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Level sets of univalent fonctions

W. K. Hayman and J.-M. G. Wu*

1. Introduction

Let w =/(z) be a univalent (one to one analytic) map from A : \z\< 1 onto a
domain Q, in the closed complex plane. By a level set of / we mean the preimage
of f~\SÎ (IL) for some straight line or circle L. Piranian and Weitsman asked in
[7] if every level set of / has finite length. Hère we give an affirmative answer. We
shall dénote by Ao, Al9... positive absolute constants. If E is any set, 8(E) is the
diameter and |JE| is the length or one-dimensional Hausdorff measure of E. Then
our resuit is

THEOREM 1. If E is a subset of a level set of a univalent function, then

|E|<A0Ô(E)<2A0 (1.1)

where Ao<1035.

A spécial case of the theorem when Q is a Lipschitz domain was proved in [8].
Our argument is rather lengthy and falls naturally into three parts. In the first

part (Sections 2 to 5) we assume that E is the full level set y. The components,
Le., maximal connected subsets of 7, will be called level curves and denoted by yk.
We shall then prove in Section 5,

A^.lxlO16. (1.2)

About three weeks after we obtained this resuit a proof of (1.2) was obtained

independently by Gehring and Jones [1]. It is also worth noting that Jones [4] has

constructed a bounded analytic function on A for which every level set |w| R is

either empty or has infinité length. Thus the analogue of Theorem 1 for bounded
functions is false.

In the second part (Sections 6 to 10), we prove that for any individual level

* Research of the second author is partially supported by the National Science Foundation.
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curve 7k, we hâve

hcNA2<1018. (1.3)

Thèse two parts make up the bulk of the paper.
In the third part (Section 11) we complète the proof of Theorem 1. We show

first by an elementary transformations that (1.3) leads very simply to

(1.4)

Using this and (1.2) we deduce at once that

2A1A2. (1.5)

A similar argument to that leading from (1.3) to (1.4) then shows that if E is any
subset of 7 we hâve

\E\^4A1A28(E)

and this gives Theorem 1. This part is relatively short.
Our arguments in parts I and II are based on harmonie measure. If D is a

domain and E is a subset of the closure D of D, we dénote by co(z, E, D) a

function which is harmonie in D\E and has boundary value 1 on E and zéro on

dD\E. Thus if E is a subset of dD, o>(z, E, D) is the harmonie measure of E with
respect to D at z. Clearly o>(z, E, D) increases with expanding E for fixed z and

D and with expanding D for fixed z and E. If no confusion is likely because D is

fixed we sometimes write simply (o(z, E).

2. Elementary lemmas on harmonie measure

The only property of the yk which we shall use in order to prove (1.2) is that
the 7k are arcs in A with end points on the boundary of A, which satisfy the

séparation condition involving harmonie measure which is described in Lemma 1.

However, in order to use Lemma 1 we need various other properties of harmonie
measure.

LEMMA 1. If 7k are the componenîs of the level set y and y'k 7\7k, then

<o(z,y'k9A)<h zeyk. (2.1)

We recall that w=f(z) maps A onto the domain fl. Then 7k is mapped onto an

arc l of L and y'k is mapped onto the remainder V of LDfl. Clearly we may
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assume that L is the real axis, and (2.1) is équivalent to

(2.2)

in view of the invariance of harmonie measure under conformai mapping. To

prove (2.2) we construct the reflection ,0* of il in L and define U to be that

component of 17 Pl/2*, which contains L Write

o>(w) û)(w, T, il), to*(w) <o(w) + û)(w);

then o)*(w) is harmonie in 17. Let f be a boundary point of U. Then, since il is

simply-connected, £ cannot lie in T. Thus £ is either a boundary point of il*, in
which case co(£) 0, <o( f < 1, or a boundary point of il*, in which case <o(f) 0,

û>(£)<1. Thus 6>*(£)<1 and so o>*(w)<l in U. Taking for w a point on J, we
deduce (2.2) and hence Lemma 1.

If û is the région — 0<arg z<2tt — 0, where 0<0<tt, and I and V are the

négative and positive real axes, we hâve co(w) (tt - 0)/(2tt - 0) on J, so that (2.1)
is sharp.

Our next lemma is a spécial case of the Milloux-Schmidt inequality [3, p. 109]
and [6, p. 107].

LEMMA 2. Let t\ be an arc in AR={z\ \z\<R}, which passes through the

origin and has one end point on \z\ R. Then

<o(z, r,, AR)> 1 -- arctan (\z\IR)1/2.
TT

We also need a variant of Hall's Lemma [2]. It is pointed out by David Drasin
that a theorem which bears some resemblance to Lemma 3 in disks was proved by
Maitland [5].

LEMMA 3. Suppose that H {z | z x + iy, y > 0} is the upper half plane. Let
E be a relatively closed set in {0<y<a/100} and let E* {x \x + iyeE} be the

projection of E on the real axis. Then for Imz>a,

As in the proof of Hall's Lemma we may assume that E is the union of a finite

or countable set of line segments lk, which are parallel to the real axis and whose

projections hâve at most endpoints in common. This is also the only case of
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Lemma 3 which we use. Further we assume, as we may, that a 1. If

369

we define for 2 g H

where

G(z, £) l

is the Green function in H. When £ t + ib, z x + iy, we set \z

and assume that y > 1 > 100b. Then
— £| r, \z -11 p

Thus

(2.3)

Next, we prove, following Hall, that

l/(z) <7+-, 2 e H.
4 v

We recall that

(2.4)

The right hand side decreases with increasing b when z and r are fixed and so
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assumes its maximum value for b y - r if r < y and for b - 0 when r > y. Thus

where

r<y

Also M(r, z) decreases with increasing r and so

iM(r,z) if |z-£|>r.llOg
z-C

In particular this inequality holds if £ t + ifc, where r - x =F r. Thus

1 f°°
[/(z)<- M(r,z)dr

7T Jb

1 fy 1 /2y \ J
1 f°°2y J

The second intégral is 2/tt. To evaluate the first intégral set y — r- ry, then

g(
tt Jb y-r *\ r tt

This proves (2.4). Now the maximum principle yields

zeH.

