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An asymptotic series for the mean value of Dirichlet L-functions

D. R. HEATH-BROWN

1. Introduction

Let x denote a typical Dirichlet character (mod q), where ¢ >1, and let L(s, x)
be the corresponding L-function. These functions have many applications to the
distribution of primes and other arithmetic objects in the various arithmetic
progressions to modulus q. For such applications one frequently needs informa-
tion on the mean values

Y LG+it, x)P* (1)
x(modq)
and
T
2 | ILG+it x)PP dt (2)
x{(modq)

for a positive integer k. Although one requires a certain degree of uniformity in ¢
or T, an arbitrary power of 2+|t| or 2+ T in any error terms will usually suffice.
Moreover it is normally sufficient to have a good upper bound rather than an
asymptotic formula. In this respect the estimate of Montgomery [4; Theorem
10.1], namely

Y* | ILG+it, x)* di< ¢(q)Tog qT)*,  (T=2),

x(mod q)

where Y* denotes summation over primitive characters only, is the best currently
available. None the less, it is of theoretical interest to investigate the mean values
(1) and (2) more closely, and it is this line of enquiry we shall pursue here, by
examining the behaviour of the sum (1), with k =1, for large values of q. There
are many respects in which the behaviour of £+ it), for varying t, resembles that
of L(+it, x) with respect to g. In particular one might expect the behaviour of
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(1), when k =1, to be similar to that of
T
I= L ZG+in)? dr.

This is in fact not so, for it 1s known that

I= T(logg—+2'y - 1) +E(T),
o

in which, by Balasubramanian [1] we have E(T)« T>*%, and by Good [2] we have
E(T)=Q(T"*). In contrast we shall prove:—

THEOREM. We have

S L@ 0P=2D Y @it 3)

x(modq) d «ia

where T(k) has the asymptotic expansion

2N-—-1
T(k)= k(log ék;+ y) +2L(3)*k"V*+ Z ¢,k "+ O(k™), (4)
n=0

for any N=1. Here the c, are numerical constants and v is Euler’s constant.

COROLLARY. If q =p is prime then we have an asymptotic expansion

> LG, x)|2=(p—1)(10g—2~+ v>+2£(%)2p”2+ i d,p"?+0(™), (5)

x (mod p) 877 n=0
for any N=1.

The behaviour is therefore much closer to that of the mean value
L G +inf e d,

which has the asymptotic series

T
IOgZ’;r--*l*’y el
+ ) T +O(T™),
2sin— "7°

T
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for which see Kober [3]. However one should note the occurrence of the
half-integer powers in the expansion (4). Note also that for general q the error
terms in (4) will decrease at different rates for the different factors k of q. Thus we
cannot give an asymptotic series for the sum (3) itself, except when, as in the
corollary, g has no small prime factors. )

Instead of examining sums of the form (3) one could treat the expressions

Y ILG+it x)P

x (mod q)

or

2 |LG+it xMP,

x(modq)

where x* is the primitive character which induces x. However these present
additional difficulties without simplifying the form of the results. Thus if g=p is
prime and t =0, for example, the above sums differ from (5) by O(1), so that the
p? term will still be present.

I should like to thank the Eidgendssiche Technische Hochschule, Ziirich, for
their hospitality during the period in which this paper was written.

2. Functional equations

Let

Tyg, s)= 2, L(s,x)L(1-s, ).

x(modq)

Here L(s, x) is holomorphic for non-principal y. If x is principal and q# 1 then
L(s, x) will have a simple pole at s =1 and L(1—s, x) will have a zero; moreover
L (s, x) will be regular elsewhere. Thus T,(q, s) is holomorphic for g > 1. We shall
also need to know that T;(q, s) satisfies the growth condition

Ti(g o+it)<(1+|t)?%, (-1<o=<2) (6)

for fixed q; but this follows from a trivial bound for L(s, x). Finally, since ¥ runs
over all characters (mod q) as x does, we find

Tl(q, S) = Tl(q7 1- S)- (7)
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We now express L(s, x) in terms of the Hurwitz Zeta-function
{s,a)= Y (n+a)”, (0<a<1, Re(s)>1)
n=0

and apply the functional equation (for which see Titchmarsh [5; §2.17]) for
{(1—s, a). This yields for Re (s)>1,

L(s, x)L(1—s, x)= (q“s i x (W) (s, u/q))(q‘"1 i x(v)¢(1-s, v/q))

= T xwi)tts wa {3 § Tl 9]

We now sum over y, using the orthogonality relation

Z x (W) % (v) = {tl)(Q) u=v(modq), (uv,q)=1,

x(modq) 0, otherwise.

