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Curvature, diameter and Betti numbers

MicHAEL GROMOV

We give an upper bound for the Betti numbers of a compact Riemannian
manifold in terms of its diameter and the lower bound of the sectional curvatures.
This estimate in particular shows that most manifolds admit no metrics of
non-negative sectional curvature.

§0. Introduction

0.1. Sectional curvature

Let V denote a compact (without boundary) connected Riemannian manifold
of dimension n. We denote by K the sectional curvature of V and we set
inf K =inf, K(v) where 7 runs over all tangent 2-planes in V. One calls V a
manifold of non-negative curvature if inf K=0. This condition has the following
geometric meaning,.

An n-dimensional Riemannian manifold has non-negative curvature iff for
each point ve 'V there is a positive number ¢ and a map f of the n-dimensional
Euclidean e-ball B into V with the following two properties:

(a) f sends B diffeomorphicly onto the e-ball in V with the center v.

(b) The map f is distance non-increasing, that is for any two points x and y in B
one has.

%
dist (f(x), f(y))<dist (x, y),

where the first “dist” denotes the Riemannian distance in V and the second one is
the Euclidean distance in B <R".

Such a map f when it exists, is unique and it coincides with the so called
exponential map (see [2], [4], [17]). In particular, f sends the center of B to v.

Observe, that the more general condition inf K =k, k € (—, +®), can be also
interpreted geometrically. One should only use an e-ball in the space of constant
curvature k instead of the Euclidean ball B. For k >0 one takes the sphere of
radius k~'/* and for k <0 one uses the hyperbolic space of curvature k.

179



180 MICHAEL GROMOV

Examples. Most known manifolds of non-negative curvature have the group
theoretic origin. For instance, if V admits a smooth transitive action of a compact
Lie group, then there is a Riemannian metric on V of non-negative curvature (see
[4]). For each dimension =3 there are infinitely many homotopy types of such
manifolds. Among other examples we mention only an exotic 7-sphere with a
metric of non-negative curvature (see [8]) and the connected sum of two copies of
the complex projective space (see [3]).

Counterexamples. The first topological obstruction for the existence of a
metric of non-negative curvature on a compact manifold V was found by Bochner
(see [1].

Let V be a compact n-dimensional Riemannian manifold of non-negative
curvature. Then Dim H,(V,R)<n and the equality takes place only if V is flat.

In fact, this theorem of Bochner remains true for a manifold V with non-
negative Ricci curvature. Furthermore, the universal covering of every manifold of
non-negative curvature metrically splits into the product of R™ and a compact
simply connected manifold V"™™ (see [4], [6]).

This theorem reduces the problem to the case when the fundamental group
m,(V) is finite.

There is another general obstruction for the existence of metrics of non-
negative curvature (see [18]) and, in fact, this obstruction already appears for the
manifolds with positive scalar curvature. Without going into details we mention
only a few facts.

There are exotic 9-spheres that carry no metrics of positive scalar curvature (see
[16]). In particular they admit no metrics of non-negative sectional curvature.

The product of an arbitrary manifold by the sphere S™, m =2, admits a metric
of positive scalar curvature. Furthermore, connected sums of manifolds of positive
scalar curvature admit metrics with positive scalar curvature (see [13], [19]).

We shall see below that most of these manifolds admit no metrics with
non-negative sectional curvature.

Non compact manifolds. Every open manifold admits a noncomplete metric
with positive sectional curvature (see [9]). On the other hand, when such a V is
complete it must be homeomorphic to R" (see [7]). When the curvature of a
complete manifold V is non-negative, then V is homeomorphic to a vector bundle
over a compact manifold of non-negative curvature (see [5]). This theorem brings
us back to the compact case.

0.2. Estimates for Betti numbers

Fix a field F and denote by b,=b,(V;F) the dimension over F of the
homology group H;(V; F).
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0.2.A. There exists a constant € = €(n), such that every compact connected
n-dimensional Riemannian manifold V of non-negative sectional curvature
satisfies

¥ b <@
0

COROLLARY. The connected sums of sufficiently many copies of the products
of spheres S* X S"7?, 0<p <n, or of the complex projective spaces, admit no metrics
of non-negative curvature.

