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Zu einem hyperbolischen Gitterpunktproblem

PETER THURNHEER

I. Einleitung

Sei H der dreidimensionale hyperbolische Raum, A eine Bewegungsgruppe
von H mit kompaktem messbarem Fundamentalbereich &%. Sei A diskontinuier-
lich in dem Sinne, dass das hyperbolische Gitter {Tp | T A} keine endlichen
Haufungspunkte besitzt fir alle p e H.

Wie in einem klassischen euklidischen Problem, betrachtet man die Anzahl
N°(A, p, q, x) der Punkte eines solchen von p € H erzeugten Gitters — jeder so oft
gezahlt, wie er als Bild von p unter A auftritt —im Innern und auf der hyperboli-
schen Kugel vom Radius x um qe€ H, sowie die entsprechenden Rieszschen
Summen N*(A, p, q, x) positiver Ordnung k. Schreibt man p(v, w) fiir den hyper-
bolischen Abstand der Punkte ve H, we H, so ist

N¥(A,p, q, x):= Z {x-p(Tp, q)}*, k=0, x=0, peH, qeH.
TeA
p(Tp.g)sx

Man interessiert sich dabei vor allem fiir das Wachstum dieser Funktionen, wenn
der Radius x gegen oo geht, insbesondere im Falle k=0 und fiir p=gq.

In dieser Arbeit werden mehrere Resultate hergeleitet, die Aufschluss geben
iiber die Art dieses Wachstums - eines mit Hilfe einer Verallgemeinerung des
Satzes von Wiener-Ikehara, welche im letzten Kapitel formuliert und bewiesen
wird. Sie entsprechen alle den klassischen Ergebnissen, die man im analogen
euklidischen Problem kennt.

Eine wichtige Rolle bei verschiedenen Beweisen spielt die Laplacetransfor-
mierte der Funktion N*, von der man unter anderem zeigen kann, dass sie einer
einfachen Funktionalgleichung geniigt.

Die Funktion N°(A, p, p, x) wurde - in zwei Dimensionen — erstmals eingefithrt
und untersucht von H. Huber ([12], [13]), der dabei gezeigt hat, dass ihr Verhal-
ten eng zusammenhingt mit dem Laplace-Beltrami-Eigenwertproblem auf H/A.

Diese Arbeit entstand aus der Dissertation, die ich bei Professor K. Chan-
drasekharan geschrieben und im Herbst 1979 abgegeben habe (man siehe auch
[17] und [18]). Ich m&chte ihm, sowie seinen fritheren Assistenten Dr. H. Joris
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Zu einen hyperbolischen Gitterpunktproblem 241

und Dr. A. Good danken fiir Ermutigungen, Anregungen und wertvolle Hin-
welise.

Il. Zum Laplace-Beltrami-Eigenwertproblem

Seien H, A und % definiert wie in der Einleitung. Das Laplace-Beltrami-
Eigenwertproblem auf H/A wird von F. Fricker beschrieben und studiert in [10].
Es ergibt sich dabei, dass auch im Falle wo A elliptische Elemente enthalten darf,
die folgenden Tatsachen gelten: Das Spektrum ist diskret, die Eigenwertfolge
{M\.|n=0,1,...} reell und bei geeigneter Numerierung von der Form

OZI\0</\1<A2< o u 0y lim An:w.

Die Vielfachheit jedes Eigenwertes A, das heisst die Dimension des zu A
gehorigen Eigenraumes g, ist endlich. Es existiert ein vollstandiges ortho-
normiertes System {¢, |j=0,1,...} von auf H definierten und A-automorphen
Eigenfunktionen. Somit ist

1, j=m.

0, j#m. M

L 06, (p) da, = |

Dabei steht dw fur das durch die Metrik in H induzierte Mass. Es bezeichne
denjenigen Index, fiur den A,_; <1<, ist. Man definiert

=0 fur n<t.
=(1-A,)"? {
%= ") =i, B.=B,>0 fur n=r.
Die Menge {a, |n=0,1,...} ist dann eine diskrete Teilmenge der komplexen
Ebene, ohne Hiufungspunkte im Endlichen, und fiir die endlich vielen n mit
0=<A,=<1ist a, reell und 1=¢q, =0. Fiir die iibrigen n ist a, reinimaginar. Es ist
ao=1 und o, =0, falls A,, = 1. Fiir p€ H, q € H, setzt man weiter

K.p.a):= Y 0@, K*p,q):= Y &) (q).

&b;ee,,, diee,

Dann sind K,,(p,q), m=0,1,... und K*(p, q) unabhingig von der speziellen
Wahl des Systems {¢; | j=0, 1,...}, also reell. Schreibt man |#| fir den hyper-
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bolischen Inhalt des Fundamentalbereichs %, so gilt zudem nach [10]
Ko(p,q)=1/|%| furalle peH, gqgeH.

Es bezeichne A, p € H, die Untergruppe derjenigen T € A, fur die Tp = p ist. Die
Ordnung Ord A, dieser Gruppe ist wegen der Diskontinuitat von A endlich. Nach
A. Selberg ([15]), enthidlt A einen fixpunktfreien Normalteiler N von endlichem
Index n. In [10] wird die Existenz eines Reprisentantensystems {U,|j=
1,2,...,n} der Restklassen von A modulo N nachgewiesen, fiir welches {U; | j=
1,2,...,0rd A,} eine Teilmenge von A, ist. Also gilt

p__{p, i=12,...,0rd A,. 2)
rEpmod A, j=0rd A,+1,0rd A, +2,...,n

Da N fixpunktfrei ist, wird H/N eine geschlossene dreidimensionale
Riemannsche Mannigfaltigkeit und im Zusammenhang mit dem Laplace-
Beltrami-Eigenwertproblem auf H/N gelten die klassischen Resultate [1], [14]. Es
bezeichne 0=A{ <A} <:-. die entsprechende Eigenwertfolge, € ¢ den zu AN
gehorigen Eigenraum und {¢}|j=0,1,...} ein vollstindiges, orthonormiertes
und N-automorphes System von Eigenfunktionen. Setzt man

KN(p,q):= Y oMp)éNq), peH, qeH,

N
‘bl €y

so ist insbesondere nach [1, Satz 1] und [11, Satz 5.1]:

1, p=qmod A.
0, sonst.

Y Kip@=25xm 400, 8= 3)

AN=<x
Fiir p=q mod A gilt die Abschédtzung gleichmaissig in pe %.

Bemerkungen. (i) Leere Summen sind in der ganzen Arbeit gleich 0 zu setzen.
Insbesondere ist also K*(p, q) =0, falls 1 kein Eigenwert ist.

(i) Ist die Funktion f rechtsseitig differenzierbar an der Stelle x, so bezeichnet
man ihre rechtsseitige Ableitung bei x mit d*f(x)/dx.

IIl. Ergebnisse

Sei H der dreidimensionale hyperbolische Raum, A eine diskontinuierliche
Bewegungsgruppe von H mit kompaktem messbarem Fundamentalbereich %.
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Einer Idee in [10] folgend, tibertragt man das Resultat [1] von G. V. Avacumovi¢
auf den hier betrachteten Fall, wo A elliptische Elemente enthalten darf:

Ord A

L K.(p.p)== 52 x"*+0(x), (4)
Ap=x
und
Z K., (p, q)| = O(x*?), gleichmassig in (p, q) € F X %. (5)
Ap =X

Fir k=0, pe H, g€ H und reelles x definiert man

N*(A,p,q,x):= Y {x—p(Tp, @),

TeA
p(Tp.q)=x
K Wr(k + 1) 2x Kn(p7 q) (a+1x
=— + + n
Q (A, pa q’ x) lg‘ 2k+1 F(k 1) 0<§<1 an(an + 1)k+1 e
+27l'(k+1)K*(p, q)e*(x—k—1), (6)
N¥(A, p, q, x):= Q*(A, p, g, x) + R*(A, p, g, x). (7)

Es wird sich zeigen, dass Q* der Hauptterm, R* der Restterm ist von N¥.
Ausgangspunkt aller weiteren Ueberlegungen ist eine Reihendarstellung fir
N¥(A, p, q, x), k>0, insbesondere der Fall k>1, in dem diese absolut konver-
giert.

