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Funktionalabschatzungen bei quasikonformen Abbildungen mit
Fredholmschen Eigenwerten

REINER KUHNAU

§1. Einleitung

In [9] wurden Abschiatzungen fur gewisse Funktionale bei quasikonformen
Abbildungen mit ortsabhangiger Dilatationsbeschrankung hergeleitet. Diese
Abschiatzungen waren zwar unscharf, jedoch asymptotisch scharf fur den Fall, die
Dilatationsschranke p(z)=1 weicht wenig von 1 ab. Fir p(z)— « degenerierten
die Ungleichungen zu trivialen solchen. Im folgenden werden wir diese Un-
gleichungen so verbessern, daB dieser Ubelstand nicht mehr auftritt. Dabei gehen
jetzt zusitzlich die Fredholmschen Eigenwerte (vgl. hierzu die Darstellung in [3])
ein, da wir entschéidend neben dem Extremalprinzip in [10] die Variations-
charakterisierung dieser Eigenwerte benutzen werden. Wir werden die
Uberlegungen an einem Beispiel dartun.

Es sei G ein Gebiet der z-Ebene (z = x +iy) mit dem inneren Punkt z = o und
dem Rand C. Die in G erklarte Funktion p(z), die spater als Dilatationsschranke
auftreten wird, erfiille nebst

O<m=pi)=M<x»

(wobei zunidchst nicht notwendig m =1 sein muB}) der Einfachheit halber
einschlagige, die Anwendung des GauB-Greenschen Integralsatzes unmittelbar
ermoglichende Glattheitsvoraussetzungen, ebenso C und die unten auftretenden
Funktionen. In Umgebung von z == sei p(z)=1. R sei ein groBer Kreis |z| =
R, Gz der ins Innere fallende Teil von G, n die Innennormale von R und
Auflennormale bei C.

Nun sei g(z) diejenige schlichte quasikonforme Abbildung von G, die die
Differentialgleichung

] (1)

=
+
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erfullt, die in z =% durch
g(z):z-}-%.}.. . (2)

hydrodynamisch normiert ist, und die Bildrandkomponenten erzeugt, die Strec-
ken parallel zur reellen Achse sind. Entsprechend sei g(z) die in z = o durch

g(z)=z+i:_l+- . (3)

normierte durchweg konforme Abbildung von G, bei der Strecken parallel zur
reellen Achse entstehen.

Speziell fur p(z)=1 16st nach [4] g(z) das folgende Extremalproblem. Unter
allen schlichten quasikonformen Abbildungen von G, deren Dilatation
(= Achsenverhaltnis = 1 der Ellipsen, die Bilder der zum Punkte z konzentrischen
infinitesimalen Kreise sind) stets = p(z) ist, und die in z =% durch

L @)

hydrodynamisch normiert sind, wird genau fur g(z) das Funktional $Re o; maxi-
mal. g(z) 16st nach H. Grotzsch und R. de Possel bekanntlich das entsprechende
Extremalproblem in der Klasse der konformen Abbildungen von G.

Wir wollen in vorliegender Mitteilung Ungleichungen fiir Re a, angeben, so
daB damit explizite Abschitzungen fiir Re a; moglich werden, was bisher nur in
Sonderfallen gelang.

§2. Ein Extremalprinzip

Wir setzen
@o(z) =Reg(2), (5)
d*(z) =Re g(2) = @o(2) + @*(2). (6)

¢™* erfiillt dann die Differentialgleichung

div (% grad d)*) =0. (7)
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Daneben betrachten wir alle “‘zulassigen Vergleichsfunktionen” ¢(z), fiir die
lgrad @ (z)|=c |z|™* fir z—>» (8)

mit einer Konstanten c gilt.
Entscheidendes Hilfsmittel ist fiir uns das folgende mit dem Dirichletschen

Prinzip zusammenhingende Extremalprinzip nach [10] (in leichter Abschwéachung
der Voraussetzungen).

SATZ 1. Fiir alle zuldssigen ¢(z) gilt

” [(1 _21)_> grad® (¢ + ¢) — grad’ (p] dx dy =2 Re (a; —ay) )
G

mit Gleichheit genau fiir ¢ = @™+ const.