Combining (2.3) and (2.5), we conclude for y^

E*)

(2.5)

a>(z, E)> (^+^

and this proves Lemma 3.
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LEMMA 4. Suppose that E is a subset of the real axis, that a > 0 and that I is

the interval [-10a, 10a]. Then if

w(ia,E,H)<HS

we hâve

Write Er J\E, |E'| 2t|. We suppose without loss of generality that a 1.

Then if À(f) dénotes the measure of E'C\[-t, t] we hâve

Our hypothèses imply that A(t)<2 min (t, tj). Thus

t „ 2 p dr 2

7T JL 1 + r 77

Also

7T

Thus

2 2 2
— tan"1^^—tan"110-l |—

This proves Lemma 4.

LEMMA 5. Suppose that r] is an arc in {z \ |x|<32,0<y <1} which connects

the Unes x T32. Then if Kyo<2, we hâve
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Let l 32. Let r\l9 r)2 dénote the segments { -1 + iy, 0 < y < 1}, {l + iy, 0 < y < 1}

respectively. Let tj3, tj4 dénote the segments {-/-l<x<-/ + l,y 0} and

{J-l<x<i + l,y=O}. Then

o>(z, tï3)^| on T\1 and o>(z, tj4)>5 on tj2.

Thus for z € H

<o(z, 7h) + <o(z, Tj2)<2(a)(z, tï3) + û)(z, tu)).

Finally if t)5 dénote the segment {-/<*</, y 0} then the maximum principle
shows that for z xo + iy0, where yo> 1,

Û)(Z, TÎ5)<Ct)(z, T\) + Ù)(Z, ^^^^(Z, T|2),

so that

Ù)(Z, T])>Û>(Z, TÏ5)-2(û>(z, TÎ3) + O)(

Setting z iy0 where 1 < y0 < 2, we obtain

>—(tan 1--2tan~1-—- + 2tan"1
7T \ 2 2

This proves Lemma 5.

3. Construction of segments

The inequality (2.1) is the only property of the level curves which we use in
order to complète our results. It is convenient to work in H rather than A since

the noneuclidean metric is easier to visualize in H. We consider in the first
instance only those level curves which lie entirely in the square

1, 0<y<l. (3.1)
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More precisely we assume that w F(z) is a univalent map from H into the
complex plane, whose image does not contain the whole real axis L in the co

plane, and dénote by I, those components of F~X(L) which lie entirely in JR0. (The
simpler case LÇ:F(H) will be considered at the end of Section 11.) If

it follows from Lemma 1, the invariance of harmonie measure and the fact that
w(z, E, H) increases with expanding E that

w(zJl,H)^ on lk. (3.2)

Apart from (3.2) we only use the fact that the lk are arcs which lie in jR0 and hâve
both end points on the segment 0<x<l, y =0.

It proves convenient to replace each lk by certain horizontal Une segments qk
of diameter comparable to the diameter of lk. We can do this at the cost of
replacing \ by ^ in (3.2). Using Lemma 3 we shall deduce that the projection of a

suitable subset of Uj#k<l has harmonie measure less than \ on qk and so by
Lemma 4 must leave uncovered ^ of a neighborhood of the projection of qk.

From this we can deduce that the sum of the diameters of the qk and so that of
the lk is bounded by a (very large) absolute constant and (1.2) will follow.

Let m, n be integers such that

n>10, 0<m<2n.

We shall call a dyadic segment the set

q(m, n) : (m - l)2~n < x < m2~n, y 600 • 2~n. (3.3)

The projection

J(m, n):(m-l)2"M<x<m2-n, y=0 (3.4)

of q(m, n) on the real axis will be called a dyadic interval. We note that two
dyadic segments are disjoint, unless they are identical. Two dyadic intervais are

disjoint unless one is contained in the other. Also ail dyadic segments lie in jR0.

LEMMA 6. If lk is a level curve in Ro there exists a dyadic segment qk such that

ô(qk)>10-5S(lk) (3.5)
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and

<o(z, lk,H)>î| forallzonqk. (3.6)

Let xu x2 be the lower and upper bounds of x on lk and let h be the upper
bound of y on lk. We write x2-x1 2d and distinguish two cases.

(i) Suppose first that d > 40h. In this case we define n to be the largest integer
such that

24,000 '

and then define m to be the largest integer such that

Let q(m, n) be the corresponding segment given by (3.3), and suppose that
£ i + i-p e q(m, n). Then

Also if xo ^(x1-\-x2), we hâve for £ £ + rr| on q(m, n)

Thus lk has a subarc V, lying in the rectangle

Ix-fl^iS* 0<y<4Ô'

and joining the sides x ^^32^/40) of this rectangle, since by hypothesis
h<d/(40). Now it follows from Lemma 5, d/4Q<r\<dl20 and conformai
invariance that

which gives (3.6). Further, using our choice of n we see

(h2 + (2d)2)1/2<2d(l + (è)2)1/2<50,000 • 2"n,
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which yields (3.5). Thus Lemma 6 is proved in this case.

(ii) Suppose next that d<40h. We choose for n the least integer such that

and set r\ 600 • 2~~n, so that

Since lk has endpoints on the positive axis we see that lk contains a point
£o êo+ ITÎ- K £o 0 we choose m 1 and otherwise we choose for m the smallest
integer such that m • 2~n > £0. Then if f is any point on q(m, n), defined by (3.3),
we hâve

|f-fo|<2-n Tî/600<rîtan2^—j.

Now lk contains a subarc V lying in the disk D0:\z-ÇQ\<r\ and joining the point
£0 to the circumference of Do. Hence Lemma 2 shows that for £eq(m, n),

:,l',DQ)

Also S(Ik) < ((2d)2 + fi2)1/2< h(l + (80)2)1/2

<81h<81- 1200 -2~n.

Thus (3.5) and (3.6) are satisfied and Lemma 6 is proved.

We now prove the required séparation property for the segments qk, which is

the analogue of Lemma 1.

