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An example of a Schroedinger equation with almost periodic
potential and nowhere dense spectrum™

JURGEN MOSER

§1. Introduction

It is well known that the spectrum of a second order differential operator

L8

with a continuous periodic potential q(x) = q(x + 1) with period [ >0 is given by an
infinite or finite sequence of intervals extending to +o. In the latter case one of
the intervals extends to infinity. Here we consider the unique selfadjoint extension
of the above operator considered in C[,,,(R), the space of twice continuously
differential functions on the real line R with compact support. Such a selfadjoint
extension, with dense domain in L*(R), is unique since this problem is in the
“limit point case.”

Little is known about the spectrum of such operators if g(x) is a continuous
almost periodic function, since one has too little information about the solutions
of the differential equation L¢ = A¢ in this case. One knows examples of some
hyperelliptic functions q(x), which are almost periodic, even quasi-periodic for
which the spectrum again consists of a finite number of intervals, one of which
extends to +o. These hyperelliptic functions are, in fact, meromorphic on the
Riemann surface constructed from two copies of the complex plane slit along the
intervals which constitute the spectrum. For these considerations see Dubrovin,
Novikov and Matveev [3, 9].

These examples are, however, in no way typical but rather exceptional, and
generally one has to expect a much more complicated spectrum for almost
periodic potentials. We want to mention a paper by Dynaburg and Sinai [4] in
which it is shown that for quasi-periodic potentials with certain number theoreti-
cal restrictions on the frequency basis there exists a Cantor set extending to

* This work was partially supported by the National Science Foundation Grant, MCS 77-01986.
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An example of a Schroedinger equation 199

infinity which is contained in the spectrum. Recently Riissmann [8] gave a simpler
proof of this theorem and sharpened the result. However, these theorems only
assert the containment of the Cantor set in the spectrum and it is not excluded
that the spectrum is actually a halfline.

Here we want to construct a simple example of an almost periodic potential
for which the spectrum is in fact a Cantor set. Actually, the potential is
constructed as a limit periodic function, which is a function which can be
uniformly approximated by periodic functions (see Besicovitch [1]). These form a
special class of almost periodic functions for which the frequencies are rational
multiples of one fixed positive number, which we could normalize to 1. Even for
this simple kind of potential one finds such a complicated spectrum. We will show
that in the neighborhood of any periodic potential in C(R)-topology there are limit
periodic potentials with nowhere dense spectrum.

The idea of the construction is simply the following: We observe that for a
periodic potential the gaps in the complement of the spectrum are given by the
instability intervals, i.e. those A-intervals for which the solutions are unbounded.
If M=M(A) is the 2 by 2 matrix which takes

() e )

then the eigenvalues u, p~' of M, the so-called Floquet multipliers, are either real
or on the unit circle. They are the solutions of the quadratic equation

w2—Ap+1=0

where A = A(A)=tr M is the so-called discriminant. The instability intervals are
characterized as those real A for which |u|# 1 or A>>4, and their boundaries by
n?=1 or A==2. It is possible that such an instability interval collapses, which
amounts to a double root of A2—4. This situation occurs precisely if all solutions
of the eigenvalue equation L¢ =A¢ are periodic of period 2[; therefore one
speaks of coexistence of periodic solutions, a case which has been frequently
discussed in the literature [6, 7].

A potential q(x) of period | has, of course, also 21, 3], ... etc. as periods, and
considered as a function of period ml the matrix M has to be replaced by M™ and
mwby um, and A by 4, =p"+u™

For m =2, 3, ... the roats of the equation A2, =4 correspond to roots of unity
w:w?™ =1 and for these A one has a periodic solution of period 2ml. However,
these roots, which are not also roots of A®>=4, are all double roots of A% =4 ie.
we always have coexistence for all roots of (A% —4)/(A*—4). This is simply due to
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the fact that for eigenvalues u, ™' = & which are roots of unity different from +1
the eigenvectors of M are linearly independent and are the initial values of the
desired periodic solutions. This coexistence is due to the fact that the potential has
the period | while the period of the solutions is 2ml. However, if we perturb the
given potential with a function of period ml the coexistence will in general be
destroyed and an interval of instability will be formed. If we apply such a
sequence of perturbations with longer and longer periods the instability intervals
will become dense and the resulting potential a limit periodic function.

The fact that generically coexistence of periodic solutions is destroyed is not
surprising. But it is important to observe that a double root of A% —4 will not
disappear under perturbation but generically split into two real roots. Assume we
have A, =+2 at such a double root, then it turns out that after a small
perturbation the local maximum of the corresponding discriminant is always =2
and generically >2. This fact can be derived from a closer investigation of the
second variation of 4A,, (see Section 4).