We then obtain

T.(q, S):Q((]_q) i Z(s, v/q){ZF(S) Z sin (21’rlv/q+71-(1—-s)/2)}

(2 )s Is
(v,a)=1
d>(q) qY _. @ sin 2mlv/q+7w(1-5)/2)
2F( )(27T> =1 h (; ls
(v, q) 1 hEv(modq)
d)(q) qY\ _. v sin 2w@lh/q+w(1—5)/2)
Ty 2 )(27:') ;1 h Z ¢
=1
b(q q\° . v« sin 2wlh/q+ 7(1—15)/2)
=— 2 (s)\— d)) h™
Lar 217) 2 (Tu@)ny !
dlh
=d)— 2r(s) (= s u(d)d" Z (G1)~® sin 2mdjl/q + w(1—5)/2).
q 27 =1
Now writing d = q/k we see that
Tua. =22 T (@ Tk s) ®)
kla
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where
T(k, s)=2I'(s) (%—:;)S i d(n)n™* sin 2mn/k + w(1—5)/2). (9)

Clearly the sum on the left of (3) is T,(q,3).

3. A weighted sum

The sum (9) for T(k, s) does not converge absolutely if s =3, so we use the
functional equation (7) to produce a weighted sum. Let

F(s)=s""cos (ms) exp (s?).

Then F(s) is an odd function of s and is holomorphic, except for a simple pole at
the origin, of residue 1. Moreover it satisfies the growth condition

Flo+iy<e™ 2  |f|=1 (10)

in any fixed vertical strip. Now consider the integral

1

I = [ Tl(Qa S +%)F(S) dS,
2l 1)

where the symbol (o) denotes integration along a line from o —i% to o +io. After
moving the line of integration to (—1) and allowing for the pole at s = 0, we obtain

1
=Ty H+—— j T,(q, s +DE(s) ds. (1)
7 2w ey

Then, using (7) together with the relation F(—s)=—F(s), we deduce that
We evaluate I by termwise integration, using (8) and (9). This yields

T\ %>=2I=‘—”—(qf‘2 T w(@k)TK),

klg
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where

T(k)=4 Z d(n)Kl(Z;(m) (12)

and

K,(x)= 1” {I)F(s +1)x"%sin (x +£~7)F(s) ds

1 A
—Re{ j I(s+3)x2e> 42 F(s) ds}

=Re (K(x)),
say. Here
K(x)=e"™*e>*x"12J(x) (13)
and
J(x) =—1—. J I'(s+3)x e "™2F(s) ds. (14)
27 Jay

Our choice of F(s) ensures that the integrand of J(x) is holomorphic except for a
simple pole at s=0, with residue I'})=='2. Thus, on moving the line of
integration to (xM), where M >0, we find

J(x)«<x™, (x=1), (15)
J(x)— 7%« xM, (0<x=<1), (16)

for any M >0. Similarly, after differentiating under the sign [ (>0) times, we
obtain

x™ (x=1),
J“)(x)«{ M ( )

xM, (0<x=<1), (17)

there now being no pole at s = 0. From these bounds it follows in particular that

x™ (x=1),
K 18
(x)<<{x_l/2’ 0<x=<1), U8
x ™ (x=1),
K’
(x)«{x“”, (0<x=<1). (19)
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We now sum (12) by parts, writing

Z d(n)=D(x)=x(logx+2y—1)+A(x)

n=x

whether x =1 or not. This yields
T(k) =4 Re (S(k)),

with
S(k) = ~———L D(x)K' Z’Tx)d

=27 [“stogx+ 29— 0K () ax =27 [(a0k (3) ax 20)

the integrals converging absolutely, by (19).

