Zeitschrift: Commentarii Mathematici Helvetici
Herausgeber: Schweizerische Mathematische Gesellschaft

Band: 56 (1981)

Artikel: All knots are algebraic.

Autor: Akbulut, S. / King, H.

DOl: https://doi.org/10.5169/seals-43248

Nutzungsbedingungen

Die ETH-Bibliothek ist die Anbieterin der digitalisierten Zeitschriften auf E-Periodica. Sie besitzt keine
Urheberrechte an den Zeitschriften und ist nicht verantwortlich fur deren Inhalte. Die Rechte liegen in
der Regel bei den Herausgebern beziehungsweise den externen Rechteinhabern. Das Veroffentlichen
von Bildern in Print- und Online-Publikationen sowie auf Social Media-Kanalen oder Webseiten ist nur
mit vorheriger Genehmigung der Rechteinhaber erlaubt. Mehr erfahren

Conditions d'utilisation

L'ETH Library est le fournisseur des revues numérisées. Elle ne détient aucun droit d'auteur sur les
revues et n'est pas responsable de leur contenu. En regle générale, les droits sont détenus par les
éditeurs ou les détenteurs de droits externes. La reproduction d'images dans des publications
imprimées ou en ligne ainsi que sur des canaux de médias sociaux ou des sites web n'est autorisée
gu'avec l'accord préalable des détenteurs des droits. En savoir plus

Terms of use

The ETH Library is the provider of the digitised journals. It does not own any copyrights to the journals
and is not responsible for their content. The rights usually lie with the publishers or the external rights
holders. Publishing images in print and online publications, as well as on social media channels or
websites, is only permitted with the prior consent of the rights holders. Find out more

Download PDF: 20.08.2025

ETH-Bibliothek Zurich, E-Periodica, https://www.e-periodica.ch


https://doi.org/10.5169/seals-43248
https://www.e-periodica.ch/digbib/terms?lang=de
https://www.e-periodica.ch/digbib/terms?lang=fr
https://www.e-periodica.ch/digbib/terms?lang=en

Comment. Math. Helvetici 56 (1981) 339-351 0010-2571/81/003339-13$01.50 + 0.20/0
© 1981 Birkhiuser Verlag, Basel

All knots are algebraic

S. AkBuLuT and H. KinG

In this paper we study local knottedness of real algebraic sets. For instance we
show that any knot in S? is “algebraic” i.e.

THEOREM 0.1. Given a knot K < S? there is a real algebraic set Z = R* with
Sing (Z) =0 so that for all sufficiently small € >0, (¢S?, €S*> N Z) is diffeomorphic to
(S?, K). (Here £S? is the sphere of radius € around 0.)

In fact we have more generally the following theorem:

THEOREM 0.2. Suppose Uc S*™! is a compact smooth submanifold with
codimension =1 and trivial normal bundle. Then there is a real algebraic set
Z < R* with Sing (Z) =0 so that for all sufficiently small € >0, (¢S*"!,eS* 1N Z)
is diffeomorphic to (S*7',dU). (In fact, edU will be isotopic in eS** to eS* 'NZ
where edU ={x e eS* ' | x/e €9U}.)

To deduce Theorem 0.1 from Theorem 0.2 we may let U be a Seifert surface
for the knot K. However, we give a direct proof of Theorem 0.1 in Section 2 since
it is simpler and illustrates the main ideas in the proof of Theorem 0.2.

§1. Preliminary lemmas

Definitions are as in [1]. For instance a polynomial p:R" — R is overt if
x € R"—0 implies p*(0, x) # 0 where p*: R X R" — R is the homogenization of p,
(p*(t, x) = t*p(x/t) where d =degree of p). An algebraic set V< R" is projectively
closed if V =p~'(0) for some overt polynomial p.

DEFINITION. Let W be a topological space, M < W. We say that M com-
pactly separates W if there are closed sets W, and W, so that W= W,U W, and
M=W,NW,; and W, is compact.

We first give a few useful lemmas about algebraic sets.

339



340 S. AKBULUT AND H. KING

LEMMA 1.1. Suppose V and W are nonsingular algebraic sets, W<V and
dim W =dim V. Then V—W is a nonsingular algebraic set.

Proof. Lemma 1.6 of [1].

LEMMA 1.2 (Imprecise version). The boundary of a submanifold with trivial
normal bundle is isotopic to an algebraic set. This isotopy can fix nice subsets.

