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The equivariant Dehn’s lemma and loop theorem

WiLLiaM H. MEEgks 111 and SHING-TUNG YAU

Introduction

In [4] the authors observed that the topological methods in the theory of
three-dimensional manifolds can be modified to settle some old problems in the
classical theory of minimal surfaces in euclidean space (see also [1], [12]). In [4]
and [5] we found that we could use the theory of minimal surfaces to extend the
theorems of Papakriakopoulous, Whitehead and Shapiro, Stalling and Epstein on
the Dehn’s lemma, loop theorem and sphere theorem. The key point to our
approach to these topological theorems is the following: Given a certain family of
maps of the disk or sphere into our three-dimensional manifold M, we minimize
the area of the maps (with respect to the pulled back metric) in this family and
prove the existence of the minimal map. Then by using the area minimizing
property of the map and the tower construction in topology, we prove that any
area minimizing map in the family is an embedding. In this way, we realize the
solutions to the above topological theorems by minimal surfaces. In [4] and [5] we
used the above area minimizing solutions to prove equivariant versions of the
loop and the sphere theorem, and we applied these new theorems to the
classification of compact group actions on R> in [11].

In this paper we generalize some of the theorems in [4] and [5] to compact
planar domains by proving the existence of embedded planar domains of least
area of a given genus and by proving a certain disjointness property for planar
domains of least area. We then use this disjointness property to prove the
equivariant Dehn’s lemma for planar domains.

On the other hand, we use a different variation approach to get a geodesic
version of the loop theorem. More precisely, we prove the following: suppose that
the induced map iy:m(0M)— m(M) of the inclusion of the boundary has
nontrivial kernel K. Then for any metric on dM, any nontrivial geodesic of least
length in K is embedded and any two such geodesics are equal or disjoint. This
geodesic loop theorem coupled with the above equivariant Dehn’s lemma yields a
new version of the equivariant loop theorem in [5]. As the placement of curves on
a surface is easier to understand this new equivariant loop theorem is easier to
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226 WILLIAM H. MEEKS III AND SHING-TUNG YAU

apply to study group actions. Applications of this theorem to classification of group
actions on R* will appear in [11].

Throughout this paper we will be working with compact three-dimensional
Riemannian manifolds M with convex boundary. For simplicity we sometimes
refer to such an M as a convex manifold.

1. Dehn’s lemma for planar domains

THEOREM 1 (Dehn’s lemma for planar domains of a given genus). Let
I'={y1, Y2, -.., %Y.} be a collection of disjoint unoriented Jordan curves on the
boundary of a three-dimensional orientable convex manifold M. Suppose that these
Jordan curves bound a continuous mapping g from a smooth compact planar
domain (possibly disconnected). Let F, be the family of all piecewise smooth maps
mapping from a compact planar domain with k components into M whose boundary
consists of curves in I'. Let A, be the infimum of the areas of the maps in F,. If A is
strictly less than A, .., then there exists a branched minimal immersion which has
least area among maps in F,. Furthermore, any branched minimal immersion of
least area in F, is an embedding.

Proof. The existence of a map f: {2 — M of planar domain with k components
and least area follows from the inequality A, <A,.;, from Morrey [7] and from
Theorem 1 in [4]. From the approximation technique in the proof of Theorem 5
in [4], we may assume that the map f is a simplicial immersion with respect to
some triangulations of 2 and M.

Since f:{2 — M is a map of least area for a given genus, f restricted to each
component ' of £ is a map of least area from a planar domain with boundary
curves f(02'). By Theorem 5 in [4], f| Q' is an embedding. Suppose that there are
two distinct components £2,, £2, of (2 such that f(£2,) and f((2,) intersect. In this
case it is shown in [4] that there are Jordan curves v;:S'— (3, and v,:S'— @,
such that f(y,(t)) = f(y,(t)). The standard cutting and gluing argument (see the
end of the Proof of Theorem 5 in [4]) along the image curve f(vy,)=7f(y,)
produces a map of a planar surface with the same Euler characteristic as {2 and
with the same area as f. However, the area of the new map can be decreased
along the folding curve f(vy,). Since the Euler characteristic of a planar domain
with n boundary curves determines the genus and the number of components, the
existence of the new map contradicts the least area property for f. This contradic-
tion proves Theorem 1.