Remarks. The n-dimensional torus is, probably, topologically the largest
manifold of non-negative curvature, but our estimate for €(n) is very far from
2" =35 b(T"). Even for b,(V,Z,) we can not get the expected estimate
b,(V,Z,)<n.

Let us replace now the condition inf K=0 by inf K=—«?, k =0, and denote
by D the diameter of V.

0.2B. There exists a constant € = 6(n) such that every compact connected man-
ifold V satisfies

n
Z b, <@1+~D,
0

Remarks

(a) When « =0 this theorem reduces to 0.2.A.

(b) The minimal number of generators of the fundamental group (V) is also
bounded from above by 6P (see [10]).

(c) The connected sum of k copies of the product S* X S"~® can be equipped
with a metric such that 2k +2=Y3% b, =(1.01)!**P,

(d) The theorem 0.2B can be, probably, generalized to the manifolds with
the Ricci curvature bounded from below, that is with inf, (Ric (¢, t) = — 82, where ¢
runs over all unite tangent vectors in V. But all known results on estimating
topology of V by 8D are tied up with the non torsion part of the fundamental
group. For example, one can show that b,(V;R)<n—1+%°" (this generalizes
Bochner’s theorem) but it is unknown whether this estimate holds for b,(V,Z,),
even when V has positive Ricci curvature. We shall discuss the r;-related
estimates elsewhere (see also [11], [12]).

The proof of the theorem 0.2.A and 0.2.B is given in §1-§3. The curvature
assumption essentially appears in this proof only once, in §1 for an analysis of the
critical points of the Riemannian distance function as in [15]. This analysis is
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based on Toponogov’s comparison theorem (see §1). Although the curvature
assumption is also present for estimating the number of small balls needed for a
covering of a larger ball (compare to [20]), we could equally use for this purpose
the Ricci curvature instead of the sectional curvature.

Acknowledgements. 1 owe my gratitude to Karsten Grove for several impor-
tant critical remarks.

§1. Distance function

1.1. Critical points

Take a complete Riemannian manifold and a point x in V. Denote by
dist, : V— R, the distance function dist, (y)=dist (x, y), y€ V. This function is
not smooth but one can develop a complete Morse theory for this kind of a
function. We shall need here only a few simple facts.

A point ye V, y#x, is called critical for the function dist,, or simply for x, if
for every non-zero tangent vector te T,(V) there is a minimizing geodesic
segment y between x and y, such that the angle between t and +y at y is at most
w/2. Recall, that a segment y between x and y is called minimizing if

length (y) =dist (x, y).

If a point y,€ V is not critical for x, then there is a neighbourhood U of y, and a
smooth vector field in U, that is t(y), y € U, such that for every point y € U the
angle between the vector t(y)e T,(V) and an arbitrary minimizing segment
between x and y is an acute angle. It follows that the function dist, is strictly
decreasing along each integral curve of the field ¢(y). This leads to the following
fact that is a slight modification of a result of Grove-Shiohama [15].

ISOTOPY LEMMA. Take two concentric balls B, and B, < B, in V centered
at xe€ 'V and suppose that the closed annulus A between these balls, that is
A = Cl(B,\ B,), contains no critical points of the function dist,. Then there exists

an isotopy of V which sends B, into B, and which is fixed outside any given
neighbourhood of B,. .

Proof. With the local fields t(y) above one constructs a field f on V
which has its support in a small neighborhood of A and such that the function
dist, strictly decreases along the integral curves of f. This field performs the
required isotopy.
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1.2. Comparison theorems

Take three points x, y; and y, in V and take some minimizing segments v,
and v, joining x with y, and with y, correspondingly. Denote by a the angle
between vy, and v, at x. Let [, denote length (vy,) =dist (x, y,) and let I, denote
length (v,) =dist (x, y,).