Wir geben hier einen gegeniiber [10] etwas vereinfachten Beweis an, der
Umformungen ahnlich wie in [17] benutzt. Die linke Seite von (9) ist zunachst bei
Beschrankung auf den Anteil von Gg

- ” [(1—%) grad® (@o+ ¢*) —grad® @*} dx dy — ”-Il;grad2 (¢—¢*) dxdy

GR R

1
=2 “ " grad (@o+ ¢™) grad (¢ — ¢*) dx dy

Gr

+2 ‘” grad @, grad (¢ —¢™) dx dy.
Gr

(10)

Nach dem GauB3-Greenschen Satze wird hier der dritte Term (ds = Bogenliange,
Durchlaufung der Kurven so, daB Gg zur Linken)

1 oo+ o™
=2L —(¢—¢*)Mds=——2L (¢—o*) d Img
+c P on +C

=2L Smgd(e—¢*),
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da hier zuletzt der Anteil iiber C verschwindet, weil Jm g dort konstant ist.
Ebenso wird der letzte Term in (10)

)
=~2L (p— <p*)-99dS‘2L (<p~<p*)d3mg=“2L Smgd(e—e¢™).
+C +C

In der Zusammenfassung verschwinden beide Terme fiir R— . Dies liefert
schon (9), da sich in (10) der erste Term zur rechten Seite von (9) analog
umrechnet, z.B. auch wie in [10].

Setzt man nun in (9) ¢ = v und bestimmt von der linken Seite das Maximum
des entstehenden Ausdruckes als Funktion von <y (bei festem ), dann entsteht

SATZ 2. Fiir alle zuldssigen ¢ gilt

_1 A | L
[Ij (1 p\)grad ¢o grad d:dxdy] /L[pgrad Ydxdy

G

=27 Re(a,—a,)— Jj (1 -;1)-) grad® o dxdy (11)

G

mit Gleichheit genau fir ¢ = a¢@™* + B, a, B Konstanten.

Insbesondere ist die rechte Seite von (11) stets=0 in Ubereinstimmung mit
[10].

Im folgenden wollen wir uns mit dem Spezialfalle beschiftigen, es ist G die
ganze Ebene und es wird definiert p(z)=Q im Innern endlich vieler sich
untereinander nicht treffender oder umschlingender fixierter geschlossener
analytischer Jordankurven €,, p(z)=1 im Komplement & (= Gebiets»). Das
Innere von €, sei ®,, €= €,, U &, = &*. Die Abbildung g(z) hangt dann vom
Parameter Q ab und wir schreiben g(z) = go(z), a, = a,(Q). Fir Q — » entsteht
in bekannter Weise die konforme Parallelschlitzabbildung von &, die wir

e(z) =z +21) ‘(°°’ - (12)

schreiben. @* habe den Inhalt I. Der kleinste nichttriviale Fredholmsche
Eigenwert>1 zum Kurvensystem € sei A. Wir setzen noch

A+1
:.._..___..> . 13
A=T—7>1 (13)
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Hier ist jetzt g(z)=2z, ¢o(z)=x und die zulassigen ¢ sind in der ganzen
z-Ebene erklirt und insbesondere langs € stetig und klingen entsprechend (8) ab.
Aus Satz 2 wird

SATZ 2'. Fiir alle zuldssigen  gilt

(1-8Y [ ool [ s a5 [ saca]

@*

=27 Re al(Q)—(l——é—)I (14)

mit Gleichheit genau fiir ¢ = a(Re g—x)+ B, a, B Konstanten.

Insbesondere ist die rechte Seite von (14) stets=0 in Ubereinstimmung mit
[10]. Im Grenzfalle Q — «© entsteht ein bekanntes Extremalprinzip von Diaz und
Weinstein — vgl. [14], [2] - zur Charakterisierung der dann entstehenden konfor-
men Parallelschlitzabbildung als Extremalfunktion bzw. der virtuellen Masse (als
rechter Seite von (14)).

Ersetzt man g(z) durch

_i.ga(iz)zz_e_x(;{u. .

?

so entsteht aus Satz 2', da dann Q durch 1/Q zu ersetzen ist, noch

SATZ 2". Fiir alle zuldssigen  gilt

(Q- 1)2[I ¢dy]2/[jj grad® ydxdy + Q Ij grad® ¢ dx dy]
5 ®

@*

=S(Q-1I-2m7Rea, (Q) (15)

mit Gleichheit genau fir ¢ =a(Jm go —y)+B, a, B Konstanten.