LEMMA 7. Let qk be the segments defined in Lemma 6 and write

Then we hâve

^, zeqk.
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We note that

(z,Pk)<§, zeH. (3.7)

For if z lies on lk9 the inequality holds in view of (3.2) and if z lies on lp where

/# fc, we hâve

so that (3.7) still holds. Also the left-hand side of (3.3) is zéro on the boundary of
H and is harmonie in H except on the /,. Thus (3.7) follows from the maximum

principle.
Using (3.7) and (3.6), we deduce that

*>(z,J0^i-ïi i on qk. (3.8)

Further we hâve on qp where j£ fc, from (3.6)

Thus

w(z,qk)<^co(z,lk) for zeqk (3.9)

and (3.9) trivially holds on lk and on the boundary of H. Thus (3.9) holds in H.
Combining (3.8) and (3.9), we deduce on qk

and this proves Lemma 7.

Let S be a collection of distinct dyadic intervais I on the real axis. Suppose
that al9 a2, a3 are positive numbers such that ax>\, 0<a2^l, 0<a3<l. If I is

an interval |x — xo| <| |I|, we write al for the interval |x — xo\<^a \I\. We shall say
that S satisfies the hypothesis P(au a2, a3) if for every IeS there exists a set e(I)
such that

(3.10)

\ (3.11)
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and if T is any interval of S such that \I'\ < a3 \I\ we hâve

<t>. (3.12)

We shall prove in Lemma 9 that such a collection S necessarily has finite total
length. Thus in order to prove that £ô(/k) is finite, it is sufficient, in view of
Lemma 6, to prove that the projections Jk of the qk onto the real axis satisfy
P(ai, <*2, as) f°r Stable constants au a2, a3. We proceed to deduce this resuit
from Lemma 7.

LEMMA 8. The projections Jk of the dyadic intervais qk are ail distinct and

satisfy P(12,000, ïfe, ïfe).

It follows at once from Lemma 7 that qkC\q'k <t> so that the différent qk are

disjoint. Thus their projections are not identical. Suppose that q qk, and let
Zo Xq + 600 * 2"ni be the midpoint of q. Let J be the projection of q on the real
axis and let E be the union of ail those q} whose length is less than 10"2 • 2~n.

Then it follows from Lemma that

Also by our construction E lies in 0> y > 6 • 2"n. Thus if E* is the projection of E
on the real axis, we deduce from Lemma 3 and conformai invariance that

It now follows from Lemma 4 that if I is the interval 12,000/, i.e.

|x-xo|<6000-2~n, then

12,000-ïfel/l.

Letting e(J) I\E*, we conclude Lemma 8.

We can now obtain a bound for the sum of the diameters of the lk in Ro by

proving

LEMMA 9. If the collection S of dyadic intervais I satisfies P(au a2, a3) then

9 a2, a3)^288^ (5+log-^-Y (3.13)
a2 V #a/
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Thus if lk are the level curves in RQ, we hâve

I ô(lk) < 105K(12,000,^ îèô) < 1015. (3.14)

If I is a dyadic interval, then J /(ra, n) for some m and n as in (3.4); we call
n n(I) the index of I. Thus \I\ decreases with increasing n(I).

4. Proof of Lemma 9

We first assume that if /(m, n) and J(m\ n') are intervais of S then

m m'(modk1) and n n'(mod (c2), (4.1)

where kuk2 are the least integers satisfying respectively

fc^a, (4.2)

and

^A (4.3)
a3 a2

If S does not satisfy (4.1) we shall divide S into at most k1fc2 subclasses each of
which satisfies (4.1) and sum over each subclass separately.

Let Fv be the subset of ail points of (0,1) which are covered by at least v
distinct intervais of S. Evidently Fv is the union of a finite or countable set of
intervais in S. Also Fv+l^Fv. Let Io be a component of Fv. We proceed to show
that

o|. (4.4)

To see this, suppose that n(I0) n0 and let nx be the least index greater than

n0 of intervais of S which meet \I0. We call V1 the class of ail such intervais of
index nt. We note that by the first relation in (4.1) the intervais 3atlu where

Ix e Vl9 are disjoint. We now define

v,
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More generally if the class Vk of intervais Ik with index nk has been constructed
we write

Hk =|/0\ (U 30,/jU U 3ai/2U • • • U U 3a!/,) (4.5)

and define Vk+1 to be the union of ail intervais of S, meeting Hk and having least
index nk+1>n0. By our construction nk+1>nk.

This process continues indefinitely or stops, either because Hk is empty or
because Hk meets no intervais of S with index greater than n0. We then define

where intersection and union are taken over ail k for which Hk is defined. We
now distinguish two cases.

(i) Suppose that |H|>||J0|.
We note that no point of H meets any interval I of S having index greater than

n0. For suppose contrary to this that I is such an interval of least index n. Let k be

the largest integer for which nk<n and Hk is defined. Then I meets Hk and so

belongs to the class Vk+1, and thus I is disjoint from Hk+1, contrary to hypothesis.
Thus in case (i) H does not meet Fv+1 and

Since Fv+2cFv+1, we deduce (4.4) in this case.

(ii) Suppose next that |H|<||I0|.
In this case we see that

U (3a!J
v

Thus

loi. (4.6)

Suppose that I is an interval in Vk. Then by hypothesis axl contains a set e(I) not
meeting any interval of S having length less than a3 |J|, i.e., no interval of S

having index greater than nk in view of (4.1), (4.3) and the fact that J has index

nk. We note that the sets e(I) corresponding to distinct intervais I are disjoint,
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since the intervais axl are disjoint by (4.2), (4.5) and the fact ax^l. Thus using
(3.11) and (4.6) we deduce

IV
(4-7)

We hâve just seen that e(I) corresponding to le Vk meets no interval of S having
index greater than nk. Next suppose that e(J) meets an interval I'eS having index

n, no<n<nk. It follows from (4.1) that n<nk-fc2, so that

On the other hand, V cannot contain I since otherwise T would meet Hk^1 and
hâve index less than nk, contrary to hypothesis. Thus e(I)ni' must lie in one of
two subintervals of f, which adjoin the end points of V and hâve total length

