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Arcs omitted by support points of univalent functions

PeETER L. DUREN

This paper develops a general method for investigating certain geometric
properties of the analytic arc omitted by a support point in the class S of univalent
functions. The main result is that for every support point arising from point-
evaluation of the derivative, the omitted arc has monotonic argument.

§1. Introduction

The class S consists of all functions of the form
f(z)=z+a,z*+azz>+- -

analytic and univalent in the unit disk |z| < 1. A support point of S is a function fe S
which maximizes Re {L} for some complex-valued continuous linear functional L
not constant on S. For instance, the Koebe function k(z)=2z(1—2z)2 and its
rotations are support points of S because they maximize Re {e*°a,}. There are
other examples, but a complete description is not yet available.

Some general properties are well known (see e.g. [10], [4], or [5]). Each
support point f maps the disk onto the complement of an analytic arc I' which
extends to infinity with increasing modulus and satisfies the differential equation

2

o(w) >0, <p(w)=L( £ ) 1)

w f—w

This function @ is analytic on I" and has the property Re {®(w)}> 0 there, except
perhaps at the endpoints. At each point of I', the angle measured from the radial
line to the tangent line is called the radial angle of I'. In view of (1), the property
Re {®(w)}>0 is equivalent to Re {(dw/w)?*} >0, which says geometrically that the
radial angle of I' is less than #/4 in magnitude at each interior point. This is
known as the m/4-property.
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Pfluger [8] showed that L(f?)# 0, or equivalently that the quadratic differen-
tial (1) has a simple pole at infinity. Brickman and Wilken [1] observed that I is
tangent to the half-line

_ L)
3L(P)

w — L(f), t=0 (2)

at infinity. This is called the asymptotic half-line. It should be remarked that if the
asymptotic half-line is a trajectory of the quadratic differential (1) near infinity,
then I' is itself a half-line which coincides with the asymptotic half-line near
infinity. This is true because the quadratic differential has a unique trajectory extend-
ing to its simple pole at infinity.

For the support points associated with point-evaluation functionals L(f) = f({),
Brown [2] found that the omitted arc I' has monotonic argument and monotonic
radial angle. No rotation of the Koebe function can maximize Re {f({)} unless ¢
lies on a certain segment of the real axis (cf. Schober [10], p. 84). For a certain
choice of { on the negative real axis, Brown found numerically that the radial
angle at the tip of I' is approximately equal to «/4. This was a “numerical proof”
that the upper bound 7/4 in the general description of support points is best
possible. For the functionals

L(f)=as+Aa,, AeC,

which typically exclude all rotations of the Koebe function as support points,
Brown [3] again showed that I' has monotonic argument.

More recently, Pearce [7] made the observation that for 0 < ¢ <sin /8, the
nonlinear problem of maximizing (or minimizing) arg f'({) is equivalent to a
certain linear problem of the form

max Re {e “f' (O}, 3)
since the set of values {f'({):f€ S} then lies in the right half-plane and is
supported by the radial line of maximal argument. Thus the functions

z—{z?

(1—e*2)*

which are known to maximize arg f'(¢) over S for each £ =1/v2 (see [6], p. 115),
are support points of S if { <sin «/8. The arc I' omitted by a function f of the
form (4) is a half-line which for ¢ =sin /8 has a radial angle of exactly m/4 at its
tip. In all cases, this arc I" has monotonic argument and monotonic radial angle.

f(z)= 0 =cos™' ¢, 4)
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We shall generalize this result by proving that every support point arising from
a problem of the type (3), for arbitrary real o and 0<{ <1, has an omitted arc I
with monotonic argument. (There is no loss of generality in assuming that ¢ is real
and positive.) Without appeal to the rotation theorem, we shall observe indepen-
dently that I' is a nonradial half-line if and only if the extremal problem (3) is
equivalent to that of maximizing or minimizing arg f'({). In a sense these results
complement the work of Grad [9], who described the region of values of f'({) as f
ranges over S. We are concerned with the geometric properties of those functions
f for which f'({) lies on the boundary of the convex hull of this region.