§3. Abschiitzungen fiir das Gebietsfunktional Re a,(Q)

Um zu handlichen Abschitzungen fiir Rea,(Q) zu gelangen, verwenden wir
neben (14) und (15) noch die folgende Ungleichung, die sich aus der bekannten
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Extremalcharakterisierung der Fredholmschen Eigenwerte (vgl. hierzuz. B. [1],
[16]) ergibt:

[-” grad? x dx dy +% Jj grad? x dx dy]/“] grad?® x+—é-, J-I grad® x dx dy]

& &* & &>
=1+Q0 A HYy1+Q'A™Y) fir 0<Q'=Q, bzw.
=1+Q7'A)/(1+ Q" 'A) fir 0<Q=0Q. (16)

Dabei sind die zuldssigen x in der ganzen z-Ebene stetig, sowohl in & als auch in
&* harmonisch, wobei die harmonisch Konjugierte in & eindeutig ist, und die x
sind noch in z = regular.

Setzen wir nun ¢ = x = Re gy — x, so kommt nach (14) und (16) fir Q'=Q

27 Re a (Q)— (1 —é)l

=(1-5) Trgma= || var] /|| eat v G [ [ maat varar]
=(1 Q\) 170 A" ) Ydy / grad :1/+Q,®* grad® ¢ dx dy

(]

1—1 4 —1 M -1\2 1
O =0 Y oo (1-3)]

bzw. fur Q=Q'

S e (om) | (1)1
2179‘iea1(0)—(1——o—)1=1+0_1A o 20 Rea,(Q')—\1 o I].

Damit haben wir den

SATZ 3. Es ist die Funktion von Q

I T p—
(1+AQ> (1 Q) 27w Rea,(Q)— (1 0 I| monoton steigend,

(1 +—g—) (1 —-—(15)‘2[277 Re a,(Q)— (1 ——-—é—)l] monoton fallend.
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Insbesondere gilt

(1- L) prteac-n (1= (1+4) ' s2rveaio

Q 0 0
<(1- g n1-2) (i)
= (1—-})—)”[27 Re a,(0) — 1] (1 __é_)z_ i~

Arbeiten wir analog mit (15), so kommt

SATZ 4. Es ist die Funktion von Q

(1 +%\) (Q-1D)(Q-1DI-27 Rea,(Q)] monoton fallend,

1+AQ)(Q-1D)(Q—-1DI-27 Re a,(Q)] monoton steigend.

Insbesondere gilt

(Q-DI-I(Q- 1)2(:/-1\-—+ Q)—l =27 Rea,(Q)

=(Q-DI-I(Q-D)*(A+Q)™. (19)

§4. Bemerkungen

a) Mit Hilfe einer der vielen bekannten Abschiatzungen fir die
Fredholmschen Eigenwerte kann man im konkreten Einzelfalle zu konkreten
Ungleichungen fiir Re a,(Q) vordringen. Besteht € z.B. aus einer Cassinischen
Kurve, sind die Fredholmschen Eigenwerte sogar explizit bekannt [11]. Die fir
diesen Fall entstehenden Ungleichungen (18), (19) liefern nach der bekannten
Quadratwurzeloperation dann Abschitzungen fiir den Wertebereich von w(z) bei
festem z, falls w(z) die Klasse 3(Q) durchliuft. Dabei mul die so aus (19)
(rechts) bzw. (18) (links) entstehende Ungleichung scharfer werden (die aus (18)
rechts entstehende zumindest fiir groBe Q noch scharfer — vgl. unten Bemerkung
d) als die schon in [9] unter (33) hierzu angegebene, da letztere aus (29) dort
hervorgeht. Der genaue Wertebereich von w(z) wurde in [6], [13] angegeben, was
aber formelmaBig recht aufwendig war, so dal unscharfe Abschéatzungen sinnvoll
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sind. Diese Bemerkung liefert auch iiber den durch lineare Transformation zu
erhaltenden Wertebereich von w"(z)/w’(z) Verbesserungen der in [12] angegebe-
nen Abschatzungen der in [13] durch eine transzendente Gleichung charakter-
isierten Rundungsschranke der Klasse 3(Q).

b) Aussagen ahnlicher Art wie in §3 unter Einbeziehung des Inhaltes des
Bildes von &* finden sich in [10].

c) Aus (19) folgt fur Q >

I/A =27 Re a (o) — = IA. (20)