In [4] the authors also proved a disjointness property for least area disks when I
in the above theorem consists of one curve v. In that paper we prove that any two
geometrically distinct least area disks intersect only along their boundary. This
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disjointness property for least area disks is useful in proving equivariant group
action theorems. For this reason we would like to generalize the disjointness
property to the case of planar domains given in the above theorem. However, in
the following example two Jordan curves in parallel planes in R? are given which
bound two distinct embedded annuli of least area that intersect their interiors.

EXAMPLE. Let §_,4 be a circle of radius 10 in the xy plane centered at the
point (0, —1000, 0) and let 8,990 be a circle of radius 10 in the xy plane centered
at the point (0, 1000, 0). Let y; be the connected sum of &_,¢90 and 8,90 along
part of the interval I joining (0, —1000, 0) to (0, 1000, 0) in such a way that vy, is
the union of parts of 8_;400, 81000, and the intervals I +(-1,0,0) and I +(1, 0, 0).
Let vy, =+, +(0, 0, 1) be the curve on the plane of distance one from the xy plane.
A least area annulus f: £ — R? connecting v, and v, appears as in Figure 1. Let
R :R3®*— R? be rotation by 180 degrees around the z-axis. Then the least area
annuli f(2) and Re°f(£2) intersect in their interiors. (A rigorous proof of the
existence of {2 produced in this example can be found by using the bridge
theorem in [6].)
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In spite of this example, the disjointness property holds when the following
assumptions on I" hold.

THEOREM 2. Let I'={vy1,¥2,..., Y.} be a collection of disjoint unoriented
Jordan curves on the boundary of a compact three-dimensional orientable convex
manifold M. Suppose that vy, is homotopically nontrivial when n equals two or that
I' generates a rank (n— 1) subgroup of the first homology group of M. If there exists
a continuous map g of a compact planar domain into M with boundary I', then

(1) there exists a branched minimal immersion of a compact planar domain
which bounds I' and has (finite) least area among all such maps.

(2) Every such map is an embedding of a connected planar domain.

(3) Any two such least area maps intersect only along their boundary I or else
they differ by a conformal reparametrization.

Proof. Part (1) is just the statement of Theorem 5 in [4]. Part (2) follows
because the condition that the curves in I' represent n — 1 independent homology
classes implies the connectedness of the surface. The proof of part (3) is based on
the proof of Theorem 6 in [4]. The nontrivial approximation procedure in
Theorem 6 in [4] reduces part (3) to the special case that the two least area maps
f:0,— M and g: 2, - M are simplicial with respect to some fixed triangulations
of 2,, 2, and M.

Suppose now that X = f,(£2,) Nf,(£2,) is not equal to the union of I'. In [4] it is
shown that X is a finite one-dimensional subcomplex of M with every vertex in X
meeting at least two edges in X and the intersection of f({2,) and f({2,) is traverse
except possibly at the vertices. A simple induction argument (see Lemma 10 in
[4]) proves that X contains a closed Jordan curve a which is not contained in the
union of I' or for some i and k > 0 there is a unique Jordan arc o :[0, 1]— X with
o([0,1)NI ={0(0), o(1)} and o(0)e vy, and o(1)€ v, 1.

Suppose that o exists. By the classification of compact planar surfaces, there
would be a smooth Jordan curve 7 in the interior of 2, such that tNX=7No is
one point which is not vertex and the intersection of 7 and o on (2, is transverse
at this point. As 7 intersects (2, transversely in one point, [t]N[{2,] is nonzero
where N denotes the intersection pairing on homology in M with Z,-coefficients.
However, as {2, is a compact planar domain, 7 is homologous with Z,-coefficients
to some sum of boundary curves of {2,. As the boundary curves of {2, and (2, are
the same, some boundary curve vy; of (2, must intersect (2, nontrivially in
homology. However, M is orientable and therefore we can push v; off (2, to
create a curve <! which is disjoint from (2,. This curve is homologous to +y; but
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does not intersect (2,. This contradicts the intersection equation on homology and
therefore o can not exist. Hence there must be a Jordan curve a in X which is not
contained in I.