Toponogov’s theorem (see [4], [17]). If V is a complete manifold of non-
negative curvature then

dist (y,, y,) <VE+12-2L1, cos a.

Notice that for the Euclidean space R" this inequality becomes an equality. We
shall later use Topagonov’s inequality only in the following two cases.

1.2.A. Let l,=1, and let a <m/2. Then

dist (y,, yo) <1, +3l,.

1.2.B. Let again l,=1, and suppose that a <i=m/18. Then
dist (yy, yo) <l,—3l,.

Toponogov’s inequality generalizes to all complete manifolds (see [4], [17]). In
particular one has.

12.C. If inf K= —«?, k=0, and if the product 1,k is sufficiently small, for
example, if 1,k <107'°, then the inequalities 1.2.A and 1.2.B hold true.

1.3. An inequality for a critical point

Take three points x, y and z in V and suppose that y is a critical point for x.
Suppose further that dist (z, x) =2 dist (x, y).
If V has non-negative curvature, then

dist (z, x) <dist (z, y)+3 dist (x, y). (*)

Proof. Take a minimizing segment -y, between z and y. According to the
definition of the critical point there is a minimizing segment vy, between x and y
such that the angle between vy, and vy, at y is at most w/2. The inequality
dist (z, x) =2 dist (x, y) implies that length (vy,) =length (y,) and so we can apply
1.2.A.
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Notice, that by the remark 1.2.C the inequality (*) holds for a manifold V with
inf K=—«?if k(dist (z, x))<1071°,

1.4. An inequality for two critical points

Take a point x € V and two critical points y, and y, for the distance function
dist,. Take some minimizing segments vy, and vy, joining x with y, and vy,
correspondingly and denote by a the angle between vy; and v, at x.

Ifinf k =0 and if I, =dist (x, y,) =21, =2dist (x, y,), then a >}
Proof. If a <g, then, by 1.2.B, we have
dist (y1, y2)<I,—3L.

Now we use the inequality (*) above with y, in place of z and with y, in place of
y. We get

I, = dist (y,, x) <dist (y;, y,) +3L,, 1, =dist (x, y,).

It follows that [, =0, that is x =y,, but this is not allowed by the definition of a
critical point.

1.5. Non compact manifolds

Let us start with an obvious fact.

1.5.A. Lett,,...,t be non zero vectors in R", such that the angle between any
two of these vectors is at least ¢. Then the number k of these vectors does not exceed
a universal constant, const, <(100)".

Consider now a complete n-dimensional manifold V of non-negative sectional
curvature and the distance function at a point x in V.

All critical points of the function dist, are contained in a compact ball around x.

Indeed, we could find otherwise some critical points y;,..., Yy, such that
k >(100)" and dist (x, y;) =2 dist (x, y;) for all 1=<i<j=<k. Take some minimizing
segments y,,..., v between x and y,,...,y. and denote by ¢,,...,# their
tangent vectors at x. According to 1.5.A some of these angles must be less than g,
but this contradicts to 1.4.

As a corollary we get a weak version of a theorem of Cheeger—-Gromoll (see

[4], [SD.
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The manifold V has “finite topological type” that is V is homeomorphic to the
interior of a compact manifold with boundary.

Proof. Use the isotopy lemma in 1.1.

Our argument generalizes to a class of manifolds whose curvatures are ‘“not
very negative at infinity.” Since this is a digression we leave the proof of the
following theorem to the reader.

Take a point x in a complete manifold V and denote by K_(R) the infinimum
of the sectional curvature of V outside the R-ball centered at x.

If R’K_(R)— 0 as R — =, then the function dist, : V— R, has its all critical
points contained in a compact ball. In particular V is homeomorphic to the interior
of a compact manifold V with boundary.

It will become clear later that the boundary V,, of V is rather special. It must
satisfy the inequality.