Aside from proving the above statement we will discuss the Floquet theory
from a geometrical point of view. Our discussion is based on the rotation number

_ i 22 V() iy’ (x))

X—»0 X

which exists for any periodic potential, and is the same for any nontrivial solution
y of Ly = Ay. This defines a continuous monotone increasing function a =a(A)=
0 which is constant on the intervals of instability, but strictly increasing on the
spectrum. In fact, in the interior of the spectrum one has

d(a?)
dA

where equality can occur at any point only if q is a constant. The constant values
of a on the instability interval are of the form (w/l)j, j=1,2,3,... In [3] the
quantity a(A) is referred to as ‘“‘quasimomentum.”

It is conceivably a generic phenomenon, in the sense of Baire category, that
for a limiit periodic, or even an almost periodic potential the spectrum is such a
Cantor set. This will not be proven here.* In particular, it would require the
existence and continuity of the above rotation number a. Actually this limit exists
and depends continuously on A for an arbitrary continuous almost periodic
potential, as was proven recently by Russell Johnson, USC. Moreover, a spectral
theoretical interpretation of a =a(A) can be given, showing that the set of
constancy intervals of a(A) agree with the complement of the spectrum.

21

* Added in proof: We learned that J. Avron and B. Simon just have proved such a resulit.
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These results will be presented elsewhere and here we restrict ourselves to
proving the underlined statement.

Our aim will be to construct a limit periodic potential q(x) for which the
function a = a(A) also exists and is a Cantor function: It is continuous and takes
any rational value of the form j/2", j=1, n=0 both integers, on an interval of
positive length. The complement of these intervals forms the spectrum of the
operator L =—(d/dx)*+ q(x).

It is a known phenomenon that the rotation number a =a(A) of a circle
mapping M(A) depending on a parameter generally takes all rational values on
intervals of positive length. This is connected with the “lock in”> phenomenon of
nonlinear oscillation. A rational mapping of this type can be found in [5]. For the
circle mapping induced by

(2)-mn)

on the rays through the origin this does not happen however, because of the
linearity of this mapping. The point of the present note can be seen in the
observation that the phenomenon of dense resonance can occur even in the linear
case, if the coefficients are almost periodic.

The paper [10] by G. Scharf is devoted to the study of the spectrum for almost
periodic potentials. His result can be also used to effectively investigate the
rotation number a(A), and describe a(A) as the boundary values of a positive
harmonic function in the upper halfplane. However, the phenomenon of dense
spectrum was not noted there. In some recent preliminary draft Joseph Avron and
Barry Simon (“Cantor Sets, Almost Periodic Hill’s Equations, and the Rings of
Saturn,” Cal. Inst. Technology) announced various statements about the spectrum
of almost periodic potentials, as well as the appearance of Cantor sets as
spectrum.

Finally, I should like to thank Russell Johnson for supplying me with a proof
of the existence proof for the rotation number for almost periodic potential as
well as for substantial advice. Also I am grateful to P. Deift and E. Zehnder for
reading the manuscript and suggesting improvements.

§2. The rotation number
We consider the differential equation

y'=Q(x)y (2.1)
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where Q(x) is a real continuous function of period [. Later on we will take
Q(x)=q(x)— A so that Q depends on the parameter A. With this equation one

can associate a flow on, a torus by identifying points c(;,) for ¢# 0 in the plane.

Or introducing polar coordinates (Prufer transformation, see [7])
y=rsin 6, y'=rcos@ for r>0

one finds the differential equation

46 _ cos? 8 — Q(x) sin? 0 (2.2)
dx

which can be viewed as a vectorfield on the torus by identifying € mod 27 and
x mod L. For such a vectorfield the rotation number

. 0(x)
a=lim—

X —>»00 X

exists and is independent of the choice of 6(0). Since arg(y—iy')=60—m/2
(mod 2) it follows that for any non vanishing solution y(x) of (2.1)

_ i 8071y’ (x))

X —>»00 x

exists and is independent of the particular solution. It also does not matter that
the argument is defined only mod 27 since this constant drops out in the limit.

It is useful to express a in terms of the number N(x) of zeroes of a nontrivial
solution in the interval (0, x). Since at zero ¢ of y(x) the angle 6 is an integral
multiple of 7 one sees from (2.2) that df/dx=1>0 at x=¢, i.e. 0 increases at
such a value. From this fact it follows readily that

0(x)— 7wN(x)

is bounded for all x and hence

a = lim Nx) . (2.3)

X 300 X

By Sturm’s comparison theorem [6] one sees at once: If Q(x)= Q(x) are two
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periodic function and «, @ the corresponding rotation numbers then
aZ=aq, 2.4)
for any choice of the corresponding nontrivial solutions y, y. This shows again the

independence of a from the particular solution, if we take Q = Q. Moreover, by
(2.3),

1\

a

0. (2.5)
Finally we relate a to Floquet theory, in the case that the Floquet multipliers

u, ! are not real, the stable case. In that case (2.1) admits a complex solution
w(x) satisfying

w(x+1)=puw(x), (2.6)
or with u =e*®, B being defined only mod 2,
w(x) = e®p(x)

where p(x) has period | and does not vanish. Therefore p(x) describes a closed
curve with an integer winding number

1 lpr .
ZwiL p & =f .