Let a;:S'— 0, and a,:S' = (2, be the Jordan curves with f(a,(t)) = g(a(t))
and f(a;)=a. Suppose for the moment that «;,; and a, are contained in the
interior of {2, and (2,. The curve «; disconnects {2, into two planar domains {2,
'/ where (2] is the planar domain containing the Jordan curve 1v,.

Now consider the surface 3 obtained by gluing f(£27) and f(23) along a. If 3
has a nonempty boundary, then for some i different from 1, an oriented boundary
curve vy; of 3 is homologous in 3 to a collection of curves in {£v,, +vs,...,
+9;, ..., *Y,} where for the moment the curves I" are oriented in an arbitrary
manner. Therefore the curves I'—{y,, v;} generate a subgroup of H,(M, Z) with
the same rank as I' which is n — 1. For n =3, this contradicts our assumptions. If
n =2, then X is a disk and so v, is homotopically trivial. This also contradicts our
assumptions and so 3 must have no boundary.

As 3 has no boundary, the surfaces f(£2}) and f(£25) have the same boundary
curves. The usual cutting and gluing argument shows that f or g does not have
least area and hence part (3) is valid if the Jordan curve a, lies in the interior of
(2,. Actually the only reason that we chose the case “a; lies in the interior of 2,
was to make visualization of the intersection easier. The same argument still
produces a contradiction when part of a intersects the union of the curves in I
This proves part (3) and completes the proof of the theorem.

Remark. Theorem 2 can be proved by assuming appropriate conditions about
areas of planar domains which bound some subcollection of curves in I" rather
than topological conditions. For example, suppose that I' ={v,, v,} and that either
Y1 or 7y, does not bound a disk with area less than twice the area of some annular
region joining them. Then the planar domain of least area joining vy, and vy, will
be an embedded annulus and any two such annular surfaces intersect only along

their boundary curves. Note that this area condition fails for the example
described before Theorem 2.

2. Embedding of the partially free boundary value problem

Another type of embedding theorem that can be proved using the topological
tower construction is the partially free boundary value problem considered in
Courant’s book [2]. In its simplest topological form the partially free boundary
value problem can be stated as follows. Let M be a compact three-dimensional
Riemannian manifold and <y, be a Jordan curve on a boundary component 3, of M
which is freely homotopic to a closed curve vy, on another component 3, of the
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boundary of M. Let F be the family of all maps from the annulus {2 to M which
maps one boundary curve of (2 homeomorphically onto vy, and the other
boundary curve of {2 into d,. Then we say that a minimal immersion f: Q2 — M is
a solution to the partially free boundary value problem for vy, and 9, if fe F and f
has least area in F.

THEOREM 3. Suppose M is a compact orientable Riemannian three-
dimensional manifold with convex boundary, vy, is a Jordan curve on a component
d, of the boundary of M and <y, is freely homotopic to a curve on a different
component 9, of the boundary. Then

(1) There exists a solution f:Q2— M to the partially free boundary value
problem for v, and 3, if the infimum of areas of maps in F is strictly less
than the area of any map of a disk with boundary y,. Furthermore f is
continuous in {2 and smooth in the interior of ().

(2) Any such solution f is one-to-one and everywhere orthogonal to 9,.

Proof. The existence of a solution to the partially free boundary value problem
can be proved using the methods in the proof of the free boundary value problem
in [5].

After conformal reparametrization we may assume that (2 is a circular domain
where the inner circle is the unit circle S' and f(S*') = vy,. From the approximation
arguments in [4] and [5] we may assume that the map f is simplicial with respect
to some triangulations of 2 and M. Therefore the image surface f({2) has a
regular neighborhood N, in M. After restricting the range space of f to Ny, there
is a new map f;:2 — N;. Let H be the subgroup of H,(N;, Z,) generated by
f1(SY). If H is not all of H,(N,, Z,), then there exists a surjective homomorphism
p:H(N,, Z,) = Z, with p((f,(SY)]) = 0. This homomorphism induces a surjective

N, € Ny

Pk-1lﬁk-1
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homomorphism g : m,(N;) = Z,. Since the kernel of p has index two in m,;(N,),
there is a 2-sheeted covering space P,: N; = N, associated to this subgroup. Since
the map f: £ — N, satisfies f;+(m,(2)) < Py«(7,(N,)) = ker (), the lifting theorem
for covering spaces implies that f, lifts to a map f,: 2 — N,. After restricting the
range of f, to a regular neighborhood N, of f,(£2), we get a new map f,: Q2 — N,.