SATZ 1. Fiir k>0 ist

o0

N¥(A, p,q,x)= ), ak(x)K,(p, q), (8)
n=0
mit
4 x
4 L (x —p)*p Sinh p dp, A =1
an(x)= 4 9)

dar L (x — p)* Sinh p Sinh (a,.p) dp, A F L

Fir k> 1 konvergiert die Reihe absolut und gleichmadssig in (p, q) € F X %, sowie
gleichmdssig in x aus einer beliebigen kompakten Teilmenge von [0, ). Fiir
0<k=1 ist die Konvergenz gleichmdssig in x aus einer beliebigen kompakten
Teilmenge von (0, x).
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Fiir k > 1 lasst sich die Identitat (8) herleiten durch Anwendung einer speziel-
len, in [10] gegebenen Form eines klassischen Entwicklungssatzes ([14]). Ihr
Giiltigkeitsbereich kann auf Grund von (4) ausgedehnt werden nach k>0 durch
ein Verfahren von K. Chandrasekharan und R. Narasimhan, welches auf einem
Aequikonvergenzsatz von A. Zygmund beruht ([4]).

Unter (vii) iiberlegt man sich direkt, dass die Funktion N*(A, p, q, x) = O(e*®)
ist fiir k =0. Also ist ihre Laplacetransformierte

G"(A,p,q,s):=LN"(A,p,q,x)e"‘sdx, s:=o+it, o>2, k=0

analytisch in der Halbebene o > 2. Mit Hilfe von Satz 1 lasst sie sich meromorph
fortsetzen, und zwar auf Grund der Reihendarstellung von

SATZ 2. Fiir alle komplexen s¢ P, P:={+1+a, |n=0,1,...}, und alle k=0,
gelten die Gleichungen

oo K !
Ska(A’ P, q, S) = Sﬂr(k + 1) ;0 (82_(an + 1;2()1()83_)_ (an - 1)2) ’

G*(A, p, q, s)=(—1)*G*(A, p, q, —s).

(10)

Die Reihe unter (10) konvergiert absolut und gleichmdssig in s aus einer beliebigen
kompakten Teilmenge von C— P, sowie gleichmadssig in (p,q)e F X F.

Somit ist s*G*(A,p,q,s), k=0, eine in der ganzen komplexen s-Ebene
meromorphe Funktion mit der Polmenge P. Die in Satz 2 gegebene einfache
Funktionalgleichung fiir G*(A, p, q, s) folgt unmittelbar aus (10). Beim Beweis
der Reihendarstellung (10) beniitzt man die Tatsache, dass sich die Koeffizienten
aX(x) fiir ganzes k explizit berechnen lassen—fiir k =2 sieche man die Formel
(58) — sowie die Beziehung

s*G*(A, p,q,5)=T(k+1)G°A, p,q,s), k=0, s¢P. (11)

Speziell fiir k =0 ergibt sich aus (10):

1 ®
GO(A, P, 9, S) = Z e—‘p(Tp,q)s =87 Z Kn(p, q)

S TeA n=0 (s?~— (o, + 1)*)(s*~ (o, — 1%’

o>2.
(12)

Die Satze 1 und 2 ermoglichen den Beweis verschiedener Resultate, die Auf-
schluss geben iiber das Wachstum der Funktion N*(A,p, g, x), k=0, wenn x
gegen oo geht.
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SATZ 3. Gleichmassig in (p,q) € F X F ist

O(e*), k>1. (13)

R*(A,p, g, x)= {
O(xke(S—k)xIZ), O<k=<1. (14)

Um abzukldren, wie prazies die Aussagen (13) und (14) sind, beweist man

SATZ 4. Fiir k=0 ist
R*(A, p, g, x)=Q £(e*). (15)
Ist R*(A, p, p, x) = O(e**®™) fiir alle positiven ¢, so gilt

lim inf R*(A, p, p, x)/e*=—», 0<k<1. (16)

Formel (15) bedeutet lim;,? “(A, p, g, x)/e* =0. Bezeichnet W*(A, p, q, x) die
Anzahl Vorzeichenwechsel der Funktion R*(A, p, q, y) auf dem Intervall 0y =<
x, dann geht also W*(A, p, q, x) gegen « fiir x—o. Diese Aussage wird prizisiert

durch

SATZ 5. Fiir k=0 gilt
WX(A, p, q, x) 2& x — d,, wobei d,, unabhdngig ist von x. (17
'

Aus (16) folgt speziel R*(A,p,p,x)#O0(e*), fir 0=k<1, aus (15)
R*(A, p, q, x) # o(e*), fir x— und k=0. Das zeigt, dass das Resultat (13) in
dieser Form bestmoglich ist. Anders verhalt es sich fiir 0=k <1, denn es gilt

SATZ 6. Beziiglich des durch die Metrik in H induzierten Masses ist fir fast
alle g € #, mit beliebigem &> 0:

R*(A, p, g, x)= O(e"*™™), k=0. (18)

Nach Satz 6 ist zu vermuten, dass die Abschatzung (14) noch wesentlich verbes-
sert werden konnte.

Die Siatze 3, 4 und 5 lassen sich beweisen mit Hilfe der Methoden, die von K.
Chandrasekharan und R. Narasimhan entwickelt wurden im Rahmen ihrer
Theorie tiber arithmetische Funktionen und Funktionalgleichungen, ([5] bis [8]),
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sowie einer Idee, die von J. Steinig im selben Zusammenhang eingefiithrt wurde
([16]), obwohl die Funktionalgleichung fir G*(A, p, q, s) nach Satz 2 nicht von
derselben Art ist. So erhdlt man insbesondere einen neuen Beweis fur das
Resultat (14) im Falle k=0 und p=gq, in dem dieses schon von F. Fricker
hergeleitet wurde ([10]).

Die Funktion G°(A, p, q, s) lasst sich nach (12) darstellen durch eine Dirichlet-
reihe:

1
G%(A, p, 4, 8) =~ YAE,  Api=ef™9 g>2

TeA

Anders als zum Beispiel in den Teilerproblemen, kennt man die Verteilung der
Grossen Ay nicht genau. Aus diesem Grunde dirfte G°(A, p, g, s) schwerer zu
kontrollieren sein, auch in der Halbebene der absoluten Konvergenz und scheint
es sinnvoll, beim Beweis von Satz 6 den Hilfssatz aus Kapitel V zu verwenden,
anstelle der Laplaceumkehr- respektive Perronschen Formel. Man bentitzt dabei,
dass gilt

(d/ds)™"G°A, p, g, s) = O(|t|'**), fiir alle ganzen m =0, beliebiges
® > 1/(4m +10) und fast alle g € %,
sowie gleichmissig in o mit |o + 1| =k,
k beliebig positiv. (19)

Dies lasst sich zeigen auf Grund von Satz 2.