S b(Ve) <€ =%(n).
0

§2. Coverings by balls

2.1. Volumes of balls

Let V be a complete n-dimensional manifold, such that inf K =—«?>. Denote
by b(R) the volume of a radius R ball in the hyperbolic space with curvature
—k?. Take two concentric balls B, and B,< B, in V of radii R, and R,. The
volumes of these balls are related as follows.

Vol (B,) - b(R,)

Vol (B,) h b(R,) . l

See [2] for the proof. Notice that (*) also holds for inf, Ric (t, t)= —((n — 1)«)?
(see [2]). When V has non-negative curvature the inequality (*) says that

Vol (B,) _R}
Vol(B,) R}’

If the balls are not supposed to be concentric the inequality (*) takes the
following form

Vol (By) _b(R,+2d)
Vol (B,) N b(R,) ’

(**)
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where d denotes the distance between the centers of B, and B,. We shall use only
the following two crude corrollaries of (**).

2.1.A. If the balls B, and B, of the radii R, and R,< R, have a non-empty
intersection then the inequality

Vol (B,) _(10R,)"
Vol(B,) R:

(***)

holds in the following two cases

(a) Inf K=0,

(b) Inf (K)=—«? and the product «R, is sufficiently small, for example,
kR, <exp(—n").

2.1.B. Let V be a compact manifold of diameter D and let Inf K =—«?. Then
each ¢ ball B in V satisfies the following inequality.

Vol (V)
Vol (B)

<10"D"e™" exp (nkD).

2.2. Minimal coverings

Take some sets {B;};_; _nin V and denote first by I the set of all multiindices
(i,<i<-+-<§y), I=1,...,N. Denote by I, the subset of I consisting of all
multiindices (iy, ..., ), such that the intersection (1} B, j=1,...,1, is not
empty. The number of the elements in I, is called the index of the system {B,}.
Clearly, the index takes the values between N and 2.

Take a ball B in V of radius R and cover it by some g-balls, 0<e=<R, as
follows. Take the maximal system of points x; in B such that the distance
between any two of them is greater than /2. In this case the e-balls R; around x;
cover B. We call such a system {B;} a minimal g-covering of B. We want to
estimate from above the index of such a covering in terms of the ratio e 'R and
Inf K.

Here and in future for a ball B of radius r we denote by AB, A >0 the
concentric ball of radius Ar.

Let us return to our minimal e-covering {B.}, i=1,..., N. Observe that the
balls ;B; are disjoint and they are all contained in the ball 2B. Now we invoke
2.1.A and conclude.
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2.2.A. If Inf K=0, or more generally, if inf K=—«> and 2kR <exp (-n"),
then the number N of the balls B; does not exceed const(n, e 'R)<(80¢ 'R)".
Therefore the index of the covering does not exceed 2™, M = (80 'R)".

This Lemma .gives, in particular, a reasonable upper bound for the indices of
minimal covering of V for K =0, but in the general case of inf K=-k?, K>0,
the following sharper estimate is needed.

22B. Let Vbeasin 2.1.B and let {B;},i=1,..., N, be a minimal e-covering
of V. Take a number A>1 and let the product Aex be sufficiently small, for

example, 4 ek <exp (—n"). Then the index of the concentric covering {AB;} does
not exceed

2M80"D"e " exp (nkD), M =(160 A)".

Proof. First, we conclude as above that N<80"D"e ™" exp (nkD). Now, if
some balls AB,; intersect a fixed ball AB;, then the centers of these balls must be
contained in the ball 2AB, and so, by 2.2.A, each ball is involved in no more than
2M intersections. Q.E.D.

2.3. Topological Lemma

Let V be an arbitrary complete Riemannian manifold of dimension n. Fix a
coefficient field F and define the content of a ball B in V as the rank of the
inclusion homomorphism

Hy(B; F)— Hy(B; F).

The number } plays no essential role here, but it is convenient for our further
constructions. Observe that the homology Hy(B; F) may be not finitely gener-
ated but the content of B is finite just the same. Notice also that balls of
radii>diam V are equal to V and so

cont (V) =¥ b,(V; F).

