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Many différent disk knots with the same exterior

L. R. Hrrr(1) and D. W. Sumners

§1. Introduction

Much of codimension-two knot theory is concernée with finding and comput-
ing topological invariants of knot exteriors in order to distinguish between the
knots themselves. It is well-known ([G], [L-S], [B]) that there are at most two
inequivalent smooth n-sphère knots with the same exterior (n >2), and examples
of two inequivalent n-knots with the same exterior hâve recently been discovered

([OS], [Go]). We show that the corresponding theory for (n + l)-disk knots is

more complicated. Let Y dénote the bounded exterior of a smooth (n + l)-disk
knot. The indeterminacy index £(Y) is the number of inequivalent (n + l)-disk
pairs having exteriors diffeomorphic to Y. We show that there exist disk knots
with large indeterminacy indices (bigger than two, in particular). We then show
that £(Y)<2|tt'|, where \ir'\ dénotes the cardinality of ir\ the commutator
subgroup of Tr Tr1(dY). This yields as a corollary a new and easy proof of the
well-known fact that £(X)<2, where X is the exterior of an n-sphère knot, and

£(X) its indeterminacy index.

§2. The indeterminacy index

For convenience, we work in the smooth category (the same results hold in the

locally flat PL situation). We let Sn and Dn+1 dénote the standard n-sphère and

(n + l)-disk, respectively. An n-sphere knot (or just n-knot) is the pair (Sn4"2, kSn)
where fc : Sn -» Sn+2 is an embedding. The exterior X of an n-knot is the

complément in Sn+2 of an open trivial 2-disk bundle neighborhood of the
submanifold kSn. An (n + l)-disfc knot is the pair (Dn+3,gDn+1) where

g : Dn+1 —? Dn+3 dénotes a proper embedding, one in which the submanifold
gDn+1 intersects dDn+3 transversely in g(dDn+1). We let Y dénote the (n + l)-disk
knot exterior. Two knots are équivalent if there is a diffeomorphism of the
ambient space throwing one submanifold onto the other (we disregard orienta-

1 Research partially supportée by the University of South Alabama Research Committee.
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tions), and the indeterminacy index Ç is the number of inequivalent knots
determined by a given knot exterior.

We will now produce examples to show that £(Y) can be large. The reason for
this is that dY contains the exterior X of the boundary sphère pair, and X can be

very complicated. Recall the example of Kato [Ka 2, Theorem 4.9]:
Let n > 3, and Afn+2 be a contractible manifold such that 7rx(dM) is the binary

icosohedral group G (a, b \ a5 b3 (ab)2) [Ke]. Let Yn+3 S1 x M"+2; we will
show that Y is the exterior of at least three inequivalent (n 4- l)-disk knots. Then
by modifying the construction, we will show that the indeterminacy index of a disk
knot exterior can be at least as large as six.

Let H be a group. A weight élément of H is an élément whose normal closure
is ail of H. The automorphism class of an élément of H is the orbit of the élément
under the automorphism group of H. Two éléments of H are algebraically distinct
if they are in différent automorphism classes.

We are interested in finding différent automorphism classes of weight éléments
in the group 7r1(aY) ZxG <r, a, b \ a5 b3 (ab)2, ta at, tb bt) where Z
dénotes the infinité cyclic group generated by t. An élément of the form fng, for
g g G, is a weight élément of Z x G if and only if tn is a weight élément of Z and

g is a weight élément of G, which forces n= ±1. To détermine the weight
éléments of G, note that {1} <J{1, (ab)2} 4G is a composition séries for G, since

(a, b | a5 b3 (ab)2 1) is a présentation of the simple group A5. The center of
G is C(G) {1, (ab)2}, the cyclic group of order 2. Any élément of G which is not
in C(G) is a weight élément of G. The set of algebraically distinct weight éléments
of G is {a, a2, b, b2, ab}. That they are algebraically distinct follows from their
différent orders: 10, 5,6,3 and 4, respectively.