Thus we see that the total length of the intersections of the e(J) with intervais T
of S having index rc, such that no<n(If)<n(I) is at most

where £ is taken over ail the maximal intervais V in S of index greater than n0
and containing some point x e Io. For thèse intervais V are disjoint and lie in Io
and so hâve total length at most |/0|. Thus if e\ï) is the subset of e(I) meeting no
intervais of S of index greater than n0 and différent from nk, we deduce, using
(4.7) and (4.8) that

|U e'COI^IU e(I)|-ai • 21-fc» |I0|

^^ol. (4.9)

Using (4.3) and (4.9) we deduce that

Also a point x in ef(I) lies in no interval of S having index n>no,n^ n(I). Thus

2- Hence in this case (4.4) holds, so that (4.4) is true in ail cases.
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We write

•—fi-
and deduce by induction that since |Fx|<l, we hâve

Again

Thus with the hypothèses of Lemma 9, together with (4.1) we hâve

n^ïVr- (4-10)
s 1-0 a2

Also in the gênerai case, when (4.1) is not satisfied we can divide the intervais of S

into at rnost kxk2 subclasses each of which satisfies (4.10) so that we always hâve

X |/| ss 48k1fc2/a2 K(al9 a2, a3).
s

Using (4.2) and (4.3) we obtain

We deduce that

KJ 4 48^i (5+log (_£i_)) 288£i
2 a2 \ \a2a3/ / a2a2 \ \a2a3l1 a2 \ a2a3)

This proves (3.13).
Next it follows from Lemma 8, that if the class S consists of the projections of

the qk, we may take

#1 12,000, ^2 Î2Ô? ^3=ÏÔÔ-
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12,000- 120(5+ log (1.44 xlO8))

Using (3.5) we obtain

This complètes the proof of Lemma 9.

5. Proof of (1.2)

Let yk now be the level curves of a univalent function in A. We divide 7k into
3 subclasses. Consider first those yk, which lie entirely in

(5.1)

We consider the transformation

i(\-z\l i

Clearly A corresponds to the upper half-plane H in the w plane and the subset
(5.1) maps into the unit square Ro given by (3.1) with (w, v) instead of (x, y). The
level curves yk in At correspond to level curves lk in Ro. Also

^ in Al9
dw
Hz

and so

dz_

dw

in the image of Ax. We deduce that
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Using Lemma 9, we obtain

I^-ft^lO16. (5.2)

Similarly if A2 àn{x<j^) and £2 dénotes the sum over those yk which lie
entirely in A2 we obtain

X2ô(7k)<;l016. (5.3)

Consider now the remaining level curves 7k. Each of them must contain an arc

yk with end points onx^T^ini and hence meets the imaginary axis at finitely
many points iyk with |yk|< 1. We choose the least such yk, and enumerate the yk
in order of increasing yk. We proceed to prove that if yk < 0 then

yk-fi-yk>7o. (5.4)

Suppose that (5.4) is false for some k. We note that yk séparâtes iyk+1 from the

arc.

y -Vl-x2 (5.5)

in — ™<x<i^. Let Ak be the disk

\z-iyk\<w

and let 4k be that component of 4k\7k which contains-tyk+1. Then Ak cannot
contain any point of the arc (5.5). Thus since yk^0, we deduce that 4kç4.
Hence if yk yk H Ak, we deduce that

«>0yk+i> 7k, à'k)<ù)(iyk+u -yk, A)<<o(iyk+l, yk9 A)<\

in view of Lemma 1. On the other hand yk contains an arc r\k joining z iyk to
the boundary of Ak and so we deduce that

toiiyk+uVk, Ak)^<à(iyk+u Jk> Ak) o)(iyk+1,yk, 40^i
Now we apply Lemma 2 and deduce that
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Thus (5.4) is true after ail and less than 70 différent yk can meet the négative
imaginary axis. Thus there are at most 140Yk in our remaining group and if £3
dénotes the sum over thèse, we hâve

On combining this with (5.2) and (5.3) we deduce (1.2).

6. Preliminary réductions

We now embark on the proof of (1.3). We confine ourselves to the foliowing
spécial case to which the gênerai resuit can easily be reduced. We assume that il
is the interior of an analytic Jordan curve F and that I is a segment [bu b2] of the
real axis in il whose endpoints bu b2 lie on F. We dénote by 7 the image of I
under the conformai map

of il onto A and shall show that 7 yk satisfies (1.3). In this part we work with
the geometry of il rather than that in H or A. If w is a point of il we write

d(w) inf |w-f| (6.1)
c<=r

for the distance from w to F. We start by constructing a function <£>(u) which is

comparable to d(u) on I but behaves in a smooth manner. We shall then dissect

the interval I into a séquence of intervais Ihk, and with each îhk we associate an

arc Fhk of F, such that length of the image of Ihk by F(w) is comparable with that
of Fhk. The Fjk will be disjoint and so their images hâve total length at most 2tt
and from this (1.3) will follow.

We set w u + iv.

By our construction the line u c meets F for b1<c^b2 an<3 we write

M (6.2)

Further we define

inf {*0(mi)+À|wi-m|}. (6.3)
Ui€l
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Clearly <f>(u)>0, with equality only at the endpoints bu b2 of I. A point uel will
be called a spike-point if

Evidently the endpoints bl9b2 are spike points.
In order to establish our results we proceed to subdivide I into intervais

bounded by spike points. We prove first

LEMMA 10. If u is a point of I and d(u), <(>(u) are defined as above then

Suppose that wx u1 + iv1 is a point of F such that

\w1-u\ d(u).

Then

This proves Lemma 10.

LEMMA 11. We hâve for uu u2el

Suppose that u3 e I. Then

Taking lower bounds for varying u3 we obtain

Interchanging ux and u2 we obtain

and so we deduce Lemma 11.
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Lemmas 10 and 11 are not true if we use <t>0 in place of <£>.

LEMMA 12. The set of spike points is a closed non-empty subset of L

Since bl9 b2 are spike points, the set is certainly non-empty. Next we note that
since F is closed the function <£0 defined by (6.2) is lower semi-continuous. Also
we see by Lemma 11 that <t>(u) is continuous. Thus h(u) <f>0(u)-<t>(u) is a lower
semicontinuous nonnegative function. To see that h(u)>0 we just set ux-u in
(6.3). Hence the set where h(u)<0 is closed and this is the set of spike points.