Take a ball B and cover the concentric ball :B by some open balls B,
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1,..., N, all of the same radius. Consider also the concentric coverings {A;B;},
0,1,...,n+1, A;=10". Suppose that all balls SA\R;, j=1,...,n+1, i=
, ..., N, are contained in B and let the contents of all these balls be bounded by
a constant p, that is

i
Jj
1

Cont(SAB)<p, j=0,...,n+1, i=1,...,N.

Denote by J the index of the system {5A,,.,B;}, i=1,...,N.
The content of B satisfies the following inequality

Cont (B)<(n+1)pJ.

Proof. The ranks of the inclusion homomorphisms between all non-empty
intersections of our balls,

Hy(\B;, N---NAB; )= Hy(Aj B, N+ <N A4 By ),

are estimated in terms of contents by interpolating pairs of balls,
AB, N -NAB, € A\B; ©5AB; €A B, NN\ B,

Then Leray’s spectral sequence applies. See Appendix for the details.

2.4. Main covering lemmas
We return to the ball B of radius R as in 2.2 and we assume that inf K =0, or
more generally, that 2kR <exp (—n"), for —«k?<inf K.

2.4.A. Let for some number p >0, the content of each ball of radius r<0.01R
which intersects the ball B is bounded from above by p. Then

Cont(B)<(n+1)pJ, for J=2 and M=8" 10",

Remark. The numbers 0.01 and } play no role here, but we shall need them
later on.

Proof. According to 2.2.A the ball 1B can be covered by M balls B; of radius
2-10™7*R and the topological lemma applies.

2.4.B. Let V be a compact manifold of diameter D and let inf K= —«>. Let p
and €, be positive numbers such that each -ball, € < ¢,, has content at most p, and
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such that ek <exp (n™"). Then
Cont (V)= Z b;(V;F)<(n+1)p], for J=const D"e;"exp (nkD),
0

where for const =const (n) one can take 2™, M =10""*",

Proof. Use a minimal g-covering of V for ¢ =5-10"""3¢, and apply 2.2.B
and 2.3.

§3. Proof of the theorems 0.2.A and 0.2B

3.1 Rank and Corank

A ball B of radius R in a complete manifold V is called {5-critical if there is a
point y € V such that it is critical for the center x of B and such that dist (x, y) =
10R.

Now let V have non-negative curvature. Take an arbitrary set A and define its
corank, corank (A), as the maximal integer k, such that there exist some 75-critical
balls By, ..., B, with the following two properties.

(1) The radii R; of B; satisfy the inequalities R, =3R,.,, i=1,...,k—1.

(2) The intersection (% B; contains A.

There exists a positive integer ko <(100)", n =dim (V), such that for every set A
we have

corank (A)<k,.

Remark. This proposition bounds the number of “essential directions” in V
and the condition K =0 is crucial.

Proof. Let x; € V denote the centers of the balls B, i=1,...,k, and let y; be
the corresponding critical points for x; with dist (x;, y;) = 10R;. Take a point z in
A < % B, and join it by shortest segments vy, with each of the points vy,

If k>(100)", then there are two segments, v, and v, i,>i, such that the
angle between them at z is at most ¢ (see 1.5.A.). Now we argue as in Section 1.4.
Set

I, =dist (z, y;,) =length (v ), I, =dist (z, y,,) = length (v,),
ry=dist(z, x,)<R,, r,=dist (z, x,)<R,, I =dist (y;, i,)-
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The triangle inequality implies that
,=10R;, —r,=9R;, ,<10R, +r,<11R,.
Since R, =3R,, we conclude that [;>1,. Using 1.2.B, we get
I<l,-3L,. *)

Let d denote the distance between x;, and y,, d =dist(x,, y;). By the triangle
inequality we have

d = ll - "2 = 10Ri1 - rl - 1'2 = 812,'.1 = 24R12 = 20Ri2 = 2 diSt (x,-z, yiz)’

and so we can apply the inequality (*) in 1.3 with y; in place of z and with x, and
y;, in place of x and y. We get d <[+ 5R,, and by the triangle inequality we have

l,<d+r,<d+R,<I+6R,. **)

The triangle inequality also implies that ,=10R, —r,=9R;, and together with
(*) this yields I<I,—%R,, but this contradicts to (**). Q.E.D.