Repeating this construction k-times yields the tower below. As was discussed
in [4] or [5], this construction terminates with a map f,: 82 — N, with f. (S
generating H,(N,, Z,). Here P, is the restriction of P, to N.,, and each N, is a
Riemannian manifold with the pulled back Riemannian metric.

ASSERTION 1. f,:Q2 — N, is one-to-one.

Proof. As H,(N,, Z,) is generated by f,(S"), H,(N, Z,) is equal to the trivial
group or the group Z,. If H,(N,, Z,) is the trivial group, it is straightforward to
check that the boundary of N, consists entirely of spheres (see [4] for a proof). In
this case y = f,(S') lies on some sphere S in the boundary of N,.

In [4] and [5] it is shown that there exists, after subdivision, a simplicial
retraction R :N, — f,(2) such that (1) R|(dN, —f,(3€2)) is locally one-to-one,
and (2) R |dN, covers each 2-simplex of f,(£2) exactly two times.

The Jordan curve vy disconnects the sphere S into two disks D, and D,.
Computing areas, we have

Area (R | D,)+Area (R | D,)=Area (R | S)=<Area (R |dN,) =2 Area (f,).

Hence either the area of R | D, or R | D, is not greater than Area (f,) = Area (fy).
Therefore we may assume that the area of, say, g = P;°oP,0- - -oP,_;°R | D, is not
greater than the area of f. Furthermore, the area of g can be decreased along a
folding curve which is a self-intersection curve of f, () in the case f, (D) is not
embedded (see Theorem 4 in [4] for a rigorous proof of this fact). This contradicts
the original assumption that f is a solution to the partially free boundary value
problem.

Thus we may assume that H,(N,, Z,) is Z,. In this case it is easy to show that
fi(342) is contained in a torus component T of the boundary of N, (see the proof
of Theorem 5 in [4]). Furthermore, as H,(N,, Z,) is generated by f(S;), the
boundary curves of f, (2) are disjoint and are nontrivial homology classes on dNj.
From the simple topology of curves on a torus we may conclude that f, (342)
disconnect T into a collection of closed planar domains, two of which are annular
regions A, and A, where the boundary of the annular region A, consists of f (S')
and part of the other boundary curve of f, ({2).

Let R:N, — f.(2) be the retraction discussed above. Then, as before,
Area(R| A, +Area(R|A))<Area(f,), and so we may assume that
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Area (R | A,) is strictly less than Area (f,). However, the boundary curves of
g =(PyoP,o---oP,_,oR)| A, consists of y, and a curve on the boundary compo-
nent d,. As Area (g) < Area (f), we arrive at a contradiction which shows the map
fi is one-to-one and proves Assertion 1.

ASSERTION 2. f._, is one-to-one.

Proof. If f,_, is not one-to-one, then the map f,_, has singular points which
are double points. As f,_, is everywhere orthogonal to the boundary of N, _,, the
maximum principle or Lemma 5 in [4] implies that the image of the boundary
component of 2 different from S' is not completely contained in the singular set
S(f._1). The arguments in [4] show that there exists a Jordan curve a;:S'— Q or
a Jordan arc a,:[0, 1]— 2 with a(0), a(1) € 32 which bounds with some part of
002 a closed connected domain 2, in @ with 2,NS(f,_)) =a;. Let a, be the
double curve corresponding to a,;. By our choice of a,, the Jordan curve a, will
bound, with some parts of 32, a closed subdomain (2, of 2 whose interior is
disjoint from (2,.

A cutting and gluing argument shows that we can interchange the region (2,
and (2, to get a new continuous piecewise smooth map g: {2 — f,_;(2) with the
same area as f,_,(£2) and such that G =P;°P,o---oP,_,°g is a candidate for a
solution to the partially free boundary value problem. However, the area of G
can be decreased along the folding curve a; which contradicts the least area
property for f. This contradiction proves the assertion which in turn implies part
(2) of the theorem.