Before turning to the problem (3), we shall develop some general techniques
for using the differential equation (1) to deduce certain geometric properties of
the arc I' omitted by a support point. This method is then applied to establish the
monotonic argument result for support points arising from both the point-
evaluation problem and the derivative problem (3). In all cases it is the asymptotic
half-line which distinguishes the trajectory I' and makes this approach effective.

$2. General criteria for monotonicity

Let f€ S be a support point which maximizes Re {L}. Then f omits an analytic
arc I' which extends with increasing modulus from a point w, to infinity and
satisfies the differential equation (1). Let I' have a nonsingular parametrization
w=w(t), 0=st=<oo, with w(0)=w, and w(®) =0, Then the relation

d o o0etm (2O
at arg w(t)=Im {w(t)}

shows that argw is increasing where Im{w’/w}>0 and decreasing where
Im {w'/w}<0. On the other hand, |arg{w'/w}| < /4 by the m/4-property of TI.
Thus arg w is increasing or decreasing according as Im {(w'/w)?} is positive or
negative. In view of (1), this says that arg w increases where Im {®(w)}<0 and
decreases where Im {®(w)}>0. If arg w ever reverses direction, it must do so on
the set where ®(w)>0.

It is equivalent to the mr/4-property that I' lies entirely in the region where
Re {®(w)}>0, except perhaps for the endpoint w, This will be called the
accessible region. The set where Re {®(w)} <0 will be called the forbidden region.
The range of f contains the forbidden region. The set where ®(w) is real will be
called the critical set.

It is clear that the intersection of the critical set with the accessible region (i.e.,
the set of points where &(w)>0) coincides with the set where trajectories are
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tangent to radial lines; while the part of the critical set in the forbidden region
(the set of points where @(w)<0) is the locus of points where trajectories are
tangent to circles centered at the origin. The critical set is a collection of curves
which divide the accessible region into subregions where the trajectories have
strictly monotonic argument. In order to show that the trajectory I' omitted by a
support point has strictly monotonic argument, it is sufficient (in fact, equivalent)
to show that I’ lies entirely in one of these subregions. It is here that the explicit
knowledge of the asymptotic half-line becomes a powerful tool.
The monotonicity of the radial angle

w'(t)}

at)=arg {w(t)

can be discussed in a similar way. The differential equation (1) shows that
arg ®(w(t))+2a(t)=0,

and so

T

Thus o«'(t) =0 if and only if

Comparing this with (1), we see that if the radial angle o ever reverses direction,
it must do so on the set where

[®'(w)Pw?

=0. 5
WP ®

It should be remarked that for the trajectory I' omitted by a support point, the
monotonicity of the radial angle implies the monotonicity of the argument. This is
true because the radial angle is bounded by n/4 and tends to zero at infinity as I
approaches its asymptotic half-line (cf. Brown [2]).
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§3. Applications to the point-evaluation problem

As a first illustration of the method, we now consider the point-evaluation
functional L(f) = f({) for fixed ¢ with |{|<1. Let fe S be a corresponding support
point, and let I" be its omitted arc. Then I satisfies the differential equation (1)
with ®(w)=B?*(B—-w)! and B={f(¢). Brown [2] integrated the differential
equation to show that I' is essentially the image under the Koebe function of a
logarithmic spiral. This and the implicit determination of B as a function of {
enabled him to show that I' has monotonic argument and monotonic radial angle,
and that I lies in a certain half-strip excluding the origin. We shall now use the
tools developed in §2 to recapture some of these qualitative properties directly
from the differential equation.