4. The leading terms

An application of (19), together with Voronoi’s bound A(x)« x3*, shows that
the second term in (20) is O(k"?). On the other hand, the first term in (20)
becomes, on substituting x = ky/(2),

k [~ , k k
e L y(log——k—+log y+2~y—1)K (y) dy =A——-log—-—-—+B-—’£—,
27 2w 2m

where the constants A and B are given by

A= —L yK'(y)dy, B= —L y(log y +2y—1K'(y) dy.

Integration by parts yields

A= L K(y)dy, B =2VA+L K(y)log y dy.

Put L(y)=1 or log y. Then by (13) and (14), with the line of integration moved to
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), we have

! 1 (! L i A
[ KoLmay== [ [ LoIG+hyter-emmar(s) dsdy
1/4

1

1
=— J; I(s+Y)e 42 () L L(y)y™"2e" dy ds, (21)
2 Jyya)

the interchange of integrations being justified by absolute convergence (it is for
precisely this reason that we move the line of integration to (3)). Similarly we find

[ KL dy =5 { (s e () als) ds, 22)

where
a(s) =j L(y)y~*ie” dy.
1

We next modify the path of integration in the last integral so as to run from 1 to
ic. We then see that a(s) is regular for all s and satisfies

a)«<ep (T1),  G=o=1),

for s =0 +it. We may therefore move the line of integration in (22) back to (3)
and add the result to (21) to obtain

e 1 ) .
L K()L() dy=5— me +1)e-im-im2E(5)(s) d,

where
1 1 . iw 1 .
B0)= [ Lo e ay+ | Loyl ay
1
=L L(y)y™* "¢ dy.

We therefore see that B(s)=i2*I'G—s) for L(y)=1 and

B)= (2 rg-5)+I"¢-s))
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for L(y)=logy. Now

I'G+s)rG—s)=msec(ms) (23)
so that
1 .
A=— J- e "™ sec (mws)F(s) ds
27 Jua
and

* j 1 . ré
J; K(y)log ydy = %’I A +_2—:rr_i J: e "™ sec (ms) _2 ;) F(s) ds.
1/4)

Thus

1
Re (A)=— 7F(s) ds
2 Jyja

and

Re (LmK(y) logy dy) _ 1 ‘[ ﬁ tan (mws)F(s) ds

" 2mi by 2
1 J r'G—s)
+— T
21 Jya) rég-s)

F(s) ds.

By logarithmic differentiation of the relation (23) we find

I'G+s) I'G—s)
rg+s) rG-s)

= 1r tan (s),

so that it follows that

G(s)= 17; tan (ms)+ 7 1}&:3

is an even function of s. Then

I 1 [ G(s)F(s) ds = G(O)+-l- j G(s)F(s) ds
1/4) (—1/4)

=§;T_—l: 21

= G(O)+—1—: J; G(—w)F(—w)dw= G(O)-———l—-_ l G(w)F(w) dw,
21 Y4 2 k)
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whence
T
I1=1G(0)= ——5(7 +log 4).

Similarly

1

™
— F(s) ds =—.
27mi LM)W (5) ds 2

Thus, finally, we have

k k k ) ( k )
+ = —+
4 Re (A2ﬂ_ log . B27r k\log - v

as required.

5. Lower order terms
On writing
H(x)= e imAgixy—1/2
and

1, (0<x=1),
8(")“{0, (x=1),

the estimates (15), (16) and (17) yield

27X 2mx 2mx (27rx)
O[ETXY _ 7 (2T o1y o[ T2 fnilddad
K (k) H (k)F(Z)B(k)+M k /)

where for any M >0 we have

M, (x)< {x"M, (x=1), (24)