Remarks. The previous theorem can be generalized in a number of interesting
ways. For example, one can replace y; by a collection I'; ={vy;, v2,..., ¥} of
pairwise disjoint Jordan curves and vy, by I'; ={a,, ..., a,} a collection of curves
which lies on distinct boundary components of M different from the boundary
components containing the Jordan curves in I';. In this case we assume that there
is a map of a planar domain into M whose boundary curves are I'; UI',. One can
then pose a partially free boundary value problem and if there is a least area
solution to this problem, one can prove that the solution is embedded. The proof
of this fact can be shown using the techniques of proof given in Theorem 3 and in
Theorem 5 of [4].

It is important to note that the existence of embedded solutions to other free
boundary value problems can also be shown. For example, suppose we replace the
condition that vy, and vy, lie on distinct components of the boundary of M, by the
condition that <y, lies in the complement of some compact piece P of the
boundary surface containing vy,. Then if a solution to this free boundary value
problem exists and the boundary of the map is disjoint from 9P, then the solution
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is an embedding. Such free boundary value problems occur naturally for, say,
certain convex subsets of euclidean three space.

The solution to the free boundary value problem in [S] can be generalized to
annular or even planar domains. For example, suppose that vy, is a loop on a
boundary component 3, of a convex M, which is homotopically nontrivial in M.
Suppose vy, is homotopic to a loop +y, on a different boundary component d, of M.
Then there exists an immersion f:{ — M of an annulus of least area with one
boundary curve on 9, and the other boundary curve on d, and so that the induced
map on fundamental groups is nontrivial. Furthermore, f is as regular as the
metric of M and any such f is one-to-one.

3. The equivariant Dehn’s lemma

In [5] we proved the equivariant loop theorem by using the disjointness
property of least area disks. The disjointness property in Theorem 2 for least area
planar domains can also be used to prove the following equivariant theorem.

THEOREM 4 (Equivariant Dehn’s lemma for planar domains). Suppose I' =
{Y1, Y25 . - - » Yu} is a collection of smooth disjoint unoriented Jordan curves on the
boundary of an orientable three-dimensional manifold M. Suppose either the curves
in I' generate a rank (n— 1) subgroup of the first homology group of M or n equals to
two and the curve vy, is homotopically nontrivial in M. Suppose also that the
collection I is the image of the boundary of a map of a compact planar domain into
M. If G is a compact subgroup of Diff" (M) which acts freely on the union of I,
then I' is the boundary of an embedded compact planar domain in M which is
invariant under those elements of G that leave some v; in I’ invariant.

Proof. As G is compact, we may assume that G acts on M as a group of
isometries. Furthermore, it is elementary to construct an invariant metric on M
with convex boundary by averaging the metric on dM and taking the product
metric in a neighborhood of dM. We may also assume that M is compact by
restricting the manifold to a regular neighborhood of the G orbits of the image of
the map of the compact planar domain given in the hypothesis.

By Theorem 1, there exists a smooth embedded connected compact planar
domain {2 of least area in M with boundary curves in I'. By Theorem 2, any two
such least area planar domains are either disjoint in the interior of M or equal.

Suppose now that g: M — M is an element of G which leaves invariant the
Jordan curve v; and suppose g(£2) # (2. As g leaves v; invariant and has no fixed
points on v; g acts on a regular neighborhood of v, as a rotation. As g(2) # 2
and g(£2) is another planar domain of least area, g({2) is disjoint from (2 in the
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interior of M. This implies that g(£2) lies locally on one side of (2. By convexity
(see for example [4] or [6]), the surfaces 2 and g(2) are immersed and transverse
to the boundary of M.