LEMMA 1.2 (Precise statement). Suppose W, L, and V; i=1,...,k are
algebraic sets, U = Nonsing W is a smooth compact submanifold with trivial normal
bundle, the V; are pairwise disjoint, L, <(Nonsing V;)NoU i=1,...,k and
V;: N aU contains a neighborhood of L, in V;i=1,..., k. Then there are arbitrarily
small isotopies of dU which fix \U¥_, L, and take dU to a nonsingular algebraic
set. If each L, is projectively closed then we may take this algebraic set to be
projectively closed also.

Proof. We will prove this by induction on the codimension of U in W. In case
U has codimension 0, then U compactly separates W so the result is essentially
Lemma 2.2 of [1]. (The statement of Lemma 2.2 assumes k =1 but its proof
works for arbitrary k.)

Now let us prove the lemma for arbitrary codimension of U. Let m >0 be the
codimension of U in Nonsing W. Then we have a smooth open imbedding
B:UXR™ — Nonsing W so that B(UXx0)=U. By induction B(a(U X B™)) is
isotopic fixing | J*_, L; to a nonsingular algebraic set Y. Also there is a smooth
compact submanifold M < Nonsing W so that U is a codimension 0 submanifold
of dM, M has trivial normal bundle, dM intersects B(3(U X B™)) transversely and
oM NBB(UXB™))=9U (see Figure 1). Then by induction we may isotop oM
fixing |J*_; L; to a nonsingular algebraic set Z. Then since these isotopies can be
C! small, there is an isotopy of U to Y NZ fixing Uk, L..

COROLLARY 1.3. Let K< R? be a link (i.e. a union of disjoint imbedded
circles). Then there is a small isotopy of R> taking K to a projectively closed
nonsingular algebraic set.

Proof. Let U be a Seifert surface for K, i.e. U is a smoothly imbedded
compact surface with trivial normal bundle so that 0U = K. The result now follows
from Lemma 1.2 setting W=R3 L,=¢=V, and U=U.
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LEMMA 1.4. Let W be a smooth n-dimensional manifold and M < W a closed

codimension 1 submanifold. Then M compactly separates W if and only if M
represents 0 in H,_(W,0W,Z/2Z).

Proof. Triangulate W so that M is a subpolyhedron. Then M represents 0 in
H,_(W,dW;Z/2Z) if and only if in simplicial homology [M]=083,.x a, * o)
where K is the set of n-simplices in W and a, € Z/2Z and only a finite number of
a, are non-zero which happens if and only if W=W,U W, and M=W,NW,
with W; compact where W, =J___ C1(0).

a, =i

§2. All knots are algebraic

This section is devoted to a proof of Theorem 0.1 which shows all knots are
algebraic. Note that a very slight modification of the proof shows that all links are
algebraic. In fact, the proof for links with an even number of components is a
good deal easier since it is not necessary to add the extra one handle. Let us now
proceed with the proof of Theorem 0.1.

Pick a point ze S*— K and a diffeomorphism h:S*>—z — R>. We show below
that there is a projectively closed nonsingular algebraic set W< R> and an
algebraic subset L = W so that the boundary of a smooth regular neighborhood of
L in W is isotopic in R® to h(K). Supposing this, let W =p~'(0) and L =q~'(0)
for overt polynomials p and q. Let p* and q* be the homogenizations of p and q.
Define an algebraic set

Z ={(t,x)e RXR?|t?4t@*1 = (g*(t, x))*> and p*(t, x)=0}.

Then if (t,x)e Z, t=0. Also if t=0 then p*(0, x) =0 so x =0 by overtness of p.
Hence eS>NZ =¢H?>NZ where eH?>*={(t,x)e RXR?*|t*+|x|*=¢? and t>0}. If
¢, : R?®— ¢H? is the diffeomorphism ¢_(y) = (g, €y)/(1+|y|*)"* then

¢ (eH’NZ)={yeR*| p(y)=0
and

')A +lyP)=eZ={ye W|q*(y) A +|y]) = &7}

Since q*(y)(1+]|y[?) is 0 only on L, [2] implies that for small enough ¢, ¢.'(¢H>N
Z) is the boundary of a smooth regular neighbourhood of L in W. Thus £S*N Z is
isotopic in £S> to ¢, (h(K)) so (eS3, £S*N Z) is diffeomorphic to (S>, K) as we
desired.
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Fig. 2.

