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Many different disk knots with the same exterior

L. R. Hrrr'? and D. W. SUMNERS

§1. Introduction

Much of codimension-two knot theory is concerned with finding and comput-
ing topological invariants of knot exteriors in order to distinguish between the
knots themselves. It is well-known ([G], [L-S], [B]) that there are at most two
inequivalent smooth n-sphere knots with the same exterior (n =2), and examples
of two inequivalent n-knots with the same exterior have recently been discovered
([C-S], [Go]). We show that the corresponding theory for (n + 1)-disk knots is
more complicated. Let Y denote the bounded exterior of a smooth (n+ 1)-disk
knot. The indeterminacy index {(Y) is the number of inequivalent (n+ 1)-disk
pairs having exteriors diffeomorphic to Y. We show that there exist disk knots
with large indeterminacy indices (bigger than two, in particular). We then show
that {(Y)=<2|n'|, where |n’| denotes the cardinality of #', the commutator
subgroup of 7 = m,;(3Y). This yields as a corollary a new and easy proof of the
well-known fact that {(X) =2, where X is the exterior of an n-sphere knot, and
{(X) its indeterminacy index.

§2. The indeterminacy index

For convenience, we work in the smooth category (the same results hold in the
locally flat PL situation). We let S™ and D"** denote the standard n-sphere and
(n+ 1)-disk, respectively. An n-sphere knot (or just n-knot) is the pair (S™*2, kS™)
where k :S"— S™*? is an embedding. The exterior X of an n-knot is the
complement in S"*? of an open trivial 2-disk bundle neighborhood of the
submanifold kS™. An (n+1)-disk knot is the pair (D"*3 gD"*') where
g : D"*'— D"*? denotes a proper embedding, one in which the submanifold
gD"™*! intersects dD™*? transversely in g(dD™*!). We let Y denote the (n + 1)-disk
knot exterior. Two knots are equivalent if there is a diffeomorphism of the
ambient space throwing one submanifold onto the other (we disregard orienta-
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tions), and the indeterminacy index { is the number of inequivalent knots
determined by a given knot exterior.

We will now produce examples to show that £(Y) can be large. The reason for
this is that Y contains the exterior X of the boundary sphere pair, and X can be
very complicated. Recall the example of Kato [Ka 2, Theorem 4.9]:

Let n=3, and M"*? be a contractible manifold such that ,(3M) is the binary
icosohedral group G ={a, b| a®>=b?*=(ab)?) [Ke]. Let Y""*=S'x M"*?; we will
show that Y is the exterior of at least three inequivalent (n + 1)-disk knots. Then
by modifying the construction, we will show that the indeterminacy index of a disk
knot exterior can be at least as large as six.

Let H be a group. A weight element of H is an element whose normal closure
is all of H. The automorphism class of an element of H is the orbit of the element
under the automorphism group of H. Two elements of H are algebraically distinct
if they are in different automorphism classes.

We are interested in finding different automorphism classes of weight elements
in the group m0OY)=ZXxG=(t,a,b|a’=b>=(ab)? ta=at, tb=>bt) where Z
denotes the infinite cyclic group generated by t. An element of the form t"g, for
g € G, is a weight element of Z X G if and only if t" is a weight element of Z and
g is a weight element of G, which forces n= +1. To determine the weight
elements of G, note that {1} {{1, (ab)*’} 4G is a composition series for G, since
(a,b|a’=Db*=(ab)*=1) is a presentation of the simple group As. The center of
G is C(G)={1, (ab)?}, the cyclic group of order 2. Any element of G which is not
in C(G) is a weight element of G. The set of algebraically distinct weight elements
of G is {a, a® b, b? ab}. That they are algebraically distinct follows from their
different orders: 10, 5, 6,3 and 4, respectively.

Therefore we have ta, ta?, tb, tb?, and tab as weight elements of ZXxG.
However ta and ta® are in the same automorphism class in Z X G, as are tb and
tb? (e.g., the automorphism 6, induced by 6(t) = t(ab)?, 6(a)=a’, and 0(b) = ba®b
sends ta to ta?). So our list of possibly algebraically distinct weight elements is
shortened to ta, tb, and tab. That these three elements are algebraically distinct
follows from the fact that the center of Z X G is Z x{1, (ab)?}, so Z*x G modulo
its center is As=(a,b|a’=b>*=(ab)*=1). But the center is a characteristic
subgroup, so any automorphism of Z X G induces one on A;. Since a, b, and ab
have different orders in As, their counterparts in Z X G must be algebraically
distinct.

Let {0; | 1=i=3} denote smooth embeddings of S' in Y representing the
homotopy class in dY of each of the above weight elements of Z X G. Choose a
trivialization of the normal bundle of each o, and attach 2-handles to form the
manifolds YU, h2. The cocore or transverse disk of each 2-handle is an (n + 1)-
disk, and (YU, h? cocore (h?)=~(D"*? g,d**"), where g :D"*"'—->D"" is a
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proper smooth embedding. This is because YU, h? is contractible, with simply-
connected boundary, and n+3=6. However, no two of the three disk pairs
(YU, h? gD"*") are equivalent, because any diffeomorphism of pairs between
them would restrict to a diffeomorphism on Y, inducing an isomorphism on
m,(0Y) taking one of the weight elements of Z X G to another, or its inverse.