Now, if we have a manifold V with inf K =—«?, we change the notion of the
corank by adding the condition 2R,k <107'° and the inequality corank (A)=<
ko=<(100)" holds true. Now we set:

ko= sup corank (A), and rank (A)=k,—corank (A).

AcV

3.2. Inductive lemmas

Let B be a ball in V of rank zero. Then the content of this ball (see 3.2) is
equal to one. In fact, if we look at the distance function dist,, where x is the
center of B, we shall see that it has no critical points in B; otherwise, for a
sufficiently small concentric ball ¢B, we would get a contradiction, corank (¢B) =
corank (B)+ 1. The isotopy lemma (see 1.1) now shows that B is contractible and
so cont (B)=1.

Denote by #B(k) the set of all balls in V of rank <k and let p, denote the
upper bound

sup cont (B).
Be®R(k)
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3.2.A. Let V be a complete n-dimensional manifold of non-negative curvature.
Then for each k=0,1,2,..., the number p,., satisfies the inequality p,,<
(n+1)Jp,, where the constant J = J(n) is the same as in 2.4.A.

Since k <ky,=<(100)", this lemma shows that

i b, = cont (V)< ((n + 1)),
(4]

and this implies theorem 0.2.A. The proof of 3.2.A is given in the next section.
Notice that the lemma 3.2.A and its proof immediately extend to the general

case of inf K<-«?<(if one modifies the definition of the numbers p, by

replacing the set B(k) by the subset consisting of the balls of radius <g, for

go=2k"'exp(—n"). In view of 2.4.B, this general form of 3.2.A yields theorem
0.2.B.

3.3. Incompressible balls

Let V be a complete Riemannian manifold. A ball B in V of radius R >0 is
called compressible if there exists a ball B’ in V of radius R'<1R, such that B’ is
contained in B and such that there is an isotopy of V which is fixed outside B and
which sends the ball 1B into iB’. It is clear that cont (B')=cont (B), and so we
conclude.

Each ball B contains an incompressible ball B, such that cont (B,) = cont (B).
Now the inclusion B, < B implies rank (B,) <rank (B), and lemma 3.2.A becomes
equivalent to the following more special lemma.

3.3.A Let Vbeasin 3.2.A, and let B be an incompressible radius R ball in V of
rank k+1, k=0,1,.... Then

cont (B)<(n+1)Jp,.

Proof. According to 2.4.A, we only have to show that each ball B, of radius
r <0.01R with the center at a point X in the ball 3B, has rank at most k. Look at
the distance function dist; and let us find an appropriate critical point of this
function. Take the concentric ball B’ =(R/2r)B of radius R/2. This ball is con-
tained in B but it contains the ball 1B. Since by our hypothesis the ball B can not
be compressed to B’, we conclude, in view of the isotopy (see 1.1), that the
function dist; must have a critical point y such that

LR <dist (%, §)<iR.
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Now, by the definition of rank, there are some 3s-critical balls B,,..., B,
[ = ky,—k, containing B and we take for B,,; the ball concentric to B of radius
& dist (x, y). This ball contains B and its radius is at least ten times less than the
radius of the minimal of the balls B,, ..., B,. So the conditions (1) and (2) in 3.1
are met and rank (B)<rank (B). Q.E.D.

Appendix: Leray spectral sequence

(1) Filtered and graded spaces. Recall, that a filtered vector space {F'X},
i=0,1,...,n+1, is defined as a decreasing sequence of subspaces

X=F°X>F'X>---5F'X>F"X={0}
The associated graded space to a filtered space {F'X} is the space
Grx=@crx

where
Gr' X=FX/F'"'X

A homomorphism f between two filtered spaces {F' X} and {F'Y?} is, by definition, a
linear map f: X — Y such that it sends each subspace F X to F'Y,i=0,...,n+1.