It remains to show the existence of W and L. Let U < R? be a connected
Seifert surface for h(K), that is U is an orientable compact surface with oU =
h(K). For a technical reason we must add a special 1-handle to U. In particular,
let V< R? be some translation of the torus {points in R> of distance 1 from the
circle x =0, y*+z?=4}={(x,y,2)e R®| (x*+ y?+ 22 +3)>=16(y>+ z?)} so that V
is disjoint from U. We have a meridian V; and longitude V, of V corresponding
to {z=0, x*>+(y—2)*=1} and {x=0, y>+z>=1}. Notice V, V, and V, are
nonsingular projectively closed algebraic sets. We let U’ be a connected sum of U
and V, i.e. we run a.tube from U to V, being careful to connect the tube to V
somewhere in V—(V,;U V,). Hence V< U’ and V,< U’ and the germ of U’ at
ViUV, is the germ of V at V,UV,,

Let U” be U’ with a disc deleted from its interior. If we took U” out of R? and
unknotted it, it would look like Figure 2.

We will consider two transversely intersecting submanifolds of U”, L, and L,
as shown in Figure 3. We want V; to be a component of L; i =1, 2. Notice that
U"—(L,UL,) is diffeomorphic to aU"X[0,1). Also, U —-((L,—V;)UL,) is
diffeomorphic to aU’ X[O0, 1).

We now let W’ be the double of U”, i.e. since U"” has trivial normal bundle we
may find a diffeomorphism g: R?®— R?so g(U")NU"=9U" and g(U")UU" is a
smooth submanifold W’ of R>. Note that g(L,)U(L,— V) is a union of disjoint
circles. Thus by Corollary 1.3 we may isotop g(L,)U(L,— V,) to a nonsingular
projectively closed algebraic subset of R® so we may as well assume (after
isotoping U” a bit) that g(L,)UL, is a nonsingular algebraic set. Note that W’
compactly separates R® so by Lemma 1.2 we may isotop W', fixing V,UL,U
g(L,) to a nonsingular projectively closed algebraic set W. Let f: W' — W be the
time one map of this isotopy. Since LU g(L,) compactly separates W', we may

V
Ly Ly Ly Ly Ly L,
(a) (b)

Fig. 3.
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assume by Lemma 1.2 that f(L, U g(L,)) is a nonsingular algebraic set. (We might
have to do a little isotopy of W to itself to do this.) But then f(L,U g(L,))—
(V,Ug(Ly)=f(L,—V,) is a nonsingular algebraic set by Lemma 1.1. Hence
f(L,U(L,—Vy)=L,Uf(L,—V,) is an algebraic subset L of W. Notice that a
regular neighborhood of L in W is isotopic to a regular neighborhood of
L,U(L,—V,) in U"” which is isotopic to U’ = h(K). So we are done.

§3. Obtaining nice spines

An important feature in the proof of Theorem 0.1 was that a Seifert surface
for the knot had a spine of transversely intersecting circles. This section is devoted
to the corresponding result we will need to prove Theorem 0.2. We will show that
after adding one-handles to U we will have a spine of codimension one spheres
and circles in general position. This point is used to great advantage in other

papers of ours. We are indebted to Lowell Jones for discovering Lemma 3.2 for
us.

EXAMPLE 3.1. At this point we need examples of nonsingular algebraic sets.
Let ~

n+1

n+1 2
V= {(xl, Xy oy xn+1)€R"+l \ 16 Z xiz =3+ Z x,z) },
i= i=1

i=2

Vi={(x1,%2,0,0,...,00eR"" | xi+(2—x,)* =1},

n+1
V2= {(Oa X250 eny -xn+1)€Rn+1 \ Z xi2= 1}'

i=2

A moment of examination shows that V, V, and V, are nonsingular projec-
tively closed algebraic sets, V; is a circle, V, is an n—1 sphere and V,; and V,
intersect transversely in V. V is diffeomorphic to S'x S$"! and can be described

geometrically as the set of points in R"*! of distance 1 from the n—1 sphere of
radius 2 in OXR"cR"*'.

LEMMA 3.2. Let W be a compact connected smooth manifold with boundary.
Then there is a finite collection D,, a € A of imbedded discs in int W so that

(1) The boundaries S, =0D,, a € A are in general position.
(2) W minus a finite disjoint collection of discs is a smooth regular neighborhood
Of UaeA Soz ln W



344 S. AKBULUT AND H. KING

Fig. 4.