Let J(yi(t)) denote the vector obtained by rotating the tangent vector v;(t)
clockwise by 90 degrees in the tangent space of T, ) dM with respect to the
induced orientation. Define aqg(y,(t)) and a,q)(v:i(t)) as the oriented angle
between the vector J(yi(t)) and the tangent planes of the corresponding surfaces.
After integrating along v, we have

1

0n =J ag(y(t))dt and 6,4, =I ag o (v(1) dt.
0 0

As g acts as rotation on the regular neighborhood of vy;, aq(g(v(1))) = ag)(v(t)
and hence 6, = 6,(). On the other hand, as 2 lies locally on one side of g({2),
either ag(vi(1)) =< a,)(¥:(t)) for all t or else ag(v;(1)) = ay)(v:(t)) for all t. As the
integrals are the same, an(vi(t)) = Yy@)(vi(t)). This shows that g(£2) and 2 are
everywhere tangential to each other along vy,. Therefore, the maximum principle
(or Lemma 5 in [4]) implies that £ and g({2) intersect in an open set. Hence the
disjointness property of (2 implies that £ = g(£2). This completes the proof of the
theorem.

THEOREM 5 (Equivariant Dehn’s lemma for disks). Suppose I =
{¥1,...,7va} is a collection of disjoint Jordan curves on the boundary of an
orientable three-dimensional manifold M. Suppose each vy, is homotopically trivial
in M. If G is a compact group acting on M as a group of orientation preserving
diffeomorphism which acts freely on the union of I, then there exists a collection of
embedded invariant disks {D,, D,, . .., D,} which are pairwise disjoint with 0D, =
v; and whose union is invariant under G.

Proof. After picking an invariant metric, G acts as a group of isometries. As in
the previous lemma, we can assume that this metric is convex and M is compact.
Let D, be a disk of least area with boundary curve vy, and let G - D, denote the
union of the least area disks which are images of D; under G. By the argument
given in the previous theorem, D, is the only disk in G - D; whose boundary
curve is y;. This implies that each of the curves in G - y; bound a unique disk in
G- D,.

If G- v, is not all of I', then let D, be a disk of least area with a boundary
curve in I'\(G * v,) and G * D, be the union of the orbits of D, under the action
of G. As before, these are embedded and disjoint. As the disks in G, * D, and
G - D, can only intersect in their interiors and as they have least area, they do not
intersect. This last fact is proved in [4] where we show that if two embedded
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minimal disks intersect only in their interiors, then there is a closed Jordan curve
in their intersection which bounds two least area disks. Then by a cutting and
gluing argument we can decrease the area of one of the G(D;) which is
impossible.

If G- v,UG - vy, does not exhaust the curves in I', then we can find a new
least area disk D5 with boundary curve in I'=(G - y; UG - v,). Let G - D5 be the
orbits of D,. Continuing this process eventually, we can produce the required
disks G- D,,G - D,,...,G - D,.

COROLLARY. Suppose 7: M — M is an orientation preserving diffeomorphism
of a three-dimensional manifold M which is an isometry with respect to some metric
on M. If 1 leaves invariant a Jordan curve y on the boundary of M which is
homotopically trivial in M, then 7 has a fixed point on M.

Proof. Let G be the closure in Diff* (M) of the cyclic subgroup generated by
1. As v lies on the boundary of an orientable three-dimensional manifold, G
restricts to an effective action on vy. Here G is either a finite cyclic group or S*. By
the previous theorem there is either a fixed point of 7 on <y or else there is a disk
in M which is invariant under 7. If 7 has no fixed points on vy, then the Brower
fixed point theorem implies that v has a fixed point on the invariant disk. This
proves the corollary.

4. The equivariant loop theorem

In this section we are going to prove the equivariant loop theorem by first
proving a disjointness property of a certain generating set of closed geodesics on
the boundary of the three-dimensional manifold and then applying the
equivariant Dehn’s lemma of Section 3. We begin with the following

DEFINITION. Let M be an n-dimensional compact Riemannian manifold
and let H be a normal subgroup of m;(M). Then a collection I'=
{Y1, ¥2,- -+ » Yn» - - .} Of closed geodesics is said to be a short generating set for H if
for each n, v, represents a closed curve in H of least length in the complement of
the normal subgroup of H generated by the free homotopy classes I'=

{Yly Y25+ Yn—l}‘

LEMMA 1. Suppose vy, and v, are embedded distinct closed geodesics on a
boundary surface 3. of a three-dimensional Riemannian manifold M. If v, and v,
intersect nontrivially and are homotopically trivial in M, then one of these geodesics,
say v,, can be expressed as the product of two closed nongeodesic curves in y; U v,,



236 WILLIAM H. MEEKS III AND SHING-TUNG YAU

each with length less than or equal to length of y,, and these nongeodesic curves are
homotopically trivial in M.