Replacing B by B +2mj we can achieve that this winding number is zero and this
way define 8 completely and not only mod 27r. We can take B =0, otherwise we
replace w by w and hence B by —§.

This solution can be written in the form

w(x) —_ ei(Bx/l)p(x)eis(x) (2.7)

where both p(x)>0, s(x) have period I. We show that
B = la. (2.8)

For this purpose we consider the real solution

y =Re w(x) = p(x) cos (%J—C+ s(x))
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and note that the number N(x) of zeroes in (0, x) satisfies
Nx-EX=o01)
a l

so that (2.3) implies (2.8).
The Floquet solution (2.6) is determined only up to a complex factor c#0.
One usually normalized |c| by requiring that the Wronskian

ww' — ww' = —2i.

One computes from (2.7) that this Wronskian has the value

—2ip? (%+ s')
so that
E+ s'=p2

l

Inserting this into (2.7) we find the differential equation
p"=Qp+p~>. (2.9)

From the above relation we find
1 x
a _B_ lim — L p (1) dt
[ x—e=x

On the other hand p being a positive function of period ! we find

1 (! 1!
a==-| p2dx =7 L |w(x)|72 dx (2.10)

showing again a« =0, and even a >0 in case of stability.
For an actual calculation of a (mod (27/l)) we return to the Floquet matrix:
Let Y(x) be the two by two matrix satisfying

, (0 1 _
Y_(Q(x) O)Y, Y(0)=1. (2.11)
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Then the Floquet matrix M is given by M = Y(I) and its eigenvalues u by
p?*—Apn+1=0 where A=trM.
Hence in the stable case, u = e® we have
A=u+pn'=2cosp

or
A =2cos la. (2.12)

Now we take Q(x)=q(x)— A, so that, for fixed q(x), « becomes a function of
A. By (2.4) it is a monotone increasing which is, moreover continuous. This is a
well known property of the rotation number, due to P. Bohl (see, e.g. [5]). For
A <min g(x) one has Q(x)>0, and so any solution has at most one zero, i.e.
a(A)=0. On the other hand, again by Sturm comparison theorems a(A)— + as
A — o, 50 that « takes on all nonnegative values. In the stability intervals one has

o= el

for the Floquet multiplier. Because of the continuity and monotonicity one

concludes that in the instability intervals a is a constant, an integer multiple of
m/l.
If we define the clipped discriminant

+2 if AAN)>2
A,N)=<4A) if 2=A\N)=+2
-2 if AAN)<-2
then we have from (2.12)

A (A)=2cos la(A).
Incidentally, although « is differentiable in the interior of the stability interval it

does not even have a one-sided derivative at the boundary of an uncollapsed
instability interval, since a behaves like V|A — | there.

§3. «(Q) as a functional

We saw that a(Q) is a monotone decreasing functional in the sense of (2.4). It
is generally not differentiable but for a potential Q for which one has nonreal
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multipliers p it has a functional derivative 8a/8Q = —k(x), defined by

4 (@5t o= —L k(x)g(x) dx

for any continuous g(x) of period I. We insert the minus sign, since k(x) will turn
out to be positive. In particular, if Q=q(x)—A we set a(Q)=a(A, q) and get,
with §=—1,

da !
o L k(x) dx. (3.1)
Dubrovin [2] showed that

(=2 =12 (32)

where w is the Floquet solution (2.6) normalized by ww'—ww'=-2i. We will
derive the relation (3.2) at the end of this section. Thus k(x) is positive (if the
Floquet multiplier is not real) which shows that a = a(A, q) satisfies the estimate

Bal <supoal - [ k(x) dx =supoa] - 2= (33

We also derive from (3.1) and (2.10)

2 ! :
d(a )zzaiq=le“2de p2dx§1

dA o 1?2

by Schwarz’ inequality. Equality on the right occurs only if p, and hence g, is a
constant. This proves a statement of the introduction.

Although the functional a = a(Q) is not everywhere differentiable, the discri-
minant A =tr Y(I) is.

By solving the differential equation

(0 1 : -
z—(Q 0)z+(aQ)EY, Z(0)=0

for the first variation Z=8Y of Y where Y(x) is the fundamental solution of
(2.11), we verify readily

84 » (00
5-6=tr(Y(l)Y (x)EY(x)), E—(1 0). (3.4)
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In similar forms this formula can be found in [7], [9]. We rewrite it in several
different forms.

If we write the fundamental matrix Y(x) in the form

Yo = (” yf)
yi ¥2

then y,, y, are linearly independent solutions of (2.1) normalized at x=0. In
terms of these solutions (3.4) takes the form

gg—=Ay%(x)+BY1(X)Y2(x)+CY%(x)
(3.5)

A=y,(1), B=y;()—-y,(), C=yi().

The three products y3,y,y,, y5 are linearly independent functions since their
Wronskian is

2(y1¥5—yiy2)*=2+#0.