Therefore we hâve ta, ta2, tb, tb2, and tab as weight éléments of ZxG.
However ta and ta2 are in the same automorphism class in ZxG, as are tb and
tb2 (e.g., the automorphism 0, induced by 6(t) t(ab)2, B(a) a, and 0(b) ba8b

sends ta to ta2). So our list of possibly algebraically distinct weight éléments is

shortened to ta, tb, and tab. That thèse three éléments are algebraically distinct
follows from the fact that the center of ZxG is Zx{l, (ab)2}, so ZxG modulo
its center is A5 (a, b \ as b3 (ab)2 1). But the center is a characteristic

subgroup, so any automorphism of ZxG induces one on A5. Since a, b, and ab

hâve différent orders in A5, their counterparts in ZxG must be algebraically
distinct.

Let {cr, | l<i<3} dénote smooth embeddings of S1 in dY representing the

homotopy class in dY of each of the above weight éléments of Zx G. Choose a

trivialization of the normal bundle of each cr,, and attach 2-handles to form the
manifolds YU^ h2. The cocore or transverse disk of each 2-handle is an (n +1)-
disk, and (YU^h2, cocore (h2))~(Dn+3, g,dn+1), where g, : Dn+1 -»Dn+3 is a
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proper smooth embedding. This is because YU^ h2 is contractible, with simply-
connected boundary, and n + 3>6. However, no two of the three disk pairs
(YU^h2, &Dn+1) are équivalent, because any diffeomorphism of pairs between
them would restrict to a diffeomorphism on Y, inducing an isomorphism on
Tr^dY) taking one of the weight éléments of Zx G to another, or its inverse.

In [S], it is shown that (n 4- l)-disk pairs (n > 2) can be constructed with an

arbitrarily prescribed Alexander polynomial in a single dimension p (2<p<n),
and trivial Alexander polynomials elsewhere. Moreover, thèse disk pairs hâve the

property that ttx{Y) ttx(dY) ttx(S1) for i<p. Thus, by taking the boundary
connected sum of the above examples with thèse disk pairs, one obtains infinitely
many distinct (n + l)-disk exteriors, each with indeterminacy index £^3. This

proves

THEOREM 2.1. For each n^3, there exist infinitely many homeomorphically
distinct (n4-l)-disfc knot exteriors Yt, each with indeterminacy index

Remark. The analogue of Theorem 2.1 for n 2 can be done in the topologi-
cal category (non-PL embeddings). One takes Y S1x(c *23), where c *£3 is

the cône on 23, the Poincare' 3-sphere. Then Y is a topological manifold [Ca],
and arguments of Scharlemann [Se] can be used to prove that the various handle
attachments give rise to différent non-PL disk pairs (D5, gD3).

We can modify the above construction to increase the lower bound for the

indeterminacy index. Consider the group

e5 f (ef)\
ac ca, ad da, bc cb, bd db, ae ea, af fa, be eb, bf fb,

ce ec, cf fc, de ed, df fd).

Now GxGxG is finitely presented, and Ht(GxGxG) H2(Gx GxG) 0, so

by Kervaire [Ke], for n>4 there exists a contractible manifold Afn+2 with
tt^ôM) s G x G x G. As before, ¥ 8^ M, arid ^(dY) ZxGxGxG. Since

the center of Z x G x G x G is the product of the center of each factor, we see

that ZxGxGxG modulo its center is A5xA5xA5. Then, as before, tacf, tacef,

tbdef, tace, tbdf, and tabedef are ail algebraically distinct since their projections
modulo the center hâve orders 15, 10, 6, 5, 3, and 2, respectively. We hâve the

following

COROLLARY 2.2. For each n>4, there exist infinitely many homeomorphically

distinct (n + l)-disk knot exteriors Yl9 each with indeterminacy index £(Yt)>
6.
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§3. An upper bound for the indeterminacy index

Now that we hâve seen that in some cases the lower bound of £ can be large,
we are interested in finding upper bounds. Along thèse lines, we hâve the

following

THEOREM 3.1. Let Y"+3 be an (n + l)-disfc knot exterior (n>2). Then

£(Y)<2 \tt% where \tt'\ dénotes the cardinality of the commutator subgroup tt' of
7T TT1(dY).