Every such f gives rise to a graded homomorphism Gr f, that is a linear map
Gr X — Gr Y which sends each Gr' X to Gr' Y. It is clear that

rank (Gr f) <rank (f),
but the equality does not in general hold.
Now, consider a sequence of filtered spaces {F'X;}, i,j=0,1,...,n+1, and a
sequence of homorphisms
[ AF' X} > {F'X 4}
Denote by f:{F'X,}—={F'X,..} the composition, f={f,of,_jo-* ‘of,.
LEMMA. The rank of the homomorphism f satisfies the following inequality

rank (f) < i rank (Gr f;)

i=0
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Proof. A standard induction reduces the lemma to the case of n =1. Now, we
have the following commutative diagram where the horizontal lines are exact

F'X, —> X, — Gr’ X,

| Vo ot
F'X,—> X, - Gr’ X,
AT

F'X, - X, - Gr’ X,.

It is clear that

rank (f,°f,) <rank (Gr° f,) + rank (F'f,).

(2) Coverings and spectral sequences. Let us recall some relevant fact on
Leray’s sequence (see [14]). For a set A in an n-dimensional manifold V we
denote by Hy(A) the total homology of A over a fixed coefficient field F,

Hy(A)=® H(A; F).

Let B,,..., By be some open sets in V. Then the homology of the union
A = Y B, carries a natural filtration {F'Hg(A)}, i=0,1,...,n+1. This is not
the filtration associated to the grading H,= @§ H,. If we take some larger open
sets B} > By, then for their union A’ the inclusion map Hy(A)—> Hg(A') is a
(filtered) homomorphism.

With the sets B, above one associates Leray’s spectral sequence that is a
sequence E,, E,, ..., of vector spaces with the following properties.

(i) For each multiindex w ={i;,...,i}el, (see 2.2) we denote by HY the
homology of the intersection B, N B, N - - - N B,. Then the space E, is isomorphic
to @, ., Hi.

(ii) Each space E,, E,, ..., has an additional structure of a complex, that is
there are differentials d,:E, = E,, d3=0, d,: E,— E,, d5=0, .. .. Furthermore
each space E,,, is obtained as the homology group of (E, d,).

These structures are functional, that is the inclusions B; — B! induce some
homomorphisms E, — E! which commute with d,. The first homomorphism,
E, — E!, corresponds to the inclusion homomorphisms

fu :H*(Bi,n' ' 'nBi[)—’H*(Bf,n' --NBY), p=C>,...,0).
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In particular, the rank of the homomorphism E,— E! is equal to the sum
Yucr-Tank (f,). Since each space E,,, is the homology of (E, d;) the rank of each
homomorphism E; — E! is bounded by the sum }, rank (f, ).

(i) For a sufficiently large i, the differentials d;, i > i, vanish and so the
sequence E; stabilizes. The stable terms are denoted by E.. This space E, is
functorially isomorphic to the graded space associated to the filtered homology
{FH4(A)}. The word “functorially” means that the homomorphism E.— E.
corresponding to the inclusions B, — Bj is equal to the graded homomorphism
associated to the (filtered) inclusion homomorphism Hy(A) — Hy(A').

(3) The following proposition generalizes the topological lemma of 2.3.

Let BicV, k=1,...,N, i=0,1,...,n+1, n=dim (V), be some open sets
such that

B)cBjc---cB}', k=1,...,N.
Let A’ denote the unions |} -, B, and let f}, denotes the inclusion homomorphisms
H*(Bgl N--- ﬂB:‘) -—> H*(B::’l {1+ nt;’.l 5 (il, PP ll) =M e I.,._.

Then the rank of the inclusion homomorphism Hy (A% — Hy(A"*") is bounded
from above by the sum

Y rank ().

i=0,...,n
nel,

Proof. The properties of the spectral sequence imply that the rank of each
homomorphism E — E.' is bounded by

Z rank (f},),

nel,

and the lemma in (1) applies.
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