It follows from Lemma 12, that the complément in I of the set of spike points
consists of a finite or countable set of open intervais J. In each of thèse intervais
<f>(u) has a particularly simple form.

LEMMA 13. Suppose that a, a' are spike points in I such that a < a', and that
the interval (a, a') contains no spike points. Then for a<u<a\

<t>(u) min {<j>0(a)+£(w - a), <f>0(af) + ^(a' - u)}.

Since a is a spike point we hâve for ax<a, atel9

<t>o(ai) +Â(« ~ <*i) ^ <fo)(û)«

Thus for a<u<a\ we deduce that

("-a). (6.4)

Similarly if ax>a', we deduce that

è(a! - u) > ^o(a0+è(a' - w). (6.5)

Next we note that in the définition (6.3) of <f>(u) we may allow ut to range only
over spike points in J. For since <t>0(u) is lower semicontinuous the infimum in
(6.3) is attained for some ux in I. If ux is not a spike point we can find u2 such that

Thus
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and this contradicts the définition of <f>(u). Hence if a < u < ar there exists a spike
point ul9 such that

*(m) *o(mi) + w|mi-m|. (6.6)

In view of (6.4) and (6.5) we may suppose that a<u1<af, so that u1 a or
ux - a', since (a, a') contains no spike points. Using Lemma 11, we see that ux is

that one of a, a' which gives the smaller value of <\>{u) in (6.6).

7. A dissection of the interval I

Suppose first that the interval I contains no spike point other than the end

points bl5 b2. In this case we write ax bu a2 b2 and deduce from Lemma 13

that

<t>(u) j2 min (a - ai, <*2~~a)> al<a<a2. (7.1)

Thus we deduce from Lemma 10 that in this case

js min (a — a1? a2 — a)< d(a), a1<a< a2. (7.2)

Suppose next that I contains at least one spike point a0, such that 61<a0<b2.
Having chosen a0 we define other spike points a, inductively as follows. If a, has

been defined, /^0, we define aJ+1 to be the smallest spike point such that

(7.3)

We deduce from (6.3)

i.e.

so that aJ+1<b2- Thus either at some stage aJ+1 b2, in which case we stop the

procédure, or else the a, are defined for ail positive / and

a, -> b2, as / -» +00.
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Similarly if, for some nonpositive /, a, has been defined we define a]^1 to be the

largest spike point such that

o,_!< 0,-6^(0,). (7.4)

If a,>6!,we deduce again that a,.^^.
The relevant properties of our subdivision are given in

LEMMA 14. The interval I can be divided into a finite or countable set of
subintervals [ap aJ+1], where the a, are spike points with the following properties

aJ+1 - a, > 4 max {<£(<*,), <f>(aJ+l)}. (7.5)

Further, if d(a) dénotes the distance of a from the boundary F of D, we hâve for
a]<a<aJ+l

-«)]}. (7.6)

If a] &!, aJ+1 62> (7.5) is trivial and (7.6) follows from (7.2). Thus we may
assume that a0 is a spike point in I and that the remaining a, are defined by (7.3)
and (7.4). We concentrate on (7.3) and />0 for definiteness. The case /<0 is

similar.
We first prove (7.5). Suppose first that <f>(aJ+1)<l<^(aJ). Then (7.5) follows

from (7.3). On the other hand if

sothat |^(

we deduce from Lemma 11 that

Thus (7.5) holds in ail cases.

Next we prove (7.6). Suppose first that

Then Lemma 11 shows that
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Thus in this case

(Ka^èW^èCa-a,). (7.7)

Using Lemma 10, we deduce (7.6).
Suppose next that a, + 6<£>(aJ)<a<aJ+1. 1° this case it follows from (7.3) that

if b is the largest spike point such that b < a, we hâve

aJ<b<a]+6<t>(a]).

Also the interval (fc, aJ+1) contains no spike point and so by Lemma 13, we
hâve

4>{a) min {<f>(b) +£(a - b), 4>(a]+1) + è(aJ+i - a)}. (7.8)

In view of (7.7) applied to b instead of a, we hâve

Thus

Hence (7.8) yields in this case

Because of (7.7), this inequality also holds for ai<a< aJ+1. Using Lemma 10, we
deduce (7.6). This complètes the proof of Lemma 14.

Having obtained the points a, satisfying the conditions of Lemma 14, we now
proceed to a further subdivision as follows. Let (a,, aJ+1) be one of the intervais
defined in Lemma 14. We write

a,,o Ka, + aI+1). (7.9)

We then define auk for positive k inductively by
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provided that a^+i, so defined, satisfies

a,,k+i^aJ+1-^(aJ+1). (7.11)

Otherwise we set this value of fc +1 equal to fc2 and define

ahk2 a]+1.

If aJ+1 b2, so that <f>(aJ+1) 0, the process continues indefinitely and we set
fe2 oo. Thus (7.10) defines ahk+l for 0<fc + l<fc2.

Similarly we define a]k for négative k inductively by

ahk^=\{a^ahk). (7.12)

The process continues as long as aJk_1 so defined satisfies

Otherwise we set k -1 kl9 and define

ahkx ar (7.13)

In this way (7.9)-(7.12) define ahk for k1<k<fc2. We deduce from (7.5) that

-oo^fc^-2 (7.14)

and

2<fc2<+oo (7.15)

We define

kk (ahk, ahk+1), k, + K k < fc2 - 2. (7.16)

If fc! is finite we set

Ihk (aj5k_1? aJjk+1), fc fci +1, (7.17)

and if fc2 is finite we set

Ihk~(ahk,ahk+2\ fc fc2-2. (7.18)
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Thus Ihk is defined for fc1<k<fc2-l, i.e. certainly for k —1,0. Also the Ijk
cover / apart from isolated points.