III. Beweise

(i) Hilfsbeziehungen. Sei § >0, x >0 und s := o +ip. Definiert man

f(x,s58):=—(6—-1) Lw(x +w/s)®2e™v dw fiir ¢ >0, oder fir ¢ <0 und 8#0,
(20)
so ist
51
)

L (x-p)*e* dp =55 T(6)~—+= f(x,5,8)

fiir 0 >0, oder fiur c <O und B#0. (21)
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Dies folgt durch eine partielle Integration aus der Formel

§X

e

I (x—p)° e dp = F(S)—%L (x+w/s)®> e ™ dw,
)

SS
x>0, o#0, 6§>0. (22)
Fur beliebige £ >0, 8*>0 und

fir 0<86 <2 gilt {f(x, +1+£iB, 8)=0O(1). (23)

gleichmdssig in x = ¢, sowie 3 =B*: df(x, £1xiB, 8)/dx = O(1). (24)
Beachtet man, dass |x+w/(x1xiB)|=eB*/(1+B™) ist, fir B=B*, x=¢ und
weR, so ergeben sich die Abschiatzungen (23) und (24) aus der Voraussetzung
6 =2. Rechnungen, analog denjenigen, welche auf (21) bis (24) fiihrten, zeigen,
dass fur s:=o+iB, x:=min (1, §) und beliebige € >0, B*>0 auch gilt

(O(e*/|s[¥), 8>0, o = =1,
gleichmassig in x =0 und |B|=B*. (29)

$X

e
> — I + 8/ olx

J’ (x—p)® le*dp=1s° (8)+Ox?/|s[), 8>0,

0 gleichmissigin e <o =<3, x=¢ und BeR. (26)

O(x?/|s|¥), 8>0,

gleichmissigin —3<=o<-¢,x=c¢und BeR. (27)

Um Bezichungen zwischen den Resttermen R* verschiedener Ordnungen k zu
erhalten, iiberlegt man sich, dass fiirr die Rieszschen Summen N* gilt ([2]):

dN*(A, p, g, x)/dx, k> 1,
kN*"Y (A, p,q,x)= oder k=1und x# p(Tp,q), TeA, (28)

d*N*(A, p, q, x)/dx, k =1 und x = p(Tp, q), Te.A,
N**Y(A, p, g, x)=(k+1) L N*(A, p,g,v) dv, k=0, (29)
und

N*(A, p,q,x)=k L (x—v)<"'N°(A, p,q,v) dv, k>0. (30)
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Aus der Definition (6) folgt direkt
kQ* (A, p, g, x) = dQ*(A, p, g, x)/dx

und mit Hilfe von (22):

Q" (A, p,q,x)=k L (x—0v)*'Q%A, p, q, v) dv + O(x**"),
k >0, gleichmassig in (p,q)e FxX%. (31)

Die erste dieser beiden Formeln impliziert wegen (28):

dR*(A, p, q, x)/dx, k> 1,
kR*Y(A, p, q,x)= oder k=1und x#p (Tp,q), Te A, (32)

d*R*(A, p, q, x)/dx, k=1 und x = p(Tp, q), T€ A,

sowie, wegen (29):
R**Y(A,p, g, x)=(k+1) L R*(A,p,q,v)dv—Q**' (A, p,q,0), k=0. (33)
Zusammen mit (30) ergibt sich aus (31)

R*(A,p,q,x)=k L (x —v)* 'R°A, p, g, v) dv+ O(x**1),
gleichmissig in (p, q)e FX%. (34)

(ii) Beweis von (4) und (5), Folgerungen. Summiert man bei gegebenem x =0
beide Seiten der Gleichung (4) in [10, Seite 406] iiber alle A <x und setzt fur
{S;]i=1,2,...,n} das spezielle Reprisentantensystem {U,|j=1,2,...,n} ein,
so ergibt sich

n

Y K@= 2 Y KNU,p q. (35)

Aj=x m=1 AN=x

Zusammen mit (2) und (3) erhilt man daraus (4), wenn man q =p wahlt. Fir
p = q gilt die Abschatzung (3) gleichmadssig in p € &, woraus mit der Cauchyschen
Ungleichung folgt

z |KN(p, )| = O(x*?), gleichmissig in (p,q)e FX &,

AN=x
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was unter Beachtung von (35) die Behauptung (5) beweist. Unter Verwendung
von (5) zeigt man mit Hilfe Abelscher partieller Summation:

Gleichmissig in 2;)1 K. (p, D/l |* = O(x®7?), k>3, (36)
(p, Q) e FXF gilt:{ "« . {O(x“"‘)’z) K <3.
1<§5x ‘Kn(p’ Q)man\ O(log x), K =3. (37)

Da nur endlich viele A, <1 sind, folgt aus (36):

z |K..(p, @)|/|a,|* konvergiert fiir k >3 gleichmissig in (p,q)e FxX%.  (38)

A1

(i) Reihendarstellung von N*(A, p, g, x), k >?2. Definiert man bei gegebenem
x=0
Fv):= {

(x —v)k, O<v=x,
0, v > X,

so hat F¥(v) kompakten Triager und ist fiir k >2 zweimal stetig differenzierbar
nach v auf [0,). Zudem ist N*(A, p, q, x) = Yrca F(p(Tp, q)). Dies erlaubt auf
Grund der Entwicklung in [10, Seite 411] die in Satz 1 gegebene Reihendarstel-
lung der Funktion N*(A, p, q, x), k >2, zu gewinnen.

(iv) Reihendarstellung von N*(A, p, q, x), k> 1. Fiir alle reellen k >—1 seien
die Koeffizienten a*(x) definiert durch die Formel (9). Dann ist

ak ' (x)=(k+1) L ak(v) dv, n=0,1,...,k>—1, (39)
und
kak '(x)=dak(x)/dx, n=0,1,...,k>0. (40)

Sei 6 >0. Fiir A, ungleich 0 oder 1 erhalt man aus (9) durch zweimalige partielle
Integration:

8w(1+8) , w(1+8)8

an(x) = (a2—1)? T (o, +1)? L (= p)* e D0 dp
+ x
- Wél Sié)szj (x—p)*'[e@" P+ e dp, >0, A FY.
an\a,, — 0

(41)
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Beachtet man (25), so folgt aus (41):

art®(x)=0(e*/|a,|%), 8>0, x :=min (3+ 8, 4), gleichmissigin x=0und n=r.
(42)

Nun zeigt (42) zusammen mit (38) erstens: Die Reihe (8) fiir N“(A, p, q, x), k >2,
konvergiert absolut und gleichmdssig in (p, q) € F X F, sowie gleichmdssig in x aus
einer beliebigen kompakten Teilmenge von [0,%), und zweitens, wenn man (40)
beachtet: Genau dasselbe gilt fiir die — vorerst formal — gliedweise differenzierte
Reihe. Wegen (28) beweist dies die Giiltigkeit von (8) fir k> 1.

(v) Reihendarstellung von N“(A, p,q, x), k>0. Im ganzen Abschnitt (v) be-
zeichne & eine feste Zahl, 0<8=2. Durch einmalige partielle Integration erhalt
man aus (9):

x (a_+1)p (—a, —Dp (o, —1)p (—a_+1)p
5 21go) B [e n e % e e % ] o
a’(x)=— X — + - - dp, A\, #7.
(%) anL( ) a,+1 -a,—-1 a,—-1 —a,+1 e 7

(43)

Fir n=171 und x >0 ergibt sich daraus mit (21):

(e, +1Dx (—a, —1)x

e N e e(a"—l)x e(—a“+1)x ]
an+1)1+8 (_an_1)1+8 (an_1)1+8 (_an+1)1+8

aﬁ(x)—-il re+1) [ :

- —ZI : x* {1/, +1)* = 1/(e, — 1)%}

n

+Ir_§ [f(x, a,+1,8) +f(x, —a,—1,8) f(x,a,—1,9)
(o, +1)° (~a, —1)° (0, —1)°

Ay

flx, —a, 1, 5)]
(o, +1)° T
(44)

Beachtet man (23), so sieht man, dass alle Summanden auf der rechten Seite
dieser Gleichung O(|a,,|™) sind, gleichmissig in n =7 und x aus einem beliebigen
kompakten Teilintervall I von (0,%0). Nun multipliziert man beide Seiten von (44)
mit K, (p,q) und summiert iiber alle n=r+. Nach (38) konvergieren dann die
beidseits entstehenden Reihen absolut und man darf auf der rechten Seite
beliebig umordnen. Mit

§=§(A,p,q, 8):=8md Z _I.<_'L(_F_)l_q..).

n=Tt (aﬁ—‘ 1)2
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und
P2, =pP? c= Z [as(x)—l e+ 1)[&
« (Apax): n=rt " an (an + 1)1+8
e(—-a"—-l)x e(an——l)x e(—a"+1)x
+(___a ~1)1+8—(a _1)1+8_(_a +1)1+5:” Kn(p, Q) (45)

wird

P5(x) = &1+ 8 Z {f(x, o, +1,8)—f(x,—a,— 1, 5)

n=T (1+an)3
f—a,+1,8)—f(x, @, — 1, 8)] K.(p, @)
(1-a,) [t wo

Dabei gilt:

Die Reihe (45) fur P?(x) konvergiert absolut und gleichmassig in x € I, wobei
I ein beliebiges kompaktes Teilintervall von (0,®) ist. 47

Nach (23), (24) und (38) konvergiert die Summe auf der rechten Seite von (46),
sowie ihre — vorerst formale — gliedweise Ableitung nach x gleichmaissig in x e L.
Da die Funktionen f(x, +1+a,, 5), § >0, n=1, und ihre Ableitungen nach x
stetig sind in x, x >0, folgt:

P?(x) ist stetig differenzierbar nach x, 0 <x <o, (48)

Weiter ist

K.(p, q)
a, (£l +a,)'™®

=0(1) fir m — . (49)

m=g,=m+1

Man zeigt dies mit Hilfe von (4) zuerst fiir p =q und erhalt daraus (49) wegen
IK.(p, @)l =K, (p, p)+ K, (g, @). Nach (38) ist

z \ K. (p,q) ;1<oo_ (50)

nat an(:tl j:an)l*’»s

Es bezeichne nun I wie oben ein kompaktes Teilintervall von (0,%), J ein
abgeschlossenes Intervall, enthalten im Innern von I. Sei w die Lange von I. Aus
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(49) und (50), folgt mit [4, Corollary 3, Seite 221]:

K.(pq) e
r'é+1 -t
kol )nzz:T a, (£lzxa,)'*?

(£1%a )x )

ist gleichmassig aquikonvergent in
x € I zur abgeleiteten Fourier
Reihe einer w-periodischen
Funktion. Diese Funktion * (51)
ist auf I gleich

K.(p, q)
OV L o e

mit ye Cy, y(x)=1 fur xel. (52)

X
J e*1=e dy x.€el,
X0

Sei L*(x)=L*(8, A, p, q, x) die w-periodische Funktion, fiir die gilt
L*(x)=vy(x) f P3(v)dv, fir xel

Nach (52) ist dann
dL*(x)/dx =P%(x) fur xelJ. (53)

Ist f eine auf I definierte Funktion, so bezeichne f* die w-periodische Funktion
mit f*(x)=f(x) fiir alle xe L

Wegen (48) ist die Fourier Reihe von {P?(x)}* gleichmissig konvergent in x € J.
Auf J ist deshalb nach (53) die Ableitung der Fourier Reihe von L*(x) gleich
der — gleichmissig in x aus J gegen P°(x) konvergenten- Fourier Reihe von
{P?(x)}*. Zusammen mit (47) folgt:

Die Reihe (45) fir P®(x) ist gleichmissig aquikonvergent in x € J zur
Ableitung der Fourier Reihe von L*(x).

Aus (47), (51) und der Definition von L*(x) erhilt man damit

Y a®(x)K.(p,q) ist gleichmissig dquikonvergent in x € J zur
n=T Ableitung der Fourier Reihe der Funktion

[v(x) Y. K.(p,q) [ an(v) dvr= [Ii’_‘l 2 K.(p, Q)ai“‘(x)—v(x)cl]* > (54)

n2Tt 6 + 1‘ n=7

*
= [___gfi {N™3(A, p, g, x)— T**3(x)} - ’Y(x)C1] , ¢, unabhangig von x.

P
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Dabei werde gesetzt

cr=c:1(8, A, p, g, x0):=(1+8)"" Y al**(x)K,(p, q)

n=7v

und fur k>-—1:

T (x)=T*(A, p, g, x):= 2, ak(x)K,(p, q).

n<r

Man wird sich iiberlegen:

Die Ableitung der Fourier Reihe der Funktion
{y(x)(6+1)"YN'"3(A, p, g, x)— T*"®(x)} — y(x)c,}* konvergiert
gleichmadssig in x € J. (55)

Das bedeutet wegen (54), dass ¥ ,.... a%(x)K, (p, q) gleichmissig aquikonvergent ist
auf J zu einer gleichmaissig auf J konvergenten Reihe und somit dort ebenfalls
gleichmassig konvergiert. Es folgt, dass auch Y7_, al(x)K,(p, q) gleichmissig
konvergiert auf J. Zusammen mit (28) und (40) vervollstiandigt diese Tatsache den
Beweis von Satz 1. Es bleibt noch (55) zu verifizieren. Offensichtlich gilt:

Die Ableitung der Fourier Reihe der Funktion

{y(x)(6+1)"YN'"3(A, p, g, x)— T***(x)} — y(x)c,}* konvergiert sicher dort
gleichmassig, wo die Fourier Reihe der Ableitung dieser Funktion
gleichmissig konvergiert. (56)

Nach (40) und (9) ist dT**®(x)/dx =(1+8)T?(x) und T®(x) stetig differenzierbar
nach x auf I Also konvergiert die Fourier Reihe von d/dx{T'"®(x)}*
gleichmassig auf J. Da ausserdem <y e C7 ist, folgt

Die Fourier Reihe von d/dx{y(x)(6 + 1) "{N'*3(A, p, q, x)— T ' (x)}—
v(x)c.}* konvergiert zumindest dort gleichmassig, wo die Fourier Reihe

von d/dx{(1+8)"'N'*?(A, p, q, x)}* ={N®3(A, p, q, x)}* gleichmassig
konvergiert. (57)

Als Summenfunktion positiver stetiger Funktionen ist N°(A, p, q, x) stetig und
nicht fallend, also von beschriankter Schwankung auf jedem kompakten Intervall.
Somit ([19, Seite 410]), konvergiert die Fourier Reihe von {N®(A, p, q, x)}*
gleichmassig in x € J. Das beweist (55) wegen (56) und (57).
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(vi) Die explizite Reihe fiir N*(A,p, q,x). Fur ganzes k lassen sich die
Koeffizienten aX(x) durch partielle Integration explizit berechnen. Speziell fiir
k =2 erhalt man:

T (1 . 2x3
N(ZA,p,q,x) = @ {5 Sinh 2x ——3——' x}
+ 87K ,{x Cosh x —3 Sinh x +2x}
Z K.(p, q) [Sinh (o, + 1)x) _Sinh (o, = Dx) 4da,x ]
(a, +1) (a,— 1) (a2-1)%7J
(58)

+ 4
A,‘#? a,

(vii) Beweis von Satz 2, (11) und (12). Bezeichnet I(x) den hyperbolischen
Inhalt einer hyperbolischen Kugel vom Radius x, so ist ([10, Seite 409]) I(x) =
w{Sinh 2x —2x}. Da &% kompakt ist, existiert ein £ >0, sodass ¥ enthalten ist in
einer Kugel vom hyperbolischen Radius & und es gilt N°%A,p,q,x)=
OI(x+&)/|#|). Also ist die Funktion N*(A,p, q, x)=0(e**) fir k=0-und
damit nach (30) fiir alle k=0-und ihre Laplacetransformierte G*(A, p, q, s),
k=0, s:=o +it, ist analytisch in der Halbebene o >2. Dabei gilt

s*G*(A,p, q,s)=T'(k+1)G%A, p,q,5), o>2, k=0. (59)

Nach dem Identititsprinzip geniigt es, die Aussage (59) fir reelles s>2 zu
beweisen. Setzt man in die Definition von G*(A, p, q, s), k >0, die Beziehung (30)
ein, so erhalt man (59) fiir s >?2 und k >0, indem man sich uiberlegt, dass man die
Integrationen vertauschen darf und anschliessend s(x —v) substituiert. Zudem ist
(59) offensichtlich richtig fiir kK =0.

