,
be that component of D’ N {2 which contains the segment (a;;, a;x+;)- Then

ow)zo'(w)), wieD,. (9.6)
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To see this let { be any boundary point of D,. If { lies on one of the circles
|w—a;|=27"?r or on the ray arg (w — a;) = ¥6,, we have

0'({)=0=w({)
Any other boundary point { of D, lies on I, so that
1=w()=w'()).

Thus w(w)—w'(w)=0 on the boundary of D, and so in the interior of D, by the
maximum principle. This proves (9.6).

A further application of the maximum principle now shows that w'(w,)
assumes its lower bound for variable 7, in the (limiting) case, when D' reduces to
the subdomain

-0y <arg (w—a;)<2mw—0,, 27 r<|w—q;| <2"?r 9.7)
of the annulus (9.5) and m;, to the arcarg(w—a;)=2m7—6, It remains to

estimate the corresponding harmonic measure. To do this we use the invariance of
harmonic measure and set

s=o+ir=log(w—a). (9.8)
We write
ago=logr,
and note that the cut annulus (9.7) corresponds by (9.8) to the rectangle
A:oy—3log2<o<o,+ilog2, -0, <7<2m—6,.
We have to estimate the harmonic measure w.ao.t. A, of 7=27w—0, at
s, =log w, =0y+8log 2.

By the maximum principle this harmonic measure is greater than that of the
two rays

T=2mw—0,, o =0,F3log?2 ©9.9)
w.r.t. the half strip

A,:—0,<1<+x, oy—3log2<o<o,+3log2
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at s,. This latter harmonic measure is calculated explicitly as follows. We set

_ 1Ti(S + ieo - 00) _ .
Z = exp log 2 = x +iy.

This maps A, onto the semidisk

T,: |z|<1, x>0,

the pair of rays (9.9) onto the segment

x=0, |y|=n=exp(-27*/log?2), (9.10)
and s, onto
_ 9 |81r
Z;=€xp log 2 Ot idw =x,+iy,=re

say. The harmonic measure of the segment (9.10) at z=x+iy w.r.t. T, is

oy + - X X
1X;C—A'LrtanI:q'———y—-tanl T __ian? 'ﬂ}

2
w,(z)=—{tan .
™ X 1—-my 1+ny

For clearly w, is harmonic and bounded in T,, and w,(z)=1 on the segment
(9.10) and w,(z) =0, elsewhere on the boundary of T;. To see this when |z,| =1,
we use the fact that the triangles Onz and Ozn ™' are similar in this case. Using the
addition formula for the inverse tangent we obtain finally

27x,(1+ 1) (1 —r}) }

1
=—1t -1 {
o) =\ A A=)+ dxin?

since n<r;<1. In our case we have, using (9.3),

)
r, = exp (101; 2") where 0.08<6,<0.081,

while 71 <107°. Also x,=r; cos 87w =r; cos 7m/16 = r, sin (7/16).

2nx1(1 — rl)

i

=0. 999 (—1- - rl) sin z
T \r,

>0.
w(z4)>0.999 16

5™ 20 270,
16 = log2

> exp {—30.9}.
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This completes the proof of Lemma 16.

We must extend Lemma 16 to obtain a bound for w(w) on the whole of I,.
This is

LEMMA 17. We have in [

w(w)=A;=e"".
We write

wy=a;+t.
It follows from (7.6) that if

d(a)=t=3(a;,—a) (9.11)
then

2t
d(Wl) ZE.

Also the function w(w) is positive and harmonic in the disk |w — w;| <d(w,). Thus
Harnack’s inequality [3, p. 64] yields

d 2
\Zi—; w(w,) ‘ <2—(—w—5 w(w,) (9.12)

i.e.

d 25
E-t—log w(wl)‘s—t—

hence if w, =a;+t,, wi=aq;+1t} are two points in the range (9.11) we have
llog w(w;) —log w(w})|=25 |log t; —log t,|.
We suppose that

t,=2""r <y =<2"?r or 27Vr=t\<t,=2""%
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and apply Lemma 16 to w,. Thus we obtain

log w(w})= —{30.9+%2 log 2} >—32, a4 SWI=a. (9.13)
This yields Lemma 17 if k,+1<k <O0.

If k=k,+1, we have to estimate w(w,) also on the interval I' =[ag;, g, ]. In
this case it follows from our construction that

a,. = a; +2¢(a).
Thus if w, is any point on I’ it follows from Lemmas 10 and 11 that

d(a)=3¢(a).

We deduce from (9.12) in this case that

d 2.5 ,
\E‘—v—; log w(wl)\s on I'.

¢ (a)

Thus if w, is any point on I' and wj = g;, is the right endpoint of I', we deduce
that

log w(wy) =log w(w)) —2¢(q;) —=log w(wj) 5.

2.5
o(a;)
On combining this with (9.13) we deduce that the inequality of Lemma 17

holds on I’ also and so on all of I;. Thus Lemma 17 is proved whenever k <0.
The case k=0 is similar and our proof is complete.