8. An association of arcs Flk of F with Ihk

Suppose that k^k^O. We construct an arc of the circle

|w-o,| |o,.k-o,| (8.1)

starting from the point ahk. If a, is the left end point of I we start anticlockwise
into the upper half plane. Otherwise <f>o(aj)>0 and one of the two points

(8.2)

lies on F. If a; + i</>0(^j) lies on F, we start the arc of (8.1) by moving in the
anticlockwise sensé into the upper half plane; otherwise we move in the clockwise
sensé into the lower half plane. In either case we continue along the circle (8.1)
until we flrst meet a point of F which we dénote by bhk. Since F contains points
inside or on the circle (8.1) namely one of the points (8.2), and since a]k lies
inside F the point bjk certainly exists.

If kt < k <0, the points bjk, bhk+1 détermine two arcs of F. We choose that arc
FJk which we reach first when going along the circles

|w-o,| r, |oI,k-aJ|<r<|aJjk+1-a,|

from the point a}+r in the anticlockwise or clockwise sensé according as

aj + *</>o(#j) does or does not lie on F. Thus we hâve associated with each interval
lhk defined by (7.15) or (7.16) an arc Fhk of F if kx < k <0. It follows from (7.13)
that at least one such k exists. The corresponding intervais Ihk cover the interval
K> ,,o]

We proceed in an exactly analogous manner with the intervais
Ij k, 0 < fc < fc2 -1. We go along the circle

|w-aJ+1| |aJ>k-aJ+1| (8.3)

where 0^fc<fc2 starting at the point a,k until we meet F at b']k. We then
associate with the interval Ihk, 0<fc<fc2-l, one of the arcs [b'hk9 b'hk+1] of
F, which we dénote by Fjk. We move along circles |w-aJ+1| r,

|aJ>k+1-aJ+1|<r<|aJ)k-aJ+1| in the clockwise sensé if aJ+1 + i<t>(aJ+1) lies on F and
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the anticlockwise sensé otherwise and Fhk contains the first point of F we meet
in this way. In gênerai \J Fhk is a proper subset of F.

It follows from the construction that our interval I has been subdivided into a

finite or countable set of subintervals Ihk which are associated with arcs Fhk of F,

and no arc of F is associated with more than one distinct interval of L We

complète this section by proving that in this association distinct arcs are disjoint
except for endpoints. We show in the next section that the length of the image of
Ihk is not much greater than that of Fjk. From thèse two facts (1.3) will follow.

LEMMA 15. The arcs Fjk defined as above are pairwise disjoint except for
endpoints.

Let (5jk dénote the circular arc from a]k to bhk9 or b']k definëd as above. We
show that distinct arcs j3, k are disjoint except for endpoints.

Let (3 be one of thèse circular arcs starting at a ahk. Then |3 can contain a

semicircle s starting at a only if the other endpoint a' of s lies outside I. For if a'
lies in I, then the segment aar together with s constitutes a closed Jordan curve c

in Q. If a] is the midpoint of aa\ then our construction ensures that one of the

points a^i^iaj) lies on F and so is in the same halfplane as c and so by (7.11)
inside c, which is impossible since Q is simply connected.

Suppose now that j31? 02 are two distinct circular arcs starting at Pl9 P2 and

first meeting at a point P of û. Consider the curve y formed by going along fix
from Pt to P then along j32 from P to P2 and returning along the segment Pl9 F2.

By construction 7 lies in il and the arcs PXP9 PP2 hâve only endpoints in

common. Neither ($1 not |32 can meet the segment PtP2 again since /3l5132 hâve no

points in / other than Pu P2 respectively. Thus 7 is a Jordan curve in CL.

We shall show that 7 contains a point of F in its interior and this leads to a

contradiction since il is simply connected. Suppose that Pt lies to the left of P2. It
is not possible for the centres of both circular arcs to lie outside the segment PiP2,
for if the centres are on the same side, the circles are concentric and distinct(1) and

can certainly not meet, and if they are on opposite sides, PXP2 is the shortest
distance between the circles. Suppose then that at least one centre, say av the

centre of the arc PtP, lies on PiP2. Suppose also that z, a} 4- i<f>(aj) lies on F. We

distinguish a number of cases.

(i) Suppose first that neither px nor /32 contains a semicircle. Then j31? |32 both
lie in the upper half plane. We show that in this case the segment (ap z,) lies inside

7. Suppose first that P2 lies inside the circle su of which fi1 is an arc. Then the

1 If P a, is the centre of the arc at P2 ahk and P lies to the left of P1? then, by (8.1), Px a]X,
where fc'<fc<0.
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centre of the circle having j32 as an arc must lie to the right of a} and so to the

right of P2 since otherwise |32 would lie inside sx. Hence the segment [a,, zj does

not meet |32 and so z, lies inside y.
Thus P2 must lie outside sx and so does the whole arc £2, since if |32 went

inside sl9 j32 would contain a semi-circle. Hence in this case the interior of 7
includes ail points in the upper half plane and inside sx and so in particular z,

because of (7.11).
(ii) Suppose that pt contains a semi-circle, but |32 does not. Then 02 lies

entirely in the lower half-plane and again the interior of 7 contains ail points in the

upper half-plane and inside sl9 and in particular zr
(iii) Suppose that ^2 contains a semi-circle but that j3x does not. If the centre

ak of the circle s2 containing |82 lies to the right of P2, then the whole of s2 lies to
the right of P2, and so cannot meet the segment [a,, zj. Thus in this case z, again
lies inside 7. If on the other hand ak lies on Pl9 P2 then we hâve the case (ii) with
Pl5 P2 interchanged. Finally ak cannot lie to the left of Pl9 since otherwise pl9 /32

would be arcs of concentric circles which cannot meet. For ail circular arcs starting
from a point between ak and P2 hâve centre ak.

(iv) If j3l5 p2 both contain semicircles, they must reduce to semi-circles, since
otherwise they would hâve two distinct points of intersection. In this case j3l5 /32

meet at P, which is to the right of P2 and again the point z] lies inside 7.
Thus in ail cases pl9 ($2 can hâve at most end points in common, since

otherwise 7 contains a point of F in its interior, which contradicts the fact that 7
lies inside F.

Suppose now that Fuk is an arc corresponding to an interval IJk. Let |8k, j3k+1

be the arcs of the circles (8.1) if k<0, or (8.3) if k>0, to the points aJ>k, aJ>k+1.