Die Formeln (58) und (38) zeigen, dass die Reihe e ™ Y=_, a2(x)K,(p, q)
absolut konvergiert und zwar gleichmassig in x € [0, ) fiir jedes s mit o > 2. Setzt
man also in die Definition von G?*(A, p,q,s) die explizite Reihe (58) fir
N?(A, p, g, x) ein, so erhdlt man durch Vertauschung von Summation und Integra-
tion

GAPa9)="5 LD > (60)

Mit Hilfe von (60) soll G*(A, p, q, s) meromorph fortgesetzt werden nach ganz C.
Dazu definiert man P:={+1+q,|n=0,1,...}. Dann ist P eine diskrete
Punktmenge ohne Haufungspunkt im Endlichen. Wegen ay=1 gehort 0 zu P.
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Sei M eine beliebige kompakte Teilmenge von C— P. Da gilt

1/(s* = (a,, + D3)(s* — (o, — 1)) = O(1/|e,,|*), gleichmissig in n=0,1,... und
seM,

konvergiert die Reihe (60) nach (38) gleichmassig in s € M sowie in (p, Q)€ FXF
und

G?*(A, p, q, s) ist meromorph in ganz C mit der Polmenge P.

Mit (59) und (60) erhalt man daraus durch wiederholte Anwendung des Prinzips
der analytischen Forteszung und des Identitatsprinzips Satz 2, sowie (11). Wegen
der fur o >2 giltigen Beziehung

G°A, p,q,8)= L e Z 1dx = Z I e ™ dx

TeA TeA Y% (Tp,q)
p(Tp, q)=x
1
= — Ze D(Tp,q)s, 0.>2’
STeA

ist damit auch (12) bewiesen.

(viii) Beweis von (13). Man setzt 6 :=min,, ., a,. Dann ist 0<6 =1 und unter
Beachtung von (41) lassen sich mit (26) und (27) die Koeffizienten a,,"?(x) in
folgender Weise darstellen:

F(2+8)[ e(1+an)x . e(l——an)x ]
(I+a,) (-0

{O(xs) +0(e ), 0<aA,<l1.
O(x?/|a, ), gleichmaissig in n=7.

a,?(x)=m
an

(61)

Dabei ist 8 >0 vorausgesetzt und x :=min (3+ 8§, 4). Unter Verwendung von (22)
folgert man direkt aus (9):

al™®¥(x)=2me*'(2+8){x —2—8}+ O(x>*?), A, =1, §>0,

m
22+8

ay ?(x) = r2+8)e*™ +0(x**?), 8 >0.
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Also gilt speziell fir die unter (6) definierte Funktion Q*:

Y. al®(0)K,(p, @)= QA p, g, x)+ O(e" ")+ O(x>*®),  §>0.

n<rt

Setzt man diese, sowie die Beziehung (61) in die Reihendarstellung (8) fir
N'*%(A, p, q, x) ein, so erhilt man

N'*?(A, p, g, x) = Q' (A, p, q, X)

o X -~ X

. K. (p,q) e e n
+7l(2+ 8)e Z o [(1+a )2+s“(1_an)2+s]

+0(e ) +0(x***) + 0(x*) ¥ K, (p, 9)lle: ¥,

n=Tt

6>0, x:=min(3+46,4). (62)

Fir n=7 und xR ist |e**|=1. Beachtet man noch (38), so folgt aus (62) die
Behauptung (13).

(ix) Beweis von (14) fiir k =0, k = 1. Die Abschatzung (14) im Falle kK =0 und
fiir p =q, wurde bewiesen von F. Fricker ([10]), mit Hilfe einer Approximation
der Funktion N°(A, p, p, x) von oben und unten durch beziiglich der Koordinaten
in H zweimal stetig differenzierbare und A -automorphe Funktionen. Die Anwen-
dung seines unter (iii) zitierten Entwicklungssatzes auf diese Funktionen lieferte
das entsprechende Resultat.

Fir k =0, sowie fir k =1, kann man (14) auch herleiten unter Verwendung
der Methode der endlichen Differenzen, ausgehend von der expliziten Reihen-
darstellung (58) fur N?(A, p, q, x). Sei die Funktion y=y(x) reellwertig und
definiert auf [0,), y(x)# 0 fiir x=0 und y(x) =o0(1), x—. Fiir eine beliebige,
auf [0,o) definierte Funktion F setzt man

AY(F(x)) :=%{F(x +y)—F(x)},
x =0, x+2y=0.
A%(F(x)):=-y%{F(x +2y)—2F(x +y)+ Fx)},

Durch geeignete Entwicklungen in Taylorreihen mit Restglied tiberlegt man sich,
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dass fir j=1,2 gilt

Al(x)=0(x*""), «keR, Al(e**) = O(e*), gleichmissig in —3=a <1.

O(e*/ly}),
O(e*(1+|B))),

Al (e*1*) = (£1 2 a)e™"**+ O(e* |y|), gleichmissig in 0=a=<1.

Al (e*1*1Px) = { gleichmissig in B eR.

Al(xe*) = xe™ +je* + O(xe* |y|).

Mit diesen Formeln und der Definition (6) fiir Q*(A, p, g, x) erhilt man aus den
unter (58) explizit gegebenen Ausdriicken firr a2(x):

- O(e*/le|* |y, 63
A;(a,z,(x))—-:{ (€ len*yP) j=1,2, gleichmissig in n=1, (63)

O(e*/la,[*7), (64)

A} { Y. a(x)K,(p, q)}=202"'(/\, D, q, x)+O0(e* |y)+O0(e*), j=1,2. (65)

n<r

Nun wendet man die Operatoren A! auf die Gleichung (8) an. Fir k=2
konvergiert die Reihe auf der rechten Seite von (8) absolut. Aus diesem Grunde
darf man rechts Summation und Anwendung von A’ vertauschen. Auf die Terme
mit n <t wendet man (65) an, auf diejenigen mit 1<A, <|y|™? die Beziehung
(64) und die restlichen Summanden schiatzt man ab mit Hilfe von (63). So ergibt
sich fiir j=1, 2:

ALN*(A, p, 4, X)) =2Q* (A, p, g, x)+ O(e*) Y, |K.(p, @)/l |*”

1<a,sly|™?

+0(elyl) Y |K.(p, @)ll|a,|*+ O |y + O(e®).

A >yl 72
Die O-Abschiatzungen in dieser Beziehung sind gleichmassig in (p, q)€ F X &,
denn nach (5) sind es auch diejenigen unter (65) und wegen (36) und (37) folgt,
dass gleichmaissig in (p, q)e F X F gilt

ANN*(A, p, g, x))=2Q"(A, p, g, x)+ O(e* [log |yl + O(e*) + O(e* |yl),  (66)

AZ(N*(A, p, g, x))=2Q°%A, p, g, x)+ O(e* |y|™) + O(e* |y)), (67)
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Andererseits ist nach (29):

2 x+y
A(N?*(A, p, q, X)) =5 L NY(A, p, q, v) dv,

2 x+y u+y
AZN?*(A, p, q, X)) ‘—‘;—2 [ {L N°A, p, q, v) dv} du,

sodass, da die Funktionen N™(A, p, q, x), m =0, 1 monoton wachsen, auch gilt

IN*(A, p, g, ) =4,(N*(A,p, ¢, ) fir y>0, . .
2N?T(A, p, g, x) = A(N¥(A, p,q, x) fir y<o0, 1~ °
Das Resultat (14) im Falle k =1 ergibt sich aus diesen Ungleichungen, zusammen
mit (66), wenn man j=1 und y=+e™™ wiahlt, und fir k=0 erhalt man (14),
indem man j=2, y ==+e ™ setzt und (67) beachtet.

(x) Beweis von (14) fiir 0<k <1. Mit Hilfe der unter (ix) hergeleiteten Resul-
tate soll der Beweis von (14) vervollstindigt werden. Das Vorgehen ist analog zu
demjenigen beim Beweis von Satz 1.71 in [2]. Nach (34) gilt fiir beliebiges £ =0:

& x
R*(A,p,q,x)= k“0 + I }(x —0)*"'R%A, p, q, v) dv + O(x**),
3
k >0, gleichmassig in (p,q)e Fx %. (68)

-x/2 —x/2

Man wiahlt nun & =§&(x):=x—xe ™*, das heisst x —&=xe ™“. Aus dem schon
bewiesenen Resultat (14) im Falle k = 0 ersicht man, dass dann das Integral von &
bis x in (68) gleich O(x*e®*2) ist fir 0<k <1 und gleichmassig in (p, q)€
F x %. Zudem existiert nach dem zweiten Mittelwertsatz der Integralrechnung
([9, Seite 256]) ein u, 0=u =< ¢, sodass gilt

£
L (x—v)*"'R%A, p, q, v) dv

A . )
=(x—-&<! L R°(A, p, g, v) dv+x*7! L R°(A, p, g, v) dv

=§ v
=(x—&*'RYA,p,q,v) | +x*'RY(A,p,q v)

u v

= O(x*e® ") 0<k <1,gleichmissig in (p, q)e F X %.