In particular, we see from (3.5) that A has a critical point, i.e. 84/6Q =0, if and
only if A=B=C=0, i.e. if Y(I) is a multiple of the identity. Since its determin-
ant is 1 this means that Y(I) = +1 which in turn means that all solutions of (2.1)
satisfy

y(x+1)==£y(x), (3.6)

or y?(x) has period I. We conclude: The discriminant A(Q) has a critical point at
Q if and only if y*(x) has period 1 for all solutions of (2.1). In terms of the function
A=A(A q) the condition is equivalent for A>—4 to have a double zero, as
function of A (see [7]).

The gradient 84/8q can be represented in another way as

¢+D
¢'(£)

where ¢(x) is a nontrivial solution of (2.1) with y(£) =0, y'(£€) # 0; of course, ¢(x)
depends also on &

It suffices to prove this result for £ =0, since the general result follows by
translation. Setting x =0 in (3.5) we find

oA
30 (&)= (3.7)

34
50 (0) = y,(I)



208 JORGEN MOSER

which proves (3.7) since y,(0) =0, y5(0) = 1. We conclude from (3.7) that 4/86Q
has period [

Finally, we express 84/6Q =K(x) in terms of the Floquet solution (2.7),
assuming now that the Floquet multiplier of (2.1) is not real. Then on account of
(3.5) 84/8Q can be expressed as a linear combination of the 3 products w2, ww,
w2 and since it is of period [ it must be a multiple of ww = p?. If we normalize w
again by ww'—w'w = —2i the constant is determined by

é
o4 _ p?sin la,

8Q

as we will show now. This will lead to a proof of (3.2) if we differentiate
A =2cos la and use 6a/6Q = —k.

The determination of this constant could be done as follows: We use that the
products y,y, of solutions of (2.1) as well as K satisfy the third order differential
equation

K"—-4QK'-2Q'K =0.

In the stable case K is a solution of period | of this equation, by which it is
determined up to a constant. This equation possesses the integral

K(K"-2QK)—-3K"

as one verifies immediately. Its value can be determined at x = 0, since from (3.5)
one finds K(0)=y,(l); K'(0)=y5()—yi(l), K"(0)=2(y,()Q(I)—yi(l)) that the
above integral has the value

= =2y1(D)y2() = 3(y5(D) — y.(D))?
==3(y5() +y1()*+ 20y, (D y5(D - yi()y, (1))
=—3(tr Y(1))*+2

=3(4-4% =3} —pn ")?=2sin® la.

On the other hand from the differential equation (2.9) we obtain for R = p?
R(R"-2QR)—-3R"?=2

so that indeed
K = %p?sin la.

To show that the sign is + we can use the monotonicity of a.
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§4. The second variation of A

The collapse of an instability interval at a point A* corresponds to a double
zero of A%—4, which by the previous section is tantamount to the vanishing of the
first variation 84/8Q at Q =q(x)—A*. At such a point we will need the second
variation of A, which we now compute.

Therefore we assume that for the considered function Q(x) all solutions of
(2.1) satisfy (3.6). Replacing Q(x) by Q(x)+ &4(x) we determine the correspond-
ing fundamental matrix

Y(x)+eY,+e2Y,+- - -.
It satisfies the equations

Y'=FY
Y} =FY,+GEY
Y, =FY,+4EY,

where
_ 0 1)_ _(O O). _ _
F—~(Q ) E=( o) vo=v0=0
With

Sx)=Y Y (x)EY(x)

one solves the equations in the form
Y= Y0 | S0a(0)

Ya(x) = Y(x>[° L S(OS()a(0)d(s) dx di.

From these relations one computes readily

124
2 d82 €=0

=tr Y(I)= :t% Ll thr (S(O)S(s))d(D)d(s) ds dt
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where the sign corresponds to that of Y(I)=+1. Further we find

tr (S(1)S(s)) = —(y1 (1) y2(s) — y1(8)y2(1))>.

This expression is the same for any basis of solutions ¢,(x), ¢,(x) with
Wronskian+ 1, so we have

1d%A

2 de?

1 1 {
=3[ | 6060~ 6060074005 ds
l 1 l 2
-~ | otaax| staax+ ([ s100a5)’ (4.1)
Finally, if we introduce the 3 functions

D, =Xdi1+32), DP,=3di-93), DP:=¢1¢; 4.2)

of period [ we get

o = (f 20 dx)z + (Ll D,4 dx)2 + (Ll ®,q ds)z. (4.3)

We see from this formula that the second variation is a quadratic form of rank
3 and its null space N is the orthogonal complement of the space of ®,, ®,, D,.
Moreover, the quadratic form (4.3) has a 1-dimensional subspace on which it is
negative definite and a two-dimensional subspace on which it is positive; it is of
type (2, 1).

We obtain for Q = q(x)— A, § =—1 the second A-derivative, and get from (4.1)

1d2A 1 l l 2
:1:-2--&:\-2'=~L d)% de (b% dx+(L d)ld)zdx) <0.