Proof. Since an embedded geodesic is determined by its tangent vector at a
single point and the exponential map is a local diffeomorphism, it is easily seen
that v, and v, intersect transversally in a finite number of points. Hence we may
consider vy; and vy, as simplicial curves on 3 with respect to some triangulation of
M. By Dehn’s lemma there exist embedded piecewise linear disks D; and D, with
boundary curves y; and vy, respectively, which are in general position.

Since D, and D, are in general position, they intersect in a compact one-
dimensional manifold with boundary. Let I be an interval component in D, N D,.
The interval I disconnects D, into two closed subdisks D;; and D,;, and
disconnects D, into two closed subdisks D,; and D,,. Let o;=D;N3 and
suppose that a, is the shortest such arc. Then the length of the boundary of each
of the disks D, =D,,; U; D,, and D,=D;, U;D,, is less than or equal to the
length of +y,. Here U; means that we paste the disks along their common
boundary arc I. On the other hand, y, can be expressed as a product of
aD, - 3D, = (a1011) * (a7ias,). Since aD, and aD, are not geodesics, 3D, and
8D, are the required closed curves. This completes the proof of the lemma.

THEOREM 6. Suppose M is a compact orientable three-dimensional Rieman-
nian manifold with a boundary component 3. Let K =Ker (i) be the kernel of the
map iy : m(3) — m (M) induced by inclusion. Then with respect to any fixed metric
on 3, there exists a finite short generating set I' ={y1, v¥2,...,v.} for K. For any
such generating set the geodesics in I" are embedded. Furthermore, any two geodesics
in the union of any two short generating sets are either equal or disjoint.

Proof. We first show that there is a minimal generating set I'={vyy, ¥2,. .., Yu}
for K consisting of embedded geodesics. Since there are only a finite number of
free homotopy classes on a compact surface having length less than a given
constant, we can choose a short generating set for K by sequentially picking the
next free homotopy class of least length. To be precise, suppose by induction
L_i={Y1, Y2 ---,Y.—1} have been chosen. If I',_; is not a short generating set,
then we let v, be a closed geodesic of least length in the complement of the
normal subgroup of K generated by I',,_;. We will now show that v, is embedded.

Since v, : S' — M is a closed geodesic, it is determined by its tangent vector at
a point and its multiplicity which is the number of times it transverses the same
path. As a geodesic of multiplicity one is always in general position with respect to
itself, we may assume that v,(S') is a simplicial curve with respect to some
triangulation of M. Hence v, : S' — M is also simplicial with respect to the pulled
back triangulation on S'.
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Let f: D — M be a branched simplicial immersion such that f | 9D = v,. Then
after restricting to a regular neighborhood N, of f(D) in M, there is a new map
fi: D — N;. As in the proof of Dehn’s lemma (see [4] or [1]), we can construct a
tower where we may assume that the boundary of N, consists entirely of spheres
and each of the manifolds N; are Riemannian with respect to the pulled back
metric. Here P,_,: N,_; = N,_, is the universal covering space of N;_, and N, is a
regular neighborhood of the image of some lift f,_; to this universal covering
space.

Ny, € Nyy

Pk-ll /%k-l

Ni-1

ASSERTION 1. The lift f, has an embedded boundary curve.

Proof. Since C = f,(aD) lies on a sphere, every Jordan curve in the 1-complex
C is homotopically trivial in N, _;. As the fundamental group of C is generated as
a m,(C, p) module by Jordan curves, there is a Jordan curve v’ in C such that
Y' = PgoP,o- - -0 P, _,(7y) does not lie in the normal subgroup of K generated by
I',_;. If C is not a Jordan curve, then the length of v, is not minimal. This shows
that C is a Jordan curve. Since C has less length than any nontrivial multiple of C
and C is homotopically trivial, the lift f, | 0D must be an embedding.