The asymptotic half-line (2) reduces to

B
w=§——-th, 0=st<cx,

The accessible region is a half-plane bounded by the line through B orthogonal to
the asymptotic half-line. The critical set is the line

w=B—B?%, —o<t<x,

through B parallel to the asymptotic half-line (see Figure 1). We may assume that
Im {B}>0, since the class S is preserved under conjugation and f is the Koebe
function if B is real. The asymptotic half-line lies between the origin and the
critical line. If I were to enter the quarter-plane I where Im {®(w)}<0, it would
be forced to cross the critical line radially, violating its monotonic modulus
property, in order to approach the asymptotic half-line. Thus I' is confined to the
quarter-plane II where Im {®(w)}> 0, which contains the asymptotic half-line. In
this region, argw must decrease as |w| increases. This proves that I' has
monotonic argument.

If Re{B}=0, then the origin lies in the forbidden half-plane or on its
boundary (because @(0)= B), and I is restricted to a half-plane bounded by the
line

w =iB?t, —0< t <0,

through the origin. The monotonicity of arg w then restricts I' to the quarter-
plane bounded by the rays w=—B?*t and w=—iB?, t=0. This quarter-plane
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Figure 1

contains the asymptotic half-line near infinity. The case where Re {B}> 0 is more
difficult.

Now consider the radial angle. The equation (5), which determines the locus of
points where the radial angle may be stationary, takes the form

B*(B—w)w2=0.

This is a curve y from B to =, passing through the origin. It may be analyzed by
setting

B*(B—-w)w™2=t>0
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and observing that w is then determined by the quadratic equation
tw?2+ B?w—B3=0,

with solutions

2 i=(5) )
=—-——{1x{1+=)
w Y 1 1B

For small t these two solutions are
w=B—t+0(t?)

and

2
w= ~§t——B+t+O(t2).

As t— 0, the first solution approaches B asymptotic to the half-line w=B —¢,
while the second tends to infinity asymptotic to the half-line w =—B — B?/t. For
large t the two solutions are
w=+xB¥ 2+ 0™, t —> oo,
which approach the origin in opposite directions. Because I' and vy have different
(but parallel) asymptotes near infinity, it follows that they have no intersections

outside a circle of sufficiently large radius. Thus the radial angle of I' is eventually
monotonic.

§4. Applications to the derivative problem

We now return to the linear problem (3) of maximizing Re {e **f'({)} over
all functions f € S, where o is an arbitrary real number and { is an arbitrary point
in the unit disk. We shall prove the following theorem.

THEOREM. Let fe€ S be a function which maximizes Re {e *g'({)} among all
g€ S, and let I be its omitted arc. Then I' has monotonic argument.

Proof. Since S is preserved under rotations, we may assume without loss of
generality that 0 <{ <1. Specializing the general result for support points, we see
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that an extremal function f must map the disk onto the complement of an analytic
arc I' which satisfies

2
sz >0, (6)

d(w)

w
where

e “CB(B-2w)
(B—w)*

D(w) = B=f(0), C=f(D.

The asymptotic half-line (2) takes the form

w =g—e_i"CBt, t=0.

If e7°C is real, the asymptotic half-line is radial and is a trajectory of the
quadratic differential. This implies that I' is a radial half-line and that f is a
rotation of the Koebe function. Thus we may assume that e *°C is not real. In
fact, we may assume without essential loss of generality that Im {¢~**C}> 0, since
S is preserved under conjugation and so the region of values of g'({) is symmetric
with respect to the real axis. More specifically, f maximizes Re {e *“¢g'({)} if and
only if its conjugate f (defined by f(z)= f(Z)) maximizes Re {e*°g'(¢)}. Having
made these reductions, we may set

e “C=e¥|C|, 0< 'y<-g.
We also let
e'w
w=¢+in=p—r, (7)

whereupon a simple calculation gives
®(w)=|C|{e* —w?}.

The boundary of the accessible region is the curve Re {®@(w)}=0, which in the
w-plane is the (possibly degenerate) hyperbola

£2—mn?=cos 2¥. (8)
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The critical curve Im {@(w)} =0 transforms to the hyperbola
2&n =sin 2y 9)

in the w-plane.