The negativity follows from Schwarz’ inequality. Hence, at a point A* at which
AA*)=+2, A'(A*)=0 one has always a nondegenerate maximum, and similarly
for A(A*)=-2, A'(A*) =0 a nondegenerate minimum.

:i:—1~ d2A
2 de?

PROPOSITION 1. Consider the potential q(x)+ £q,(x) of period | where for A*
A%, q)==2, A'(\*, q)=0.

Unless q, lies in the space span {1, N} (where N is the orthogonal complement of
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D,, D,, D,) then for e #0 sufficiently small at some point A*(e) near A* we have
|A(A*(e), q +q,)| > 2.

This proposition expresses that generically a collapsed instability interval will
“open up.”

Proof. We give the proof in the case A(A*, q) =2. With some constant k we
set

Qlx, £)=q(x)—A*+e4(x), §=q(x)—«.

If we determine k so that

l l l
O=L®1édx=L ?,q, dx——x[) @, dx

- this is possible since @, >0 - then the right hand side of (4.3) is positive, unless §
is orthogonal to &,, @,. By construction it is orthogonal to @,, i.e. §=q;—« €N,
which would contradict our assumption. Hence for A*(g) = A*+ ke we have

Q(x, €)= q(x)— A*(&) + £q,(x)
and from the Taylor expansion of A(Q)

A(A*(e), g +eq,)>2

if £# 0 is sufficiently close to zero, as was to be proven. The same argument holds
clearly for the case A(A¥, q)=-2.

In particular, we can always choose q, so, that the local maximum of
A(A, q+¢€q,) near A is larger than 2.

This can be made more explicit if one makes use of the fact that the basis

&1, ¢, can be replaced by (ad, +bd,, cd, +dd,) where ad —bc =1 by which P,
®,, &, are replaced by

3

2 Cite P

k=1
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where the matrix C=(c;) is given by

C=3a*+b%>-c*-d?» Xa%’-b*—c?*+d? ab-c

3a*+b%*+c?+d?) La*-b*+c%?-d? ab+c
dl).
ac +bd ac—bd ad + bc

PROPOSITION 2. It is always possible to find a basis ¢,, ¢, of (1.2) with
Wronskian = 1 such that the three functions ®@,, ®,, ®; of (4.2) satisfy

l
L DD . dx=0 for j#k.
In other words, for this basis we have
l l 1 1
[#tax=[otas [ r.ax= i62ax-0

We indicate the proof. The main observation is that the mapping x — Cx;
x € R? preserves the quadratic form x?—x3—x3, so that Ce SO(1, 2). In fact the

mapping

a b)

(c d —C
defines a homomorphism of SI(2) into SO(1, 2). This mapping is not onto, but
only onto the component of SO(1,2) containing the identity, which is charac-

terized by c;;>0.
Now we apply the theorem of linear algebra that the two quadratic forms

[ 3 2
L (Z x,-(IJ,-) dx and x?—x%-x2
=1
can be simultaneously diagonalized, i.e. brought into the form
KiX3+Kx2+K3x3,  x2—x3—x3
by a linear transformation. Such a transformation belongs to SO(1, 2) since the

second form is preserved. Since we can still replace x; by £x; we can assume that
the linear transformation belongs to the component of SO(1,2) containing the
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identity. Therefore this transformation can be realized by a change of basis

(¢1, d2) = (ad; + b, cd, + dob,).

If we write ¢ in terms of such a basis
3
4= £&d+n, neN
i=1
then (4.3) takes the form

1d%A
22| —-asr g A @4

=0

where
l
A= L d? dx.

We mention that the above basis ¢,, ¢, is unique up to the obvious changes

(b1, d2) = (P, $2), (a2, — 1)
if A,# A,, ie. if
l 1
[[otronaxro st03ax
If this condition is violated the basis is fixed only up to a rotation.

The representation (4.4) makes it clear that for § = &P, +£:P; # 0 the max-
imum of A(A, q+¢4) near A™ is increased.

§5. Construction of the example

We normalize the basic period to l,= and consider an arbitrary continuous
function qo(x) of period l,. In any neighborhood of g, we will construct a limit
periodic function q(x) with a Fourier series '

q(x)=ay+ Z (a;s cos s277x + by, sin s277x)

is=1
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for which the rotation number a(A, q) = a(A) takes on every rational number of
the form s - 27", s=0, t=0 on an interval of positive length. More precisely, we
will prove the

THEOREM. Given n>0; qo€ C(R) of period w there exists a limit periodic
continuous function q with basic frequencies 277 (j=0,1--") in |lg—qoll<n for
which (i) the rotation number a(A) = a(A, q) exists and is continuous, (ii) a(A) takes
on each rational numbers of the form s - 27", s, t =0 on an interval of positive length
and (iii) the union

E= U inta™'(s-27)

5,t=0

of these intervals is dense on R. E is contained in the complement of the spectrum
o(L) of L=—D?+q; hence o(L) is nowhere dense.