Then /3k, (3k+1, and the interval [aJk, a, k+1] détermine a crosscut 8hk in fl. In view
of what we hâve just proved distinct crosscuts 8hk may hâve a common arc (3k or a

common point a]k, but cannot cross each other. Thus if D]k is the interior of the
Jordan curve formed by ô, k and Fhk then two distinct domains Djk are disjoint.

In fact otherwise one of thèse domains would lie inside the other. However
our construction ensures that the interval I lies outside ail the Djk, since none of
the |3k meet I again. Hence points near Ihk inside D]k are exterior to ail the other
domains D]X. Thus D]k cannot lie in D]k>. Now it follows that two distinct arcs

Fjk are disjoint except for end points and this proves Lemma 15.

9. Images of intervais and associated arcs

Suppose that Ihk is an interval of the real axis and that F, k is the associated arc
of F. We assume for definiteness that k < 0. If k > 0 the argument is similar. We
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recall from (7.9) to (7.11) that

a],k a]+2'k'~l)(a]+1-aJ\ k1<k^0. (9.1)

We dénote by <o(w) the harmonie measure of Fhk with référence to the full
open set û. We write

r 2k-1/2(o1+1-aJ) (9.2)

and prove

LEMMA 16. If w1 aJ+2ôr, where-^<ô<^, then co(w1)>exp{-30.9}.

Let j3 be the arc of the circle (8.1), joining ahk to an endpoint ($]k of F]k. Let j3'

be the corresponding arc of (8.1) with k +1 instead of k, which joins aJ>k+1 to the
other endpoint &hk+i of Fhk. Then |3, rjk, |3' and the segment [ajk, aJ>k+1] form a

subdomain D, k of O. We now define a domain D' DJ k as follows. We define 0O

by

sin(|0o) è. (9-3)

Then it follows from (7.6) of Lemma 14, that the sectorial région

2~mr < \w - a,! <21/2r, |arg (w - a,)| < 60 (9.4)

does not meet F and so lies inside il. Next it follows from our construction that
Fhk contains an arc 7]hk joining the circles |w-aJ| 2T1/2r in the annulus

2-1/2r<|w-o,|<21/2r. (9.5)

We now define D1 to be a subdomain of the annulus (9.5) determined by such an

arc r\hk and one of the rays arg (w — a,) ^#0 and having the arcs ]8, |3' as part of
its boundary. In other words if |3, f$' start off in the clockwise sensé we choose the

ray arg (w - a,) +0o and otherwise the ray arg (w — aj) ~60. We continue along

|w-aJ| 2:F1/2r until we meet the first arc Tjjk.
We note that D' constructed as above lies in the annulus (9.5) and contains the

région (9.4). Let co'(w) be the harmonie measure of tj, k at w w.r.t. D', and let Dt
be that component of D'HO which contains the segment (ahk, ajk+1). Then

v^, w1eD1, (9.6)
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To see this let £ be any boundary point of Dx. If £ lies on one of the circles
| w - a} | 2=F1/2r or on the ray arg (w - a,) TBq, we hâve

Any other boundary point £ of Dx lies on F, k so that

Thus eo(w)-û/(w)>0 on the boundary of DX and so in the interior of Dt by the
maximum principle. This proves (9.6).

A further application of the maximum principle now shows that <o'(wi)
assumes its lower bound for variable t\]k in the (limiting) case, when D' reduces to
the subdomain

-0o<arg(w-aJ)<27r-eo, 2"1/2r<|w-aJ|<21/2r (9.7)

of the annulus (9.5) and r)jk to the arcarg(w-a,) 27r-0o- It remains to
estimate the corresponding harmonie measure. To do this we use the invariance of
harmonie measure and set

s cr + ÎT log (w - a,). (9.8)

We write

a0 log r,

and note that the eut annulus (9.7) corresponds by (9.8) to the rectangle

Ax : <70--è log 2 < cr <o-0 + | log 2, -0o<t<27t-0o.

We hâve to estimate the harmonie measure w.r.t. Ax of t 2tt — 6o at

By the maximum principle this harmonie measure is greater than that of the
two rays

log 2 (9.9)

w.r.t. the half strip
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at Sj. This latter harmonie measure is calculated explicitly as follows. We set

z exp

This maps A2 onto the semidisk

T2:\z\<l, x>0,

the pair of rays (9.9) onto the segment

x 0, |y | < t) exp (-27T2/log 2), (9.10)

and st onto

2
+

J

say. The harmonie measure of the segment (9.10) at z x + iy w.r.t. T2 is

/ \ If -i y "^"^ -î^y -i xr\ -x X7] \
co^z) —Uan h tan tan tan \.irl x x 1 — rjy 1 + TjyJ

For clearly cox is harmonie and bounded in T1? and <«>i(z) 1 on the segment
(9.10) and o>1(z) 0, elsewhere on the boundary of TV To see this when \zx\ 1,

we use the fact that the triangles Otjz and Ozrj"1 are similar in this case. Using the

addition formula for the inverse tangent we obtain finally

since T|<r1<l. In our case we hâve, using (9.3),

zlh\ where 0.08<«o<0.081,
\log 2 /

while r} < 10~10. Also xx rx cos ôir > rx cos 7tt/16 rx sin (tt/16).

(r1)sin^
7T \rt I 16

7r 2t) 2tt6q ^^ _> — — • -—^> exp {-30.9}.
16 tt Iog2 F
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This complètes the proof of Lemma 16.

We must extend Lemma 16 to obtain a bound for cû(w) on the whole of IJk.
This is

LEMMA 17. We hâve in Ihk

We write

wi aj +1.

It follows from (7.6) that if

tia^t^ia^-a,) (9.11)

then

Also the function o)(w) is positive and harmonie in the disk |w - wt\ < d(Wi). Thus
Harnack's inequality [3, p. 64] yields

(912)

î.e.

.25
r

hence if wx a, + tl9 w[ a, + ri are two points in the range (9.11) we hâve

|log (o(wi) - log w(wi)| < 25 |log ri—log tx|.

We suppose that

tl==27/16r<ti<21/2r or 2~1/2r<r'1<r1 27/16r
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and apply Lemma 16 to wx. Thus we obtain

logo>(w0^-{30.9+filog2}>-32, ahk< w\^a1tk+l. (9.13)

This yields Lemma 17 if kt +1< fc < 0.