The variables w and w are related by the linear fractional transformation (7)
with the following table of values:

w 0 ed B/2 B

The line in the w-plane through 0 and B is mapped onto the line in the w-plane
through e’ and —e". More generally, an arbitrary radial half-line in the w-plane
is mapped onto a circular arc joining 0 and —e™ in the w-plane. Circles in the
w-plane centered at the origin are mapped onto circles of Apollonius in the
w-plane with 0 and —e™ as inverse points. The asymptotic half-line in the
w-plane is mapped onto a circular arc in the w-plane joining e'¥ and —e®. The
typical situation is illustrated in Figures 2 and 3.

74

Figure 2. w-plane, 0 <y <mn/4.
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_/,asymptotic
, 4 half-line

Figure 3. w-plane, 0<vy </4.

Suppose first that 0 <y <m/4, so that cos 2y >0 and sin 2y>0. The hyper-
bolas (8) and (9) are then as shown in Figure 2. Observe that the two hyperbolas
intersect at the points +e™. The image of the forbidden region in the w-plane is
the shaded region determined by the inequality

cos 2y + 2 < €2

The critical curve divides the accessible region into three subregions which are

labeled I, II, and III in Figure 3. Observe that Im {®(w)}<0 in Regions I and III,

while Im {®(w)}>0 in Region II. According to our previous remarks (§2), this

implies that as I’ is traversed with increasing modulus, its argument must decrease

in Region II and increase in Regions I and III. Should I" ever pass from one

region to another, it must have radial direction as it crosses the critical curve.
Our first observation is that the asymptotic half-line

B .
w =-2——e2“‘Bt, t=0, (10)

lies entirely in Region II, except perhaps for an initial segment near B/2. Indeed,
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its image in the w-plane is a circular arc from e” to —e* which makes an angle of
2y with the line joining these two points, while the hyperbola (9) has slope
dn/d¢é = —tan vy at —e™. Referring to Figure 2, we conclude that the circular arc is
tangent to (9) at —e™, which implies that the critical curve is tangent to the
asymptotic half-line at oo,

We claim that I lies entirely in"Region II and so has decreasing argument.
Suppose first that I' has points in Region 1. Then, in order to reach the asymptotic
half-line at infinity, it must either cross the critical curve radially into Region II or
approach the critical curve asymptotically. If I' crosses the critical curve from
Region I to Region 11, it must do so with decreasing modulus, because each ray
intersects this portion of the critical set at most once. (This follows from the fact
that the image of such a ray is a circular arc in the w-plane from 0 to —e'*, which
can have at most one other intersection with the lower branch of the hyperbola
(9).) If I' approaches the critical curve asymptotically at infinity within Region I, it
must do so with decreasing argument. (This is again seen by considering its image
in the w-plane, which would approach the point —e"™ within the image of Region
I and would be tangent to the critical hyperbola there.) In Region I, however, we
know that I' must have increasing argument. This shows that no part of I can lie
in Region I.

Suppose next that I' has points in Region III. Then, in order to approach the
asymptotic half-lide at infinity, it must eventually cross the critical curve (radially)
into Region II. To see that this is impossible, we observe that the critical curve
which separates Region II from Region III is divided into two subarcs by a point
P where the ray from the origin is tangent to the curve. At every point on the
open subarc from B/2 to P, rays from the origin pass from Region II to Region
III; while on the subarc from P to B, rays pass from Region III to Region II.
(Again consider the image of such a ray in the w-plane, which is a circular arc
from 0 to —e™. This circle intersects the upper branch of the hyperbola (9) at most
twice.) If I' crosses the critical curve from Region III to Region II, it must cross
radially along the subarc from P to B (possibly at P), because of its increasing
modulus. In Region II, however, the argument of I' must decrease. Therefore,
after I" passes into Region II, it is blocked away from the asymptotic half-line by a
curve which extends along the critical set from P to B, then radially from B to .
The radial half-line from B to e lies in the forbidden region. This shows that no
part of I' can lie in Region IIl. Thus I' lies entirely in Region II, where its
argument is strictly decreasing. This concludes the proof that I' has monotonic
argument if 0 <y <m/4.