Remark. According to some recent result by R. Johnson the rotation number
exists and is continuous for every almost periodic continuous function q(x), so
that (i) follows. For completeness we give a proof of (i) on our simpler situation.

Proof. (a) We write the rational numbers of the form s-27's=1, t=0 as a
sequence r. We choose the labelling in the following way: r,=3, r,=1, then
rs, T4, . .., Ig denote all rationals =2 with denominator 22=4 not listed before,
and more general, r,(y_1)+1<'* ' <r,u =N denote all rationals of denominator
2" in 0<r=N not listed before. Thus ry,r,, ..., is a list of all positive
rationals with denominators 1, 2,22, ..., 2" in the interval 0 <r=N. One verifies
that »(N)=N - 2N,

We set also [, = 72N for »(N—1)+1=j=v(N), N=0 so that

S S:
=y TN (5.1)

with some integer s;.

We will construct q(x) as the limit of continuous functions q,(x), v=0 of
period [, for which the rotation number a, (1) = a(A, g,) takes on the value r, on
an interval of positive length.

In the following we will constantly use the fact mentioned already above, that
for any periodic function p the rotation number a(A, p) depends continuously on
A, and also on p in the class of continuous functions of fixed period. Moreover,
the spectrum of —D?+p agrees with the set of A where a(A,p) is strictly
increasing. These facts, not obvious, for a limit periodic function will be forced for
the function q by the construction of g, for which q =1lim,_,.. q,.
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(b) Construction of gq,: We assume that g;(x) of period [ j=1,2,...,v are
constructed already so that o;(A)=a(A, g;) takes on the values ry,7,,...,7 on
intervals of positive length. Moreover, €, >0 is any positive number which may

depend on qg, 41,...,q,, and n>0; then we construct a continuous function
q,+1(x) of period [, ., such that

”qv-%-l - QV“ < €, (5.2)
and such that a,,,(A) = a(A, q,.,) takes on ry, r,, ..., 1., in intervals of positive
length.

Since a,(A) is a continuous monotone increasing function taking on all positive
values there exists a A* = A¥ such that

a,(A*) =1, (5.3)

If «, takes this value on an interval of positive length, then we set q,,.,=gq,. If,
however, A* is uniquely determined by (5.3) then the discriminant A(Q) (with
respect to the period I, ,,) has a critical point at Q = g, —A*. In particular, this will
be the case if I,,;>1,. According to §3 all solutions of y"=(q,(x)—A™)y satisfy
(3.6) with [=1,,,. Therefore, if ¢,, P, is a basis with Wronskian 1, then the
functions @,, ®,, @, defined by (4.2) have period [, ;. If ®,, P, are normalized so
that the @, are orthogonal then we set

qv+1 = qv + 8¢3' (54)

Then A(A, g,.,) has the value r,., are a noncritical value, if € >0 is near zero. It
also has the period [, , since [, divides L, .,. Moreover, if ¢ is chosen small enough
the noncritical values ry, r,,...,r, are also noncritical for g,,, and (5.2) will be
satisfied. This completes the construction of the sequence of periodic potentials g,
of period [,.

(c) Smallness condition: Now we will select the numbers ¢, recursively so that

(i) g, converges uniformly to a limit periodic function q in ||q —qoll<n.

(i) o, (A)=a(A, q,) converges uniformly on compact intervals to a continuous
function a(A), having the properties given in the theorem.

(iii) The rotation number a(A, q) exists and agrees with a(A).

(iv) The interior of the intervals of constancy of a(A) form a dense set E on
the real axis.

(v) The spectrum of —D?+q is contained in the complement of E, hence is
nowhere dense.

In the following we will prove these five claims which imply the above
theorem.
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In order to define the £, we introduce the resolvents

R,(A\)=(-D*+q,—A)""; R@A)=(-D*+q—-A)"". (5.5)
By construction the interval L, =a;'(r;) is for j=0,1,2,...,v an interval of
positive length whose interior belongs to the resolvent set of —D?*+gq,. For j=1
these intervals are bounded and for j=0 it extends to —«. Let 7,>0 be a

monotone decreasing sequence tending to 0 and pick for j=1 a closed subinterval
I! ,<int I, with the same center as I;, and so that the measure

m(l, - I],) <27, (5.6)
For j=0 we take If, as half infinite interval with

m(lo, —I5,) <7,
Then R, (M) is bounded in I/, and we set

ax sup |R, (A)|.

B,=m
Osjsv Aell,

Let >0 be the number given in the theorem and 6, a positive sequence
satisfying

Y 5,-1.
v=1

Then we set ¢,=m6; and for vr=1

s __Qy__ 6v-—~1 61 }
€, =min {Tl5v+1, 3B.°2B,” ’2B.J (5.7

Then from (5.2), (5.7) we have, in particular,

‘|QV+1 - qv“ < n8v+1'

Therefore the sequence g, converges uniformly to a limit periodic function g(x)
with

la—gdl<n ¥ 8, =mn

v=1

verifying (i) of our claim.
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From the other restrictions of (5.7) follows that for any fixed v and p=
0,1,...