-1

+O(x*™)
0

gleichmassig in (p, q) e F X &.
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Diese letzte Abschatzung, welche man aus dem Resultat (14) fur k =1 erhalt,
beweist, eingesetzt in (68) die Aussage (14) vollstandig.

(xi) Beweis von (15) und (17). Wird definiert

S*(A, p,q, x):=R*(A, p, g, X)

. K.(p, q) e e
—alk e 3 5 b

o X x
n

], k>1,
so ist nach (62)

$“(A,p, ¢, x)=O0(e" ")+ O(x"""), k>1. (69)

Setzt man fur n=7 arg(1—a,):=¢,, so wird 1—a, =A}?%e"%, n=r.
Mit dieser Schreibweise ergibt sich aus der Definition von S* (A, p, q, x):

R*"Y(A, p,q, x) =2nl(k)e* ), %‘%,—32 sin (B,.x + ¢,k)+S*71(A, p, q, x),

k>2. (70)

Aus (38) und der Tatsache, dass die Folge A; strikt monoton wachsend ist, folgert
man die Existenz einer reellen Zahl k,>4, sodass fur alle k =k, gilt

,9) K..(p, q)
rolfR T S

]:='yk >0. (71)

Nach (69) gibt es zu jedem k ein x,= x,(k), sodass die Abschitzung
IS“(A, p, q, x)| = rye* firalle x=x, (72)

erfullt ist. Fir x, =x,(k):=(w/2+vm—¢.k)/B, ist sin(B.x, +y¢.k)=(-1)", v=
0,1,... und aus (70), (71) und (72) folgt fiir k = h,

< —mye™, fur alle v mit (—=1)’K.(p, 9)<0, x,=x,.

k-1
R4, p.q x"){z mye™, fur alle v mit (—1)’K, (p, q)>0, x, =x,.

(73)

Das bedeutet, dass R*(A, p, g, x), k =k,— 1, das Vorzeichen wechselt auf jedem
x-Intervall x,<x, <x=<x,,, der Lange /B,. Somit beweist (73) sowohl (15) als
auch (17) fur k =k,—1.
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Genau wie in [16] folgert man mit der dort gegebenen Verallgemeinerung des
Satzes von Rolle aus (73) und (28) die Giiltigkeit von (17) fur alle k =0, und auch
(15) ergibt sich fiir alle k =0 aus (73) unter Beachtung von (29).

(xii) Vorbereitungen zum Beweis von (16). Aus Satz 2 lassen sich die Haupt-
teile von G*(A, p, q, s) in den Polen s € P bestimmen. Insbesondere ersieht man:

G*(A, p, q, s) ist analytisch fiir >0, k=0, bis auf einfache Pole bei )
s¥:=1+a,, mit Residuen vi =wl(k+ 1)K, (p, 9)/(xa,)(1xa, )<,
firn=0,1,...,s>#1.

74
Falls 1 Eigenwert ist, hat G*(A, p, q, s) zudem einen doppelten e (74
und einen einfachen Pol bei s =1 mit den Hauptteilen
2@l(k + DK*(p, q)/(s — 1)?, respektive —27'(k +2)K*(p, q)/(s—1). .
Man definiert
H*(A, p, S):=L R*(A,p,p,x)e™dx, o>3/2, k=0. (75)

Vorerst fiir o >2 ist dann
H*(A, p,s)=G*(A, p,p, s)— L Q*(A, p, p, x)e ™ dx, k=0.

Setzt man in dieser Gleichung den expliziten Ausdruck (6) fiur Q*(A, p, p, x) ein
und fihrt die Integration durch, so ergibt sich zusammen mit (74):

H*(A, p, s), k=0, ist analytisch fir c>1-6, (0<6:=min, ., a,, <1),
bis auf einfache Pole bei si:=1+a, mit Residuen vy = wl(k +1)X
K.(p, p)/(xa, )1 £ a,)**! fiir alle n=1. (76)

Als weitere Vorbereitung zum Beweis von (16) wahlt man eine beliebige ganze
Zahl M >0 und betrachtet die Funktionen

r+M

V(x):=2cos? (x/2)=1+cosx =1+i(e™ +e™™), W(x):= H V(Bx).

Die Funktion W(x) ist von der Form W(x):=Y2,v,(e™ +e™™). Dabei ist
v, =(1/2)*,v=0, v ganz, also v;>0, j=0,1,...,Q und w; durchlduft die
Q:=(3M*1+1)/2 Zahlen roB, +r B, 1+ " *+Brim, ;=0 oder £1, wobei der
erste von 0 verschiedene Term der Folge ry, ry, . ..,y jeweils gleich +1 ist.
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Die w; seien so numeriert, dass w;=f_,; ist, j=0,1,..., M und wg =0.
Dann ist v; =1/2 fir j=0,1,.., M und

1 &, . : ot , :
W(x)=1+= ) {e®*+e B+ Y vi{e™ +e ™},
2,5 i=M+1

mit w;#0, j=M+1,M+2,...,Q-1. (77)
(xiii) Beweis von (16). Man will zeigen, dass unter der Annahme

R*(A, p, p, x) = O(e'*®), k=0, firjedes £>0, (78)
gilt

liminf R*(A, p, p, x)/e*=—», 0=k<1. (79)

Sei im ganzen Abschnitt (xiii) 0 <k < 1. Mit der unter (xii) betrachteten Funktion
W definiert man

L=L(A,pk):= liin1 (c—1) L e “R*(A, p, p, x) W(x) dx.

Man wird folgende Ungleichungen herleiten:

T+M

lim inf R*(A, p, p, x)/e* <L =—al'(k +1)c; Y. K;(p, p)/BAK*2,

j=T

¢, positiv und unabhéngig von M. (80)

Fir n=1 ist B,=(\,—1)"*~AY? n—o, und nach [10, Seite 408] ist die
Konvergenzabszisse der Dirichletreihe .., K, (p, p)/A;, gleich 3/2. Somit geht die
Summe auf der rechten Seite von (80) gegen o fiir k<1 und M—». Da M eine
beliebige positive ganze Zahl war, ist mit (80) auch (79) bewiesen. Das bedeutet
(78) impliziert (79), was zu zeigen war. Die erste Ungleichung in (80) ist eine
Folge der offensichtlichen Tatsache, dass W(x) =0 ist fiir reelles x. Beachtet man
namlich noch, dass fiir beliebiges festes & &>0, gilt

‘(0'— l)fe"""R"(A, p, p, x) W(x) dx

= (o —1)§ max le”"R*(A, p,p, x)W(x)| =0, oll1,
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so erhalt man

f Rk(A p’ p’ x)
x=¢ e

L= ( -1) j e @D W(x) dx. (81)

Aus der Darstellung (77) von W(x) folgt aber, dass fiir jedes feste ¢ der in (81)
auftretende Limes gleich 1 ist. Da & beliebig positiv war, ist damit die erste
Ungleichung unter (80) bewiesen.