ASSERTION 2. v, is embedded.

Proof. If v, is not embedded, then there exists a smallest m >0 such that
fn|8D is not embedded. By the previous assertion f,..;|0D exists and is
one-to-one. Let f, =icf,.; be the composition of f,.; with the inclusion map
into the total space of the universal covering space P,, : N,, = N,.. By definition of
fr frn is a lift of the map f,, to its universal covering space. Since f,, is not
one-to-one, two points on f,,(3D) must be identified under a nontrivial covering
transformation 7: N,, = N,,..
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First, suppose 7(f.(D)) # f..(dD). Then with respect to the pulled back metric
on N,, Lemma 1 implies that one of these geodesics, say f..(dD), can be
expressed as a product of two closed nongeodesic curves a,, a, with length (o;) <
length (f,.(dD))=Ilength (y,). Hence either Pyo::-oP,,_,oP,(a;) or Pgo-- o
P,_.°P,(a,) does not lic in the normal subgroup of K generated by I,_; =
{¥1, ¥2> - - - » Yn—1} and has length less than the length of +,. This contradicts the
least length property of vy, and shows that v, is embedded in the case
(f (OD)) # £ (3D).

If 7(f,.(6D)) = f,.(dD), then by the Corollary to Theorem 5, 7 has a fixed point
in N,, which implies that 7 is the identity map contrary to our hypothesis about 7.
This shows that this case can not occur and that vy, is embedded. This ends the
proof of Assertion 2.

By induction we can continue this process to find a short generating set I' for
K consisting of embedded geodesics. The argument given above also implies that
any short generating set consists of embedded geodesics.

Let '={y{,...,Vn ...} be a possibly infinite short generating set for K. We
will now show that the embedded geodesics in I' are disjoint and the number of
elements in I" are bounded by 3g where g is the genus of 3. Suppose vy; and v, .,
are geodesics in I' which intersect each other and where k> 0. Lemma 1 shows
that the free homotopy class of one of these geodesics can be expressed as the
sum of two homotopy classes of less length. This immediately contradicts the least
length property for these geodesics and thereby proves the geodesics in I' are
disjoint. This argument also proves the last statement in the theorem.

If M? is a compact orientable surface of genus g and I'={vy;,..., y3,41} is @
collection of 3g+1 disjoint Jordan curves on the surface, then the classification
theorem for compact surfaces can be used to show that two of these Jordan curves
are isotopic. Hence there are at most 3g+ 1 elements in a short generating set for
K where g is the genus of 3. This last observation completes the proof of the
theorem.

THEOREM 7 (Equivariant loop theorem). Suppose G is a finite group which
acts on a compact orientable three-dimensional manifold M with boundary as a
group of orientation preserving diffeomorphisms. Then there exists a collection
A={D,,D,,...,D,} of embedded pairwise disjoint disks in M which satisfy

(1) D,NaM =aD..

(2) The normal subgroup generated by I' ={dD,, dD,, . ..,dD,} is the kernel K
of the inclusion map of the fundamental group of each component 3, of the
boundary of M into M.

(3) The union of A is G invariant.
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Proof. If we produce a collection of disjoint Jordan curves I'={v;, Y2, .-, Yu}
on dM such that the normal subgroup of m,(dM) generated by I' is K and G acts
freely on the union of I', then the theorem will follow from Theorem 5. To prove
the existence of such a I, we first consider a short generating set I' =
{a;, ay, ..., a} given by Theorem 6. If G acts freely on the union of I'', then I"”
is the required collection of Jordan curves. If G has a fixed point on I, then we
carry out the following procedure.

Let N; be a regular neighborhood of the curve vy, on dM that is small enough
so that the collection of these neighborhoods is invariant under G and these
neighborhoods are pairwise disjoint. Clearly, N; is diffeomorphic to S'x[0, 1].
Let I be the collection of all the boundary circles of these regular neighborhoods.
As G acts as a group of orientation preserving transformations of the boundary of
M, and N; is an annulus, any element g€ G which has a fixed point on dN; must
be equal to the identity on N; and hence the identity on M. Therefore G acts
freely on the union of I. By the previous discussion this completes the proof of
the theorem.
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