=

2B,

HQV+p+l - qv+p

and hence

1 (8;+8,++-4)= 1 (5.8)

— =
.0~ a5 T

From this we conclude that I/, belongs to the resolvent set of —D?*+gq, ., for any
p 20. Indeed, from the resolvent identity

Rv+p(A) - Rv(A) = Rv+p(qv - qv+p)R1l

we obtain the estimate

IR+, MI=IR, (M (1=, —a,ll IRL)D .

For A €I, we have by (5.8)

1
lg,+p =gl IR, (M) =57 IR, (M) =3

" 2B,
and hence
IR, .,(A)|=2B, <x

which proves that I/, belongs to the resolvent set of —D*+q, ,,,.
The same holds true for any potential

qtthv+(1~t)qv+pa 0§t§ 1,

and hence the value of its rotation number is rational for A € I},. Because of the
continuous dependence the value of a(A, q') is independent of t, and hence

a,.,(A)=a,AN)=r, for Aclj and jEv=v+p.
Therefore

Il .<I;,., for jsSv=v+p. (5.9)
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In particular, if A; is the midpoint of I;; we have A; e I; and
a,(A)=a;(A)=r, for vz=j (5.10)

This proves that for A = A; the sequence of monotone functions a,(A) con-
verges for v—. We claim that it converges for all real A. Indeed, given any
A, € >0 we can find A;, A, so that

for all v=j, k. This is possible since all numbers r; — which form a dense set — are
taken on by a,(A). Hence for any p >0

le, M) =4, (M) <26 if A, <A, A <A
In particular, for A'=A we see that a,(A)— a(A) and
la(A)—a(r)|<2e for A <A A'<A.

This shows that a,(A) converges to a continuous monotone increasing function
a(A), taking on all values =0. Moreover, by (5.10),

a(\)=r,.

Similarly, we see that the convergence a, — a is uniform on compact sets.
Indeed, otherwise there would exist a sequence A™ — A for which
la, (A™)—a(A)|>8>0. But if £ =18 and if we construct A;, A, as before such that
A <A<N, 0<rn <r+e then for any sufficiently large n we have A, <A™ <A,
and hence

o, (A") (V)| <22 =38,

which gives the desired contradiction.
Next we show that a(A) is indeed the rotation number for y”" =(q(x)—A)y: Let

«_ _— N(xA) . N(x,A)
a” = lim , oy =7 lim

X —»00 X X —»00 X

for any nontrivial solution y(x) of our differential equation, say one with y(0) =0,
y'(0)=1. Set

n, =llg—a.|l
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and

&:qv—nv’ (Z:qv+nv
so that

q,(x) = q(x) = q,(x)
and q,, q, are periodic functions of period I,. By the comparison argument we
have for the number of zeros N(x, A, p) of a nontrivial solution of y"=(p—A)y
with y(0)=0

N(x, A, ¢,)ZN(x, A, q)=N(x, A, q,)

and hence

o,A+m)=aldl+mn,q)=a, q)Za* M) ZaxN)Za(r, q)=a(r—1,,q,)
=a,(A —m,).

Because of the uniform convergence on compact sets of a, — a we conclude that
aM)Za*(AN) = ag(A)=a(r),

i.e. we have equality in all places. This proves (iii) of the claim.
Next we show that the set

E=U inta'(r) (5.11)

is dense on the real axis. For this purpose we make use of the special labelling of
the rational numbers r,, which was chosen so that ry, r,, . . ., 1, is @ complete list
of all rationals with denominators 2V in the half open interval (0, N]. We set

Qn (x) = gy (), Ay(A)=a(A, Q)
and analogue to I, we define the intervals
Jin= Agxl('})-

We pick a closed subinterval J/y<int J;, j=1 with the same center as J;y and
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so that the measure

m(J;n—JInN) <2ty (5.12)
where

IN = To(N)-

The half interval J} y is defined similarly as Ij,. We show more than (5.11) if we
establish that the set

o  v(N)
E'= NUI 'Uo JincE
=1, j=

is dense.
For this purpose it is obviously sufficient to show that for any open interval
AcR!

v(N)

AN U Jin# D (5.13)
i=0

if N is large enough.
We chose a compact interval [A,;, A,]> A with A,>0, A; <min, (qo(x)—7m) so
that Ay(A)=0 for A =A,. Moreover, we pick N so large that

AN(A) = o= N for A= Az. (5.14)
This is possible, since by (2.2), for A >0

B < 1+l0ul+ A <1+gdl+ 1+

hence
AnA)=1+|goll+m+A

and (5.14) follows if we choose
N=1+|qoll+n+A,.