Die andere Behauptung in (80) verifiziert man, indem man sich uiberlegt, dass
mit (77) und der Definition (75) von H*(A, p, s) gilt

L=

i

%‘Pm (G~ 1){Hk(1‘9 D, (T—_aj+»r)+Hk(A9 p; o+ aj+‘r)}

i1

[INgE

+ Z vhm(cr I{H*(A, p, o —iw,)) + H*(A, p, o + iw,)}.

i=M+1 <

Beachtet man (76), so ergibt sich daraus

T+M
L=2T(+1) ¥ K((i”p){ /(1= e+ 1/(1+ )<}
+2I(k+1) ¥ v,-—Ig—"‘—(iBLB—)-{——ll(l—am)"“+1/(1+am)k“}. (82)
w, =08 m

Dabei bezeichnet ), _, die Summe iiber alle j aus der Menge {M+1, M+
2,...,Q}, fir die w; = B,, ist, fiir irgend ein m = 7. Mit der unter (xi) eingefiihrten
Bezeichnung arg (1—a,):=¢,, n=1, wird (82) zu

L=nal(k+1) Y —I%%—f—’% sin ((k +1)¢,)

i=t Hjtj
K..(p, p)

+al(k+1) Y v NRE

wj =Bm

sin ((k+1)¢,,). (83)

Da B;=B,>0 ist fir j=7 gilt 0>y, :=arg(l—a,)=arg(1-o;):=¢y =—7n/2,
j=r, also wegen 0=k <1:

O>¢z.,(k+1)z¢{;,-(k+1)2———g(k+1)>—7r, j=r.
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Somit existiert ein nur von k abhingiges c, >0, sodass gilt
0>—c,>sin ((k +1)¢;), gleichmaissig in j=T.

Unter (xii) hat man sich uberlegt, dass alle v;>0 sind, j=0,1,..., Q. Also, da
auch die K;(p, p) =|d;(p)|*>>0 sind, folgt aus (83):

T+M
L=—nal(k+1)c, Y, Ki(p. p)

= BiA;k+l)/2 g
Das beweist (80) und damit (16).
(xiv) Beweis von (19) und Satz 6. Ist f(s) eine analytische Funktion von s, so

setzt man (d/ds)™f(s):=f"(s), m=0,1,.... Firs¢ P, n=0,1,...und m=0, m

ganz, definiert man y(s, n, m):={1/(s*—(a,, + 1)?)(s*— (o, — 1))}*™. Dann ist fiir
s¢ P:

v(s, n, m) =an::0 ugo r:g: (':)(2)(111;71){;;1::}@) {;i_ﬁ}(n-u)

1 (v){ 1 }(m—n~v)
{s+an—1} s—a, +1 - (84)

Unter Beachtung von Satz 2 erhilt man

(d/ds)"G(A, p, g, s)*=(8m)* Y K.(p, Ki(p, q)¥v(s, n, m)¥(s, j, m),
n,j=0
s¢ P. (85)
Fur festes s¢ P ist y(s, n, m)=0(1/|a,|*), m=0, gleichmissig in n=0,1,...,

sodass nach (38) die Doppelreihe unter (85) gleichmaissig konvergiert in (p, q) €
F x . Mit der Orthogonalititsrelation (1) folgt deshalb

Ll(d/ds)"‘G"(A, p, g, 5)* dw, = (8m)* i K.(p,p) lv(s,n,m)?>,  s¢P.
(86)

Sei 0<¢<1. Aus Formel (84) ersieht man, dass fiir beliebige 6 >0, k>0 und



264 PETER THURNHEER

gleichmassig in o mit |o+1|=« gilt

O(B;> 72 |t|~'*2 |t|"2¢(*?), gleichmaiissig in n mit
lv(s, n, m)PP= B <It|—|tl%, B =]t|+e)5.

O(|t|™), gleichmassig in allen iibrigen n.

Man setzt diese Abschatzungen in (86) ein und wendet (38), sowie (4) an. Setzt
man dann £=1/2m+5), so ist 2é(m+2)=1—¢& Waiahlt man schliesslich bei
gegebenem w, w > 1/(4m +10) = £/2, den Parameter & derart, dass 0 <8 <2w —§
ist, so ergibt sich

L |(d/ds)"G*(A, p, q, 5)|?* dw,

= O(|t|"1 32+ 2) 4 O (|t ) Y K.(p, p)

lt}~{t|¢ =B, =lt|+]e|¢
— O(|tr1+8—2§(m+2))+ O(|tl—2+5) - O(lt‘—2+8+§)

= O(|t|"****), gleichmaissig in o mit |o+1|=«k.

Damit ist auch (19) bewiesen. Durch wiederholte partielle Integration lasst sich
mit Hilfe von (19) fiir fast alle q € & zeigen:

U
L G%A, p, q, o +it)e™ dt = O(e®”), fiir beliebig vorgegebenes € >0
und fiir feste £>1, o>1, o¢ P,
gleichmissig in 0= U <2¢€°%.

Mit dieser Formel und (19) sind die Voraussetzungen des nachfolgenden
Hilfssatzes verifiziert fiir die Wahl A(x):=N°%A,p, q, x), f(s):=G%A, p, q, s),
00=PB1:=2,y>1,v¢P, 5:=1+¢, j=0,1,..., 7, w(y):=e*, £ beliebig positiv.
Beachtet man (74) und die Definition (6) von Q°%A, p, g, x), so ergibt sich Satz 6
fir k =0 aus dem Hilfssatz und damit fur k >0 aus (34).

V. Ein Hilfssatz

Der Satz von Wiener-Ikehara gibt das asymptotische Wachstum einer
reellwertigen, nicht fallenden Funktion an, unter der Voraussetzung, dass deren
Laplacetransformierte in der Konveigenzabszisse o, einen einfachen Pol mit
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bekanntem Residuum besitzt und sonst analytisch ist in der s-Halbebene Re s =
oo

Oft ist aber von der Laplacetransformierten mehr bekannt in dem Sinne, dass
sie iber o, hinaus meromorph fortgesetzt werden kann, eventuell mit mehreren,
auch mehrfachen Polen. Im folgenden soll eine Verallgemeinerung des Satzes von
Wiener-lkehara bewiesen werden, die sich auf diese Situation bezieht.

Hilfssatz. Sei die Funktion A(x) definiert fiir x =0, nicht negativ, monoton
wachsend und das Integral [ A(x)e ™ dx, s:=o +it, konvergiere fir o>o,
gegen die Funktion f(s).

Sei f(s) analytisch fiir o =1y, bis auf (q; +1)-fache Pole bei s =5, s;:= B, + iy,
mit den Hauptteilen v/(s—s)*"", a,=0, q; ganz, j=1,2,...,q und y<B, =<
Ba-1="" =B =0 Sei

q
R(x):=A(x) — Z -9’—’ x%eS .

i=1%

Ist mit einer positiven, nicht fallenden Funktion w und fiir beliebiges festes

E>B1—v

(a) f(o+it)=0(Q), gleichmassig in o e[y, B;+1],

U
(b) L f(y +it)e™ dt = O(w(y)) fiir y—o, gleichmissig in 0= U <2¢°®,

so lasst sich folgern

R(x)= O(e™w(x)). (87)

Bemerkungen. (i) Weil A monoton wachsend vorausgesetzt wurde, ist o=
B1.

(ii) Da f(s) reell ist fur reelles s>o,, folgt f(s)=f(5) fiir alle s#s mit
Re s = v. Dies impliziert, dass die Summe in der Definition von R(x)—und damit
R(x) selbst —reell ist.

(iii) Die in der Voraussetzung (b) auftretende Funktion w wird im all-
gemeinen von der Grossenordnung der oberen Grenze des zu betrachtenden
Integrals abhiangen und die Aussage des Satzes kann unter Umstdnden besser
werden, je kleiner diese Grossenordnung gewéhlt werden darf. Ersetzt man die
beim Beweis auftretende Hilfsfunktion

1-|x|, |x|=1
0, sonst

h,(x) :={
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durch die n-fache Faltung
h,(x):=(hy*h;*- - -*h;)(x) (n Faktoren),

(hysh)(0):= [ ha(0)hy(x—o) do

so ist h,(t/2nA)= O(1), gleichmassig in teR fur alle A>0, n=1,2,... und es
lasst sich zeigen, dass gilt:

Zu beliebig festem &>, —+y existiert ein ganzes j=1, sodass die Bedin-
gungen

(a) f(s)=0(Q), gleichmissig in o €[y, B, +1],

2e&

(b) fly +i)h(42je®)e™ dt = O(w(y)) fir y — o,

implizieren
R(x)= O(e™w(x)).