Proof. Take a smooth triangulation of W and let X be the subpolyhedron
consisting of all simplices which do not touch dW. There will at the end be one
disc D, for each simplex of X. One way to describe these discs is as follows. For a
simplex o of dimension k, let E, be the union of all simplices in a k+1-th
barycentric subdivision of o which do not touch do. Now let D, be the union of
all simplices in a k +2-th barycentric subdivision of W which intersect E,. Of
course we must take the subdivisions in such a manner that D, is smooth. Figure
4 illustrates the case where X is a 2-simplex.

Let T be the closure of some component of W—U_.. S,. If T contains a
component Y of oW, then T is homeomorphic to Y X[0, 1], since Jyca D,
is a regular neighborhood of X and W is a regular neighborhood of X, so
W —U,ca D, is diffeomorphic to aW %[0, 1] and W is a regular neighborhood of
Uwea D,. If our component T lies in |J,c4 D, then it is of the form () ca D, —
Uqg¢a- int D, for some nonempty A'< A. Let A’ ={ag, ay,..., a,} where q; is a
face of a;,, for all j. We can do this because D, N D, # & implies « is a face of
a' or vice versa. Then note that (\,ca D, —Uagarint D, collapses to E, N
(Naca’ Dy = Uaga- int D,) which is always a disc in the simplex a.

Thus a smooth regular neighborhood of | J, .4 S, is obtained by deleting a disc
from each component of |, ca Dy —Uqca S.. (We in fact delete one disc for each
simplex in the first barycentric subdivision of X.)

LEMMA 3.3. Suppose W is a compact connected n-dimensional manifold with
nonempty boundary. Then there is a compact manifold W' < W X R with trivial
normal bundle in WX R and a finite collection of closed submanifolds in general
position S,, a€ A, Rz and Ty, B € B and a collection of pairwise disjoint imbed-
dings ¢z : R""' — W XR so that

(a) oW’ is isotopic to oW X0 in WXR.

(b) W' is a smooth regular neighborhood of Uyca So UUgep Rg in W'

(c) For each o€ A there is a B,<B so that S, UUgs, Tg is a manifold
compactly separating W'.
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Fig. 5.

(d) Tz =¢a(V3) and Rg = @g( V) and the germ of W' at Ty U Ry is the germ of
¢a(V) at Ts UR; where Vi, V, and V are as in Example 3.1.

(see Figure 11).

Proof. By Lemma 3.2 we have a collection D,, a€ A of n-discs in W
satisfying the conclusion of Lemma 3.2. Let K be the one-complex whose vertices
are components of Jyeca D, —Uoca S, and so that there is a one-simplex
between two vertices if and only if there is an a’'€ A so that the components of
Usea Dy = Uaea S. corresponding to the two vertices lie in the same component
of Usea Do —Uaeca-o Sor (This K is a subcomplex of the second barycentric
subdivision of the X in the proof of Lemma 3.2. For instance, for the two simplex
of Figure 4, K is as in Figure 5.) Notice that K is connected, for if p and q are any
two points of | J,ca Dy —Uyca S, Wwe may draw a smooth path in | J, .4 D, from p
to q in general position with the collection of S,. This path gives us a path in K
for whenever the path crosses some S,, it passes between two components of
UD, - US, which have a one simplex between them.

Now pick a vertex v of K so that for some a’'e A, v lies in the same
component of W—J,ca_o' S, as some component * of W—J,ca D,. Now
define a one complex K* to be the complex K with one additional vertex * and
one additional 1-simplex which lies between * and v. For each vertex u of K let
B, be a smooth disc in the component u of JD,—US, Denote U=
W —Uu.ckint B,. Then for each vertex of K* we have k(u), an associated
component of dU. Namely «(u)=4B, if ue K and k(*)=0*<oW.

Notice that U is a smooth regular neighborhood of J,ca S.. Let C be a
maximal tree in K*, (that is C is a contractible subcomplex containing all the
vertices of K*). Let B be the set of one-simplices of C. For each B € B we may
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associate a smooth arc Ag in U so that

(1) The Ag’s are pairwise disjoint.

(2) If B has vertices u and u' then Ag NAU ={pg, ps}=03A; with pgeu and
ps€u' and Ag is transverse to dU.