The case /4 <y <m/2 is somewhat similar. The hyperbola (9) remains in the
same position, but the hyperbola (8) now has a vertical axis. The image in the
w-plane of the forbidden region now lies between the two branches of the
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Figure 4. w-plane, m/4 <y <m/2.
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Figure 5. w-plane, w/4 <y <m/2.
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hyperbola (8). The critical curve corresponds to the hyperbola (9) and divides the
accessible region into four subregions. These are called Regions I, II, ITI, and IV,
as indicated in Figures 4 and 5. Now Im {®(w)} <0 in Regions I and III, while
Im {®(w)}>0 in Regions II and IV. The asymptotic half-line lies eventually in
Region IV and is tangent to the critical curve at infinity. (This is seen by
considering the image of the asymptotic half-line in the w-plane, an arc of a circle
through e™ and —e™ which makes an angle of 7 —2vy with the line through these
two points. Geometric considerations reveal that this circular arc is tangent to the
lower branch of the hyperbola (9) at —e*™.) No part of I can lie in Region I or II,
because these are bounded regions entirely surrounded by the forbidden region.
(It is clear that B¢ T, since f({)=B.)

If any part of I' lies in Region III, then eventually either I' crosses the critical
curve (radially) into Region IV, or I' approaches the asymptotic half-line within
Region III. However, a ray from the origin may meet this part of the critical curve
at most once, where it crosses from Region IV into Region III. (This is seen by
observing that its image in the w-plane is a circular arc through 0 and —e* which
meets the lower branch of the hyperbola (9) at —e™ and at one other point at
most, where it must cross.) Thus if I' crosses from Region III to Region IV, it
must do so with decreasing modulus, which is impossible. Finally, it is clear from
Figure S that if I' approaches the asymptotic half-line within Region III, it must
eventually have decreasing argument. But this is impossible, since Im {@(w)}<0
in Region III, and so I' has increasing argument there. Thus I is confined entirely
to Region IV, where it has decreasing argument.

The final case y=m/4 is quite special. Here e “C=i|C|, and it is easily
verified that the asymptotic half-line

w= —g —iBt, t>0,
satisfies the differential equation (6) for the omitted arc I. As we have already
remarked (§1), this implies that I' is itself a half-line which coincides with the
asymptotic half-line near infinity. Since a half-line clearly has monotonic argu-
ment, this completes the proof of the theorem.

The last case merits closer inspection. What is the most general situation in
which I' is a half-line? This occurs if and only if the asymptotic half-line (10) is a
trajectory (near infinity) of the quadratic differential (6). A direct calculation
shows that this is true if and only if e*” is real. If e** =1, then e**=+1and I' is
a radial half-line, which implies that f is a rotation of the Koebe function. If
e*Y=—1, then ¢* = xi and ¢ “C= %i|C|. On the other hand,

max Re {¢™7g'({)} = max Im {ie™g'({)} = 0
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if and only if C = —ie*” |C|, and it is clear geometrically that this occurs if and only
if the extremal problem is equivalent to that of finding the maximum of arg g'({).
Similarly, C =ie* |C| if and only if the extremal problem is equivalent to the
minimum argument problem. In other words, the only cases (aside from rotations
of the Koebe function) in which I' is linear are those identified by Pearce [7],
where the extremal problem (3) is equivalent to the maximum or minimum
argument problem. It should be remarked that we have been led to this result
without appeal to the rotation theorem and without prior knowledge of its specific
extremal functions in the case |¢{|=1/v2. In fact, our approach demonstrates a
priori that whenever { is chosen so that Re {g'({)}=0 for all ge S, the maximum
and minimum of arg g'({) are attained only by the elementary rational functions
which map the disk onto the complement of a half-line.
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