Das bedeutet, die Grossenordnung der oberen Grenze des unter (b) zu be-
trachtenden Integrals kann in dieser Formulierung des Satzes halbiert werden.
Die mit dem Hilfssatz hergeleitete Aussage (18) kann allerdings auf Grund dieser
Feststellung nicht verbessert werden.

(iv) Indem man das Integral der Funktion A betrachtet und durch Anwen-
dung der Methode der endlichen Differenzen, lasst sich aus dem Hilfssatz
beweisen, dass allein die Voraussetzung

(a) f(o+it)=0(1), gleichmassig in o €[y, B;+1],
impliziert

R(x) = O(e®imvxl2x /2y vi=max a.
1 =91

Beweis des Hilfssatzes. Abschitzung (87) soll hergeleitet werden durch
Uebertragung eines Beweises von Landau-Bochner fiir den Satz von Wiener—
Ikehara (man sieche dazu zum Beispiel [3]).

Man setzt R*(x):= R(x)e . In einem ersten Schritt will man zeigen, dass gilt

R*(x)=c3w(x), x =1, ¢; unabhingig von x. (88)
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Setzt man
g(s):=f(s)— ), v/(s—s)*",

i=1

so ist g(s) analytisch fir o=+ und
g(8)=[ R*(x)e™¢™dx, o>8,. (89)
)
Sei >3, und p:=n—y. Mit der Formel

) I T = jt2nye gy =S (A0)

, > 11,
2], Ve A>0, v ree

erhilt man fiir A =1, y=1 die Gleichung

, sin® (A (y — x))
Ay —x)?

2A oo
L j g(n+i){1—|t|/2A}e™ ™ dt = L R*(x)e*0~> dx, (90)

2 1o

indem man auf der linken Seite die Beziehung (89) einsetzt und sich uberlegt,
dass die Integrationsreihenfolge vertauscht werden darf. Man setzt A=
A(y):=e?*®, mit dem in der Voraussetzung b) auftretenden, festen £> 8, —v>0.
Fir y=1 ist dann A >1. Sei

n+2Ai s— ) )
1= a5V e, 91
T(y):=Im L g(s){l IT }e ds (91)

Wegen g(s) = g(5) fiir o=, ist die linke Seite von (90) gleich T(y) und indem
man auf der rechten Seite u:= A(y —x) substituiert, ergibt sich

Ay .2
T(y)= J R*(y —u/\)e** 511;2 = (92)

Definiert man

q

P(x):= A(x)e ™= R*(x)= Y, —L x4 ", (93)

i=1 G



268 PETER THURNHEER

so erhalt man aus (92)

» o SInZ U Y oy ra SIN U
T(y)+£ P(y — u/A)e** 3 du =J.mA(y—u/)\)e L 3 du. (94)

Nun lassen sich die Voraussetzungen iiber A ausniitzen. Wegen A(x)=0, x =0,
ist der ganze Integrand auf der rechten Seite von (94) nicht negativ. Da zudem A
monoton wachsend ist, folgt aus (94) fiir beliebige a, 1=a < Ay:

Ay s .2 a 2
T(y)+ j P(y — u/A)e* S";z Y du= j Ay —af\)e™ i §‘—‘;—-2-‘—‘ du.  (95)

—a

Man wihlt a=a(y):=A(y)"*=e®. Fir y=1 ist dann 1=a=<Ay und durch
beidseitige Subtraktion des Terms

a = 2
.. sin“u
J P(y—1/a)e™/* " du

erhalt man aus (95)

1
R*(y—1/a)= T+S,+S , (96)
(Y ) Sl(y){ 2 3}()’)
mit
S e— p—Y/a ¢ nu/a? Sin2 u
(y):=e e 3 du>0, a(y)>0,

: 2~1/a ez SINZ U
Sa(y):= J {P(y —u/a®) —e"™**"VYP(y —1/a)}e"* u? du,

Ta  fad ,sin® u
Si(y):= {J + I }P(y —u/a?)e** 7 du.

Man wihlt n > B, so, dass B, —vy<n —v = <€ ist. Die rechte Seite von (96) soll
nun in Funktion von y nach oben abgeschiatzt werden. Die Funktionen S;(y),
j=1,2,3 sind unabhingig von f(s) definiert. Zu ihrer Abschatzung macht man
somit keinen Gebrauch von den Voraussetzungen iiber f(s). Offenbar ist

lixllw S:(y)=m. (97)
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Mit der aus der Definition (93) ersichtlichen Abschatzung

P(y . u/aZ) . ey(u/a2¢1/a)P(y + 1/a) — O(e(Bl—‘v)yyv/a)

=O(y"e® ™) fir —asu=<a, v:= max a;, (98)

folgt wegen B, — vy <¢&:
S,(y)=o0(1) fir y — o, (99)

Es ist auch B,—y<wu<€& und nach (93) P(x)=O(x*e® )= O(e™),
gleichmaissig in 0 <x <. Also gilt S;(y) = O0(e*/a) = O(e™ ") und somit

Si(y)=o0(1) fur y — o, (100)

Da g(s) analytisch ist fiir o = v, lasst sich die unter (91) definierte Funktion T(y)
folgendermassen darstellen:

g(s){l _____ﬂ}e(s—‘y)y ds,

T(y)———ImJ N

W +W,+W,

mit W,:={s|n=s=v}, W:={s=vy+it|0=t=<2A}, Wy:={s=0+2)i|y=so=
n}, A=A(y):=e?®. Auf W, ist s reell, also g(s)e®“ ™" reell und Im{1-
(s =m)/2Ai} = O(1/1). Auf W; ist {1—(s—mn)/2Ai}= O(1/X). Zudem ist mit f(s) -
wie vorausgesetzt unter (a)—auch g(s)=O(1), gleichmissig in oely, B;+1].
Somit sind die Beitrage der Integrale iiber W; und W, je gleich O(e*’/A) =
O(e™ ) =0(1) fiir y—>. Weiter ist

Im L g(s) 1-———~}e(s v ds = Re L Ag(y-l— it) {1 ~_L2L; it}e“" dt
= O(w(y))+O(1).

Die O-Abschitzung ergibt sich durch partielle Integration unter Beachtung der
Voraussetzung (b) und der Definition von g(s). Damit wird, da w nicht fallend
vorausgesetzt ist

T(y) = O(w(y)), (101)

und (97), sowie (99) bis (101), eingesetzt in (96) ergeben die zu verifizierende
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Beziehung (88). Der Hilfssatz ist bewiesen, wenn noch gezeigt wird
R*(x)= O(w(x)). (102)

Sei wie oben 1>, so, dass B,—y<u:=m—y<& ist. Es kann w(y)= O(e"")
angenommen werden, da andernfalls nichts zu beweisen ist. Aus (92) folgt, wenn
man fir y=1 wieder setzt a =a(y):=A(y)">=e* und (88) beachtet

.2 Sin” U

T(y)_<_c3{j:a + r y}w(y —u/a®)e* 7 du

a .
.sin u
+J R*(y —u/a®)e*** —— du
| u

a . 2
= O(euy/a) + J R*(y — u/az)e““/az 5122 u du.

Wegen R*(x)=A(x)e ™ —P(x) ist also mit (101) und O(e*¥/a)= O(e™* )=
o(1) fir y—oo:

a oW ra .
Olwly)+ j P(y—u/a®)e™ 5122 Rau=<| A(y—ua2)e e Slzz—u du
ra . 2
= A(y + 1/a)e“YY+‘nu/a2 8122 u du.
(103)

Die letzte Ungleichung ist eine Folge davon, dass A nicht negativ und monoton
wachsend vorausgesetzt wurde. Auf beiden Seiten der Ungleichung (103) sub-
trahiert man den Term

a R Si 2
J. P(y+1/a)e™" +“”“—————22udu.

Beachtet man (93), sowie (97) und die Tatsache, dass wegen (98) gilt

a 22
{P(y—u/a?®)—e"W*** VD P(y + 1/a)}e*** M R du= o(1) fir y— o,
| u?

so erhalt man die Abschatzung (102). Damit ist der Hilfssatz bewiesen.
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