By construction Ay takes on all rationals ry, 75, ..., 71, On intervals of
positive length, i.e. none of those intervals in [A;, A,] collapse to a point.
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We estimate the distance between two neighboring instability intervals

[ =T = AR,  [& nx]=Ti=AN () (5.15)
where r,r"=r+27" are two neighboring numbers of the set ry, 7y, ..., oy, SO
that

En <mn <EL<mR.

Then the distance between Jy and J{ can be estimated by
0<&N—mn<3N27N, (5.16)

For the proof we recall that Ay (A) is strictly monotone increasing in ny <A <
&% and by the inequality below (3.3) satisfies there the inequality

i 2\ >
I (Ap)z1.

Hence, with r=s27N,

2s+1

o =3N2N

d
G = [ (AR dh = (P

since 1=s=N - 2", which proves our estimate (5.16). This shows that the gaps
between adjacent instability intervals tends to zero. Because of the construction of
the J/, the distance of these intervals intersecting [A;, A,] will be at most
2ty = 27,(n) bigger, i.e.

=3N 27N +2¢..

Since this sequence tends to zero this number will be smaller than the length of 4
if N is large enough. This proves (5.13), and hence the claim (iv).

Finally we observe that by construction the intervals J!y, J=0,1,..., »(N)
belong to the resolvent set of L =—D?+q. Therefore, since E' is dense, the
spectrum of L is nowhere dense, and all our claims of (c) are proven.

The theorem at the beginning of this section is clearly a consequence of these
claims.

Remark 1. We showed that the spectrum of L =—D?*+q is contained in the
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complement of the set E, defined by (5.11). Actually this spectrum agrees with the
complement of E, as we want to verify now.
For this purpose we first show that the intervals

NS A;Il(r) = [§N’ TIN]
tend for N— « to the interval
a ' =[¢& n]

for any r=r,
By our construction the interval J4 belongs to the resolvent set of —D?+ gy,
for every M= N. This implies

Am (N =Ju>Jx=[é, ni] for M=N. (5.17)

On the other hand, the right endpoint mn,, of J,, stays below the interval (J)
contained in

Jh=A "), rr=r+27N,
Using our estimate (5.16) for the gap between Jy and J3, we find
M =&ntitn=nn+3N2 N+ 1y
and because of (5.17)
M =MNZ NN~ In-
for all M=N. These relations show that m, is a Cauchy sequence, and let

n* = limy_.. NN Similarly & — £*.
From the convergence of Ax(A) to a(A) it follows that

[£*, n*]<[& n]l=a"'(r),
hence n*=n. If, however, n* <7 then also
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for large N which implies
r<r’=An(D)=Av(n).

This is a contradiction since the right hand side tends to a(n)=r. Hence n*=1n
and similarly one proves £*=¢, i.e.

[£*, n*]=a7'(r).

Finally we show that any point {¢ E belongs to the spectrum of L =—-D?*+gq.
Since E is dense there exists a sequence {, € E converging to E. Moreover, we
may take {, as the left endpoints & of Jy which belong to the continuous
spectrum of Ly =—D?*+qy.

It is a standard result that the cluster spectrum of L, converges to that of L
since

IL —Lyn|=llg—gnll— 0.

Hence ¢ belongs to the spectrum o(L) of L, hence E° < g(L). Since we know
already that o(L) < E° these two sets agree.

Remark 2. The spectrum o (L) is a Cantor set, in particular a nowhere dense,
perfect set. It remains to show that every point A* e o(L) is the cluster point of
a(L). For this purpose we set a(A*)=a and choose a sequence a, — a, where a,
are different irrational numbers. Then the a '(a,)=A, belong to o(L) and,
because of the continuity of a(A), A™ is the only cluster-point of {A,}. This proves
our claim, since A, € Ec =a(A).

Remark 3. By the same argument one can construct such limit periodic
potentials which are real analytic and not only continuous. One would pick g, real
analytic and replace the norm | || by

lall= sup |q(x)|

Im x|<p

for some fixed p >0. The above argument goes through and yields a real analytic
potential q(x) with the above properties.

Remark 4. We mention without proof that the functional a = a(q(x)—A) for
fixed period [ is Holder continuous in the sense that

Ia(ch“)t)'"a(‘h—/\)‘éc"Ch"(h“l/z if |lg.—qoll<1
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where ¢ = c(l, M) depends on | and a bound for

lqall, llaall = M.

However, ¢ grows exponentially with [, like exp 3IM, and one can not hope to
have Holder continuity for limit periodic potentials.

Finally we remark that the existence and continuity of a(A, q) can actually be
established for any almost periodic function q(x), as was shown by R. Johnson.
Moreover, one can relate this rotation number to the spectral resolution. In
particular, it is a constant in any interval contained in the resolvent set of —D?*+q.
In our case 2a(A, q) takes the values

s

21'

in the resolvent set which are precisely the nonnegative number of the frequency
mod 1. It is interesting that this phenomenon generalizes to quasi-periodic poten-
tials, i.e. 2a(A, q) takes on values of the frequency module when A is in the
resolvent set. These and other properties of the rotation number will be published
elsewhere.
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