Da sich hier der mittlere Term als virtuelle Masse deuten 14a8t, entspricht diese

Ungleichung einer solchen von M. Schiffer [15] (dort im rdumlichen Analogon).
d) Fur manche Fille ist (19) giinstiger als (18), fir manche gilt das

Umgekehrte. (18) ist genau dann z.B. im rechten Teil scharfer als (19), wenn

27 Rea,(0)—IYI<A—(A*—1)(Q+A)L. (21)

Dies ist wegen (20) i.allg. fiir groBe Q der Fall.

e) Genau filr A =, A=1 schrumpft das durch (18) (ohne letzten Teil) bzw.
(19) gelieferte Intervall fir 27 Re a,(Q) zu einem Punkt, so da3 dann (etwas
allgemeiner als in [4])

27 Re a,(Q)=2I1(Q—-1)/(Q +1), (22)

und dies ist dann = 7S, wobei S die in [8] eingefiihrte ‘“‘quasikonforme Spanne”
ist. Die Kurvensysteme mit A =« sind einfach charakterisierbar — vgl. [7]. Besteht
€ aus einer Kurve, ist A = genau dann, wenn diese eine Kreislinie ist. Man kann
leicht noch in (18), (19) eine ins Einzelne gehende Diskussion des Gleichheits-
zeichens vornehmen, da bei den verwendeten Ungleichungen die Extremal-
funktionen bekannt sind.

f) Setzt man in (9) allgemeiner ¢ =) v, (Ritz-Ansatz) und bestimmt dann
das Maximum des entstehenden Ausdruckes (quadratische Form) als Funktion
der v, (bei festen ), so entstehen entsprechend scharfere Formen von Satz 2.

g) Durch Einsetzen giinstigerer und komplizierterer ‘“Testfunktionen” ¢ in
(14), (15) kann man natiirlich Satz 3 und 4 verscharfen. Dies bietet sich insbeson-
dere fiir sternformige 0.4. € an entsprechend dem Vorgehen z.B. in [1], [16].

h) Wenn & ein z=o im Innern enthaltendes Gebiet ist und man kennt
lediglich den Inhalt I des Komplementes, so ist es ‘natiirlich unmdglich, eine
Abschitzung fiir den Koeffizienten a; in der Entwicklung (4) bei den wie dort
normierten schlichten konformen Abbildungen von & anzugeben. Es kann
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namlich |a;| beliebig groB werden, wie schon das AuBere von Ellipsen zeigt. Es
sei hier die Gelegenheit wahrgenommen fiir den Hinweis, dal eine solche
Abschatzung moglich wird, wenn man zusitzlich Q-quasikonforme Fortsetz-
barkeit ins Komplement von & fordert. Denn nach (19) folgt

1
|a1|<2—;(0—1)l. (23)

Diese Abschitzung ist sogar scharf, da |a,| beim AuBeren geeigneter Ellipsen der
rechten Seite von (23) beliebig nahe kommt - vgl. z.B. [5], Zusatzbemerkung 1.

i) Die obige Betrachtung von §2 und 3 laBt sich ganz entsprechend bei
Zugrundelegung anderer Extremalprobleme (statt wie oben Hea;— max)
durchfithren. Man halte sich hierbei etwa an die in [9] betrachteten Beispiele, z.B.
die verallgemeinerten Grunskyschen Koeffizientenbedingungen.

j) Die wie in §2 und 3 oder allgemeiner nach der vorigen Bemerkung i) bei
irgendeinem Funktional entstechenden Ungleichungen lassen sich natiirlich auch
umgekehrt deuten als Abschatzungen fir den Fredholmschen Eigenwert A. Be-
nutzt man z.B. Satz 4, rechte Seite von (19), so ergibt sich mit Hilfe der am Ende
von §1 erwiahnten Extremaleigenschaft der

SATZ 5. Ist w(z) eine schlichte konforme Abbildung von & mit der Entwick-
lung (4) in z = x, die ins Komplement von & noch Q-quasikonform fortsetzbar ist,
so gilt

Q- 27NRea; —(Q-1I

A (Q-DI-27Rea,

v

(24)

Arbeitet man mit den Grunskyschen Koeffizientenbedingungen, erhalt man
eine allgemeinere Ungleichung, in der man noch die auftretenden freien komp-
lexen Parameter optimieren kann.
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