10. Proof of (1.3)
We need a final estimate.

LEMMA 18 If I, A are the lengths of the images of an interval I' = I, and the
associated arc I'' =TI, respectively in the z plane then

_l_ 1
T wA,

(5+25 log 2).
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Suppose that w, is any point on I' and let z,= pe® be the image of w, in A.
Let vy =[d;, ¢, +A] be the image of I'" on |z| = 1. Then, since harmonic measure is
invariant under conformal mapping,

' 1 &, +A (1__ 2)d
w(WO,F,Q):‘O)(ZO, ‘Y’A)_—:—i—’l—T—L 1‘"2‘)C0$?6‘“Z)+p2

M1t
2w l—-p

Thus

A A
p= - =
mw(wy, I, Q) wA;

1—

in view of Lemma 17.
On the other hand if z=F(w) maps (2 onto A, then F(w) maps
|w — wy| < d(wy) into A and now we deduce from Schwarz’s Lemma that

— 2 _—
1—|z,| <2(1 p)< 2A

lF (WO)|S d(wo) N d(wo) —7TA3 d(Wo).
Thus
2\ d
1= [ P awo =25 [ 22 10.1

Now we again use (7.6). If I' is the interval [a;;, a; ;1] Where k; +1<k <O,
we set

Wo = aj’k + t,
and deduce from Lemma 14 that
d(wy) =4t

Thus

1 ldwol 5-23[ 2-Z10g2
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If k=k,+1 we must add to [a;, a;.+1] the interval [a; a;;]. In this case
t=<2¢(a;), d(wo)=3%¢(q;) and

N

al.k 2¢(al)
J |dw — 5 di=<

o, d(wo)  4d(a))

Thus in all cases

ldwol _ 5 55
—=34+%log 2.
<[' d(Wo) A

Hence (10.1) yields

l 1
—=< +2 .
)\<77A3(5 5log2)

This proves Lemma 18.
Now (1.3) follows at once. For the length L of the level curve is the sum of the
lengths [, of the images of the I,. This yields

1
TA 3

L=Yl,=——(5+25log2) Y. A, si—s (10+50log 2) < 10'8

which is (1.3).

11. Proof of Theorem 1
We can now put our various results together. We need a final Lemma.

LEMMA 19. Suppose that E is a set in A. Then there exists a bilinear function
z =L(Z) mapping |Z|<1 into A and a set E' in |Z|<1 onto E, such that

IL'(Z)|<286(E) on E'. (11.1)

Suppose that the upper bound of |z| in the closure E of E is p. We suppose
without loss of generality in this case that E contains z =p so that E lies in

lp—z|=3§, (11.2)
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where 8 = 8(E). We define z =L(Z) by

Z+tr zZ—pr 2
, Z=t £ , where r= g , d <
t+rZ p—rz p+46 2p+6

zZ=p t=1.

If p=1, we choose t=1, so that z=L(Z) is a bilinear map of |Z|<1 onto
|z| <1, and the inverse image E' of E lies in |Z| < 1. If p <1, we choose t just less
than 1. Then |Z| =<t corresponds to |z|=<p and so if t is sufficiently near 1, |Z| <1
corresponds to a subset of |z| <1, which contains |z|<p and so E.

Then if z € E, so that (11.2) holds, we compute the derivative of L™* and find

lo—rzl’ _lo—ro+rlp—2)° _(o(1-r)+8r)> 4dp _
tp(1—r?) tp(1-r?) — tp(1—-r% t(2p +8)

IL"(Z)| = 28,

which proves (11.1). This proves Lemma 19.
We recall that we have proved (1.3). We now apply this result to
g(Z) = f{L(2)} (11.3)

where E is a single level curve of f(z) and E'=L"'(E). Then E’ is part of a level
curve of g(Z) and so

|E'|= A,.

In view of (11.1) we deduce that

|E| <26 |E'|<26A,.
where 6 = 8(E) and this is (1.4). Using (1.2) we deduce (1.5), for the length of any
level set v.

Finally suppose that E is part of a level set of f(z) and that §(E) = 6. We again
employ the subsidiary function g(Z), given by (11.3) and define E'=L"'(E).
Since E’ is part of a level set y of g(z), we can now apply (1.5) and deduce that

|E'|=|y|=2A,A,.

Since also E = L(E') we deduce from (11.1) that

|E| <26 |[E'|<4A,A,8(E).



402 W. K. HAYMAN AND J.-M. G. WU

This proves (1.1) with

AO = 4A1A2 < 1035,

as stated.

We have assumed throughout that (2 is an analytic Jordan domain and that a
level set E is the inverse image of the real axis by F(z). If E is the inverse image
by F(z) of a circle or straight line L, we can find a bilinear map W = ¢(w) which
maps L onto the real axis so that E is also the inverse image of the real axis by
f(z) = &{F(2)}.

Next if F(z) is a general univalent function and E is the inverse image of the
real axis, suppose first that the image of E does not cover the whole real axis but
leaves out a point w,. Then (F(z)—w,) ™! is a regular univalent function with the
same level set E. Thus we may assume that F(z) is regular and univalent in this
case. We now apply (1.2) and (1.3) to the level sets E, of F(pz), where 0 <p<1.
Clearly F(pz) maps A onto an analytic Jordan domain Also |E,| tends to |E| as
p — 1, so that (1.2) and (1.3) also hold for F(z).

Finally if the image of E covers the whole real axis, then E must consist of a
single closed Jordan curve in A. Let p be the upper bound of z on E. Then E has
at least one point on |z|=0p.

Let z, = pe'® be such a point, and write t =3(1+p), zo=(p—1t)e*® and
f(z)=F(z,+tz).

Then the level set E’ of f consists of a single curve going from e to e¢* in |z| <1
and having length |E|/t>|E|. Thus we may apply (1.3) to E’ and obtain

|E|<|E|= A,

in this case also. Thus (1.3) holds in all cases. Also (1.2) is trivial in this case, since
E is connected. Thus (1.2) and (1.3) hold in all cases and so do (1.4), (1.5) and
(1.1). This completes the proof of Theorem 1.

We are most grateful to the referee, David Drasin, for his many helpful
suggestions on exposition.
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