M (0<x=<1).
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In particular it follows that the second term of (20) is

k/(2m)
21T A( )K (2'n'x) dx = — (2k ) I‘(z) —m/4L/ A(x);;(ez"i"’kx—llz) dx

k k
+ O(mek‘1 |A(x)] dx)+ O( wz k|A(x)| x~2 dx)
2w

k 1/2 ) k/2w
= (_.) e—nr/4L A(x)(x—3/2+ O(x—llzk—l)) dx

8
+ O(k3*®)

kllz(l l) L A( ) ——3/2dx+o(k§+e)

On noting that (see Titchmarsh [5; (12.5.5)])
((s) = sL A(x)xs7t dx, G<Re(s)<1),

we obtain 27%@2) for the coefficient of k2 in (4), as required.
We now define, inductively, 4,(x) = 4(x) and

Apr(x) = LxAt(t) dt

Then, for [=3, we have

s+1-1

1 5 x
A'(")zi}'ime © G Gren®

(25)

Here we have
Clo+i< 1+, (1-3l+ie<o<)),

so that, on moving the line of integration to (1—31/+1¢), we obtain

AX)= Y K,x'""+0(x) (26)

l=n<l/2
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for certain constants K;,. Next, on integrating by parts | —1 times, we find

25 o ()= o2 [ ()

— (1) (2" r(z)Lkm)A,(x)Hm(Z:") dx

+(=1) (”)L ai6om () .

We now write

HO(y) =y e”p,(y),

where p,(y) is a polynomial of degree . Moreover

1+1

e” =p,(y)+y'" ' pa(y),

159

where p,(y) is also a polynomial of degree I, and where p;(y)< 1 for O0s<y=<1.

Combining these, we may write

H®(y)=y *'p(y) +q(y),

where p(y) is a polynomial of degree at most [, and q(y)« 1 for 0 <y =< 1. Finally

let

Ni(y)=M(y) +I'G)q(y)s(y),

so that, by (24)

y ™M (y=1),

M(Y)«{l, (0<y=<1).

We have thus to consider

k/(27r) x\Htem
Ilm = k—l A[(X)(‘E) dx

(27)
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for 0sm=<I, and

27X

IL= k“'J:Al(x)N,(——k——) dx.

We aim to show that each of these expressions can be written in the form

Z C,,nk‘"/z—i-O(kl_“_s)’z),

—l=n=<|]-3

with constants C;,, depending on [ and n alone. On choosing | =2N + 3, this will
show that

2N-1
T(k)= k(log -8—,-:;_—4- ‘y>+2{(%)2k”2+ Z Conk 2+ O(k™).

n=0

However it is clear that the constants c, 5y must be independent of N, so that the
theorem will follow.
In the case of I, we first examine

1
k“"“’%L A (x)x 7™ dx.

Since A;(x)« x'72, by (25), the integral converges. Thus this contribution to I, is
of the required form. For the remaining part, namely

k/(27)
k“"'+%j' A (x)x 7™ dx, (28)
1

the main terms of (26) yield

k/(2) . k m-—n-+1 .
TS

k—m+%j
; 1 1=s=n<{/2 2

which is of the required form. As to the error term in (26), E;(x) say, this
contributes to (28) a quantity <« k**¢7P2 if m =(I—1)/2, and otherwise

o0

k‘"‘*il" E(x)x "™ dx+ O(k“"”%j(
1

x(e —1-1)/24+m dx>
/(27)

— C{’mk—m+%+ O(k1+(e—l)/2),

which again is of the required form.
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For I, the leading terms of (26) yield

2 oo
LKk | 3N ) tx= T Ka@mr k[N

1=n<l/2

The bound (27) shows that the integrals here converge, so that the above
expression has the form we seek. Finally the error term of (26) contributes

& k~L (1+€)/2 \N wa) dx

&« k—l . k1+(l+8)/2 Lwy(He)/Z ‘NI(Y)‘ dy & k1+(e-—l)/2’

and this too has the required shape. The proof of the theorem is now complete.

6. The corollary

The theorem shows that the sum on the left of (5) is
p—1
e (T(p)— T(1)).

Here, since T(1) is a numerical constant, given by (12), the term —(p—1)p~'T(1)
may be incorporated in the asymptotic expansion. Moreover the factor 1—p™*
front of T(p) merely changes the constants in the asymptotic expansion.
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