(3) Ag is in general position with the collection S,, a€ A and AgNUgca So =
one point gg.

For instance, suppose W is a 2-disc and A ={1, 2} so the discs D, and B, are
as in Figure 6.

Then K and K* are as in Figure 7 and C =K™* because K* is contractable.
Denote the simplices of C as in Figure 7.

* 3 4 5
Ol B e B P
6 7 8
K K*
Fig. 7.

We now show the Ag in Figure 8. Pick an imbedding g:(lJAg)xR"'—> U
with g 1(0U)=1J (3Ag)XR"! and g(x,0)=x for all x. Now we define W’'c
W XR by

W'=Ux0U g(lJdAg x B" 1)x[0,1]Ug(lUAsxB" ") x1
with the corners rounded. We define Rz =« W' by

Rz =93Ag X[0, 1]JU Ag {0, 1}.

Thus, W' is obtained from U by attaching 1-handles to the boundary of U.
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Fig. 8.

Each Ry is Ag union the core of one of these 1-handles. See Figure 9 for the W'
constructed via Figures 6, 7 and 8.

It is easy to see (b) from the fact that U is a smooth regular neighborhood of
Uaea So- Likewise, (a) is easily seen since dW' is obtained from dW by “growing”
the tree C, see Figure 10.

We now construct the Tp’s. For each Be B, let Y; =the component of
oW’ —g(gg X S"?) x 1 which does not contain points of dW x 0 (i.e. Yg is the limb
we get by sawing the branch B). Notice that each Y, is an open n—1 disc. Let
h:aW'X[0,1) > W' —(Uyca S UUges Rg) be a collar, ie. an open imbedding
so that h(x,0)=x for all xedW’'. By extending collars we may assume that
h((g(x, y), 1),s)=(g(x,(1—s)y),t) for all yeS"? and (x,t)elUsdAgX
[0,1]UUg Ag X 1. We may put an order < on B by B'<B if Yg g Yg. Now let
v:B—(0,1) be any 1-1 order preserving function. Then define T;=

h(Yg X (1—v(B)) U g(qs X v(B)B"")x 1 after smoothing out the corner. (See
Figure 11.)
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ool

C aw’ aw

Fig. 10.

Now we show that (c) is satisfied. For any a€A, let B, =

{BeB|Rz;NS,# ). Then we claim S,UUgep, Tg represents 0 in

H, (W',Z/2Z). Lemma 1.4 then insures that S,UUgz.p Tg is a manifold

compactly separating W'. Let E be the set of vertices of K. For each B e B let
Ez={ue E| Y; N«(u) is nonempty}

(recall x(u) is a component of dU) and for each a € A let

E,={ueE|sothatucD,}.

Then if [ ] denotes the homology class in H, (W', Z/2Z) we easily see that

[Tz]= Y [«(w)] and [S,]= ) [k(w)]

uecEg

ueE,

Fig. 11.
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Now for u € E, let C, be the unique subcomplex of C which is homeomorphic
to a line with one end u and the other end *. The 1-simplices of C, are those S
for which ue Eg. Let B, ={B € B, | u€ Eg} and notice that B,, is just the set of
1-simplices of C, one of the vertices of which is in E, and the other vertex of
which is not in E,. Hence if u¢ E_, B,, has even cardinality and if u € E, then B,
has odd cardinality. Thus we have

.0 U T]= ¥ tei+ ¥ #B.0xw1=0

BeB, uecE, ucE

where #B,, is the cardinality of B,,.

It remains to show the existence of the ¢g’s. Notice that each R; bounds a
2-disc Rz=AgX%[0,1] in WXR. Likewise, each Tz bounds an n-disk Tg in
W X R which is a union of B,’s and part of the 1-handles, more precisely it is
given as follows: Let f: W' XR — WX R be an imbedding so that f(x, 0)=x all
xe W' and RLNf(W'x(0,1)) is empty and f((x,0),t)=(x,—t) for (x,t)e
U %[0, 1]. Let

H; = h((Yg NoU) %[0, 1—v(B)]) Uclosure (h((Ys —aU) X[1—v(B), 1))).

We now define

T = f(Te %[0, y(B)JUHg X ¥(B))U U B.X—v(B),

ueEg

i.e. we push out a little bit and then fill in the holes we originally took out of W to
make U (see Figure 12).

Now R%U T} is collapsible so its smooth regular neighborhood is a ball, which
we make the image of @g, then ¢g exists since R and Tj can be isotoped inside
the ball to a standard pair of discs.