If fc fci + 1, we hâve to estimate coCwx) also on the interval T [0,, ajfc]. In
this case it follows from our construction that

Thus if wt is any point on V it follows from Lemmas 10 and 11 that

We deduce from (9.12) in this case that

d / xl 2.5lK) <logoKw!) on I.
dw1 I ^()

Thus if wt is any point on /' and wi a^ is the right endpoint of I', we deduce
that

2 5

f >logco(wi)-5.

On combining this with (9.13) we deduce that the inequality of Lemma 17

holds on V also and so on ail of Ihk. Thus Lemma 17 is proved whenever k <0.
The case k > 0 is similar and our proof is complète.

10. Proof of (1.3)

We need a final estimate.

LEMMA 18. If l A are the lengths of the images of an interval V Ihk and the

associated arc P Fhk respectively in the z plane then
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Suppose that vv0 is any point on V and let zo peie be the image of w0 in A.

Let y [<£x, 4>x + À] be the image of F on \z\ 1. Then, since harmonie measure is

invariant under conformai mapping,

A 1 + p

2tt1-p'

Thus

ttco(wo, F',17) 7rA3

in view of Lemma 17.

On the other hand if z F(w) maps il onto 4, then F(w) maps
|w - wo| < d(w0) into A and now we deduce from Schwarz's Lemma that

0 d(w0) d(w0) irA3d(w0)

Thus

(10.1)

Now we again use (7.6). If V is the interval [ahk, cijk+l] where k1 + l<k<0,
we set

w0 ahk + r,

and deduce from Lemma 14 that

Thus

d(w0) 2 l r 2
<25 f *=25

2 l r 21OgZ-
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If fc fci + l we must add to [a,^ a,k+1] the interval fa,, a,,fc]. In this case

U and

d(w0) 4<Ha,) 1 2

Thus in ail cases

l d(w0)

Hence (10.1) yields

l 1

À ttA.
(5 + 251og2).

This proves Lemma 18.

Now (1.3) follows at once. For the length L of the level curve is the sum of the

lengths ljk of the images of the Ihk. This yields

77^3 /-X^

which is (1.3).

11. Proof of Theorem 1

We can now put our various results together. We need a final Lemma.

LEMMA 19. Suppose that E is a set in A. Then there exists a bilinear function
z L(Z) mapping \Z\ < 1 into A and a set E' in \Z\ < 1 onto E, such that

|L'(Z)|<28(J5) on E'. (11.1)

Suppose that the upper bound of \z\ in the closure É of E is p. We suppose
without loss of generality in this case that Ë contains z p so that Ë lies in

|p-z|<8, (11.2)
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where 8 Ô(E). We define z L(Z) by

Z + tr r* z — pr p 2p
z p - Z r —, where r ——J<r<lz p, Z r, where r <r<l.f + rZ p-rz p + ô 2p + Ô

If p 1, we choose t 1, so that z =L(Z) is a bilinear map of |Z|<1 onto
|z| < 1, and the inverse image E' of E lies in \Z\ < 1. If p < 1, we choose t just less

than 1. Then |Z|<f corresponds to |z|<p and so if t is sufficiently near 1, |Z|<1
corresponds to a subset of |z|<l, which contains |z|<p and so E.

Then if z g E, so that (11.2) holds, we compute the derivative of L"1 and find

lp-rzl2 Jp-rp + r(P-z)l2^(p(l-r) + 6r)2^ 46p

tp(l-r2) rp(l-r2) ~ tp(l-r2)

which proves (11.1). This proves Lemma 19.

We recall that we hâve proved (1.3). We now apply this resuit to

g(Z)=f{L(Z)} (H.3)

where E is a single level curve of f(z) and E' L~~\E). Then E' is part of a level
curve of g(Z) and so

|E'|*A2.

In view of (11.1) we deduce that

where 8 8(E) and this is (1.4). Using (1.2) we deduce (1.5), for the length of any
level set 7.

Finally suppose that E is part of a level set of /(z) and that 8(E) 8. We again
employ the subsidiary function g(Z), given by (11.3) and define E' L~1(E).
Since E' is part of a level set 7 of g(z), we can now apply (1.5) and deduce that

|E'|<|7|<2A1A2.

Since also E L(Er) we deduce from (11.1) that

|E|<2S|E'|<4A1A2S(E).
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This proves (1.1) with

A0 4A1A2<1035,

as stated.
We hâve assumed throughout that iî is an analytic Jordan domain and that a

level set E is the inverse image of the real axis by F(z). If E is the inverse image
by F(z) of a circle or straight line L, we can find a bilinear map W= <f>(w) which

maps L onto the real axis so that E is also the inverse image of the real axis by

Next if F(z) is a gênerai univalent function and E is the inverse image of the
real axis, suppose first that the image of E does not cover the whole real axis but
leaves out a point w0. Then (F(z)-wo)~l is a regular univalent function with the

same level set E. Thus we may assume that F(z) is regular and univalent in this

case. We now apply (1.2) and (1.3) to the level sets Ep of F(pz), where 0<p<l.
Clearly F(pz) maps â onto an analytic Jordan domain Also |EP| tends to \E\ as

p-» 1, so that (1.2) and (1.3) also hold for F(z).
Finally if the image of E covers the whole real axis, then E must consist of a

single closed Jordan curve in A. Let p be the upper bound of z on E. Then E has

at least one point on \z\ — p.

Let zx peie be such a point, and write t \(\ + p), zQ (p-t)eie and

/(z) F(zo+rz).

Then the level set E' of / consists of a single curve going from elB to el° in \z\< 1

and having length |E|/f>|JE|. Thus we may apply (1.3) to E' and obtain

|E|<|E'|<A2

in this case also. Thus (1.3) holds in ail cases. Also (1.2) is trivial in this case, since

E is connected. Thus (1.2) and (1.3) hold in ail cases and so do (1.4), (1.5) and

(1.1). This complètes the proof of Theorem 1.

We are most grateful to the référée, David Drasin, for his many helpful
suggestions on exposition.
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