Proof. Consider the disk pair (Dn+3, gDn+l). Choose a trivialization G :D2x
Dn+1 -h> NigD"*1) of the tubular neighborhood of the submanifold; thus G({0}x
y) g(y) for yeDn+1. We hâve that the exterior Y Dn+3-G(D2xDn+1).
Regarding N(gDn+1) as a 2-handle attached to Y via the meridian attaching curve
G(dD2x{0}), we hâve (Dn+3, gDn+1)« (YUG h2, cocore (h2)). We now wish to
study the number of différent ways it is possible to attach a 2-handle to Y to
produce Dn+3. We first count the maximum number of possible isotopy classes in
d Y of attaching curves for a 2-handle which produce a contractible manifold after
handle attachment is performed. If tt Tr^dY), and tt' is the commutator
subgroup of tt, we hâve the short exact séquence

l->ir'-*ir-»Z->l. (3.2)

Denoting the generator of the infinité cyclic multiplicative group by t, we hâve a

semi-direct product structure for tt, and once a splitting for (3.2) is chosen, we can
write each élément xett uniquely as jc tag where a is an integer and g e tt'. By
abuse of notation, let tag represent an embedding of S1 in the same homotopy
class, and choose a trivialization of its normal bundle. In order for Y Utag h2 to be

acyclic, we must hâve a ±1, because HX{Y\ Z) is infinité cyclic on the generator
t. In order for Y U,«g h2 to be contractible, i*(tag) must be a weight élément of

where i^Tr^aY)—? tt^Y) is the inclusion homomorphism. In order for
d(Y Utagh2) to be simply-connected, tag must be a weight élément of
The upper bound we are aiming at is very crude, coming just from the homology
condition (a ±1), so we are in fact counting the ways it is possible to complète Y
to obtain an intégral homology disk. The set of éléments of ir^dY) producing
acyclic manifolds upon handle attachment is {t^g \ geir'}. But since the sign of
the exponent of t in an élément of ir^dY) is reversed by changing the orientation
of the attaching curve of h2 (or equivalently, reversing the orientation on the

cocore Dn+1), the set of éléments of tr corresponding to possibly différent
manifold pairs is {tg \ g e tt'}, a set of the cardinality of tt'. Now since we are in the
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dimension range (n + 2)>4 for dY, homotopy of embedded one-spheres gives rise

to isotopy, so the number of possible isotopy classes of attaching curves in dY
giving rise to acyclic manifolds is bounded above by |ir'|. Now, given a rep-
resenatative of an isotopy class of attaching curves in dY, there are precisely two

ways to attach the 2-handle h2, corresponding to the ir1(SO) Z2 ways of
choosing a trivialization of the normal bundle of the curve. Hence the number of
possible handle attachments yielding acyclic manifolds is bounded above by 2 \tt'\.

COROLLARY 3.3. Suppose that Y"+3 (n>2) is an (n + l)-disfc knot exterior,
and that 7r1(dY):=Z. Then f(Y)^2, and the two possibly différent disk pairs are
obtained, each from the other, by re-attaching the 2-handle corresponding to the

normal bundle over the submanifold via the non-trivial élément of

Corollary 3.3 yields an easy proof of the well-known resuit that there are at
most two inequivalent n-knots with the same exterior:

COROLLARY 3.4. ([B], [L-S], [Kal], [Sw]). Let Xn+2(n>3) be an n-
sphere exterior. Then £(X)<2. Moreover, if (X Uy(D2xSn), {0}xSn) dénotes a

sphère pair obtained by sewing D2xSn onto X via some trivialization of the

Sn-bundle over the meridian curve Y S1x{*}c:dX, then the possibly différent
sphère pair is (X U9(D2xSn),{0}xSn), where y dénotes the same meridian curve
with différent trivialization of the Sn-bundle (i.e., D2xSn is sewn in with a

Proof. There is a one-to-one correspondence between n-sphère knots and
n-disk knots with unknotted boundary (n-l)-sphere pair, obtained by removing
an unknotted disk pair (the neighborhood of a point on the submanifold) from the

sphère pair to obtain the required disk pair. An n-sphere knot and its corresponding

n-disk knot hâve the same exterior X. But dX«S1xSn, and ir1(dX) Z, so

by Corollary 2.4, ((X) < 2. That is, X (thought of as a disk exterior) détermines at
most two inequivalent disk pairs. Therefore, thinking of it as a sphère pair
exterior, then £(X)^2 as well.

§4. Some questions

1. Given a positive integer N, does there exist an (n + l)-disk exterior Y with

2. Is there an (n + l)-disk exterior Y with f(Y)= +oo?

3. If X is an n-sphere exterior and tt1(X) Z, must if follow that £(X) 1?
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