Fig. 12.
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§4. Generalized knots are algebraic

This section is devoted to a proof of Theorem 0.2. We may assume each
component of U has non-empty boundary and after applying an isotopy to S**
we may also assume that U lies in just one hemisphere H*'=
{(x1,...,%)eS* | x,>0}. Let n<k—1 be the dimension of U. Let 7:R* —
R¥*™! be projection onto the first kK —1 coordinates and let W = 7r(U). Then W is
a submanifold of R*™! diffeomorphic to U. Let h: WXRXR*?>™" — R*"! be an
imbedding so h(x,0,0)=x for all xe W. By Lemma 3.3 there is a W' <« WXR
and S,, a€ A and Rg, T; and ¢g satisfying the conclusions of Lemma 3.3. Notice
that h(W’x 0) has trivial normal bundle in R*"! and h(d W' X 0) is isotopic to 3W.
Pick injective linear transformations Ag:R"*'— R*"! for each Be B so that
As(V)NAg(V) is empty for B# B'. In addition, if n+1=k—1 we require Ag to
preserve orientation if hgg preserves orientation and we require Ag to reverse
orientation if heg reverses orientation. Then since any two orientation preserving
imbeddings of a disc are isotopic, we may (after isotoping R*™') assume that
h(@g(x),0)=Ag(x) for all x near V in R"*'. Let U"=h(W'x0) and L=
Ugen As(V1U V). Notice that each Ag(V) and Ag(V;) is a nonsingular projec-
tively closed algebraic set, L < U” and the germ of U” at L is the germ of
UAg(V) at L.

Now let Y be a smooth closed n dimensional submanifold of R*™! so that
U”< Y and Y bounds a compact smooth submanifold of R*~! with trivial normal
bundle. For instance, if h':U"XRXR*?™ —» R* ! is a trivialization of the
normal bundle of U”, let Y be h'(a(U" %[0, 1]x 0)) with corners smoothed.

By Lemma 1.2 there is a projectively closed nonsingular algebraic set X <
R*'sothat L< X and Y is isotopic to X fixing L. Let g: Y — X be the time one
map of this isotopy.

Notice that for each ac A, g(S,)UUgen, Ag(V2) compactly separates X.
Hence by isotoping a little more we may assume by Lemma 1.2 that each
g(S,)UUgen, As(V>) is a nonsingular algebraic set. But then by Lemma 1.1 each
g(S,) is a nonsingular algebraic set.

Pick polynomials p: R*"' - R and q: R*"' — R so that p is overt, X = p~'(0)
and q7(0) = Uaeca 8(S.) UUger As(V4). Let p* and g* be the homogenizations of
p and q.

Define an algebraic set Ze R*"'XR by

Z ={(x, t)e R*"1 X R | 129%@*1 = (¢*(¢, x))* and p*(t, x) = O}.

Notice that (x, t) € Z implies t =0 and if t =0 then x = 0 also since p is overt.
Hence eS* 'NZ =eH*'NZ where eH* '={(x,,...,x%)ceS* | x>0} If
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¢.:R“"'—>H*' is the diffeomorphism ¢.(y)=(gey, €)/(1+]|y[>)"* then
e (eH* 'NZ)={yeR* | p(y) =0, q*(y)(1+]|y|*) = €2} which for small enough
£ >0 is the boundary of an algebraic regular neighborhood of q~'(0) in X which
by [2] is isotopic to dW. Hence £S* 'N Z is isotopic in eS*~! to £dU.

Since [2] has not yet appeared, we indicate to the reader how a proof would go
for this special case. Norice that g~ '(0) is a union of nonsingular algebraic sets in
general position, so we could have taken q to be a product of polynomials g; such
that for small € >0; XNgq;'(—¢, €]) is a tubular neighborhood in X of the
nonsingular algebraic set q; '(0). Now (using the curve selection lemma, say) one
sees that for small £; {y € X | IIq}(y)(1+]|y|*) < &} is the union of tubular neighbor-
hoods of these nonsingular algebraic sets, rounded off where they intersect; i.e. it
is a smooth regular neighborhood of q~'(0). Since W is the boundary of a
smooth regular neighborhood of q~'(0), uniqueness of smooth regular neighbor-
hoods gives an isotopy from aW to ¢_'(eH* 'NZ) as we desired.
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