In [S], it is shown that (n+1)-disk pairs (n=2) can be constructed with an
arbitrarily prescribed Alexander polynomial in a single dimension p (2=<p=<n),
and trivial Alexander polynomials elsewhere. Moreover, these disk pairs have the
property that 7,(Y)=m(0Y)=m(S") for i<p. Thus, by taking the boundary
connected sum of the above examples with these disk pairs, one obtains infinitely
many distinct (n+ 1)-disk exteriors, each with indeterminacy index ¢=3. This
proves

THEOREM 2.1. For each n =3, there exist infinitely many homeomorphically
distinct (n+1)-disk knot exteriors Y;, each with indeterminacy index {(Y;)=3.

Remark. The analogue of Theorem 2.1 for n =2 can be done in the topologi-
cal category (non-PL embeddings). One takes Y =S"x(c * 3?), where ¢ * 3> is
the cone on 3?3, the Poincare’ 3-sphere. Then Y is a topological manifold [Ca],
and arguments of Scharlemann [Sc] can be used to prove that the various handle
attachments give rise to different non-PL disk pairs (D, gD?).

We can modify the above construction to increase the lower bound for the
indeterminacy index. Consider the group

GXGXxG=(a,b,c,d, e f|a’=b>=(ab)? c’>=d>=(cd)*, e’ =f=(ef)?,
ac = ca, ad = da, bc = cb, bd = db, ae = ea, af = fa, be = eb, bf = fb,
ce =ec, cf = fc, de = ed, df = fd).

Now G X G X G is finitely presented, and Hi(GX G X G)=H,(GXGXG)=0, so
by Kervaire [Ke], for n=4 there exists a contractible manifold M"*? with
m,(0M)=G X G X G. As before, Y=8'XM, and m,(dY)=Z X G X G XG. Since
the center of ZX G X G X G is the product of the center of each factor, we see
that Z X G X G X G modulo its center is A5 X A5 X A,. Then, as before, tacf, tacef,
tbdef, tace, tbdf, and tabcdef are all algebraically distinct since their projections
modulo the center have orders 15, 10, 6, 5, 3, and 2, respectively. We have the
following

COROLLARY 2.2. For each n=4, there exist infinitely many homeomorphi-
cally distinct (n+1)-disk knot exteriors Y;, each with indeterminacy index {(Y;)=
6.
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§3. An upper bound for the indeterminacy index

Now that we have seen that in some cases the lower bound of { can be large,

we are interested in finding upper bounds. Along these lines, we have the
following

THEOREM 3.1. Let Y"** be an (n+1)-disk knot exterior (n=2). Then

{(Y)=2|n'|, where || denotes the cardinality of the commutator subgroup = of
m=m,0Y).

Proof. Consider the disk pair (D"*3, gD"*"). Choose a trivialization G : D* X
D"*'— N(gD™*') of the tubular neighborhood of the submanifold; thus G ({0} X
y)=g(y) for ye D"*'. We have that the exterior Y =D"">*—G(D*xD"*").
Regarding N(gD"*') as a 2-handle attached to Y via the meridian attaching curve
G(D?*x{0}), we have (D"*?, gD"*")=(Y Ug h?, cocore (h?)). We now wish to
study the number of different ways it is possible to attach a 2-handle to Y to
produce D"*3. We first count the maximum number of possible isotopy classes in
dY of attaching curves for a 2-handle which produce a contractible manifold after
handle attachment is performed. If w=m,(0Y), and =’ is the commutator
subgroup of 7, we have the short exact sequence

load->mr—>Z->1. (3.2)

Denoting the generator of the infinite cyclic multiplicative group by t, we have a
semi-direct product structure for 7, and once a splitting for (3.2) is chosen, we can
write each element x € 7 uniquely as x = t*g where a is an integer and ge ='. By
abuse of notation, let t*g represent an embedding of S' in the same homotopy
class, and choose a trivialization of its normal bundle. In order for Y U ., h* to be
acyclic, we must have a = +1, because H,(Y; Z) is infinite cyclic on the generator
t. In order for Y U,., h? to be contractible, i4(t°g) must be a weight element of
7,(Y), where ig:m,(3Y)— m,(Y) is the inclusion homomorphism. In order for
(Y U,., h*) to be simply-connected, t*g must be a weight element of 7, (3Y).
The upper bound we are aiming at is very crude, coming just from the homology
condition (a = £1), so we are in fact counting the ways it is possible to complete Y
to obtain an integral homology disk. The set of elements of #,(3Y) producing
acyclic manifolds upon handle attachment is {t*'g | g € #'}. But since the sign of
the exponent of t in an element of 7,(3Y) is reversed by changing the orientation
of the attaching curve of h* (or equivalently, reversing the orientation on the
cocore D™*'), the set of elements of 7 corresponding to possibly different
manifold pairs is {tg | g € 7'}, a set of the cardinality of 7'. Now since we are in the
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dimension range (n +2)=4 for Y, homotopy of embedded one-spheres gives rise
to isotopy, so the number of possible isotopy classes of attaching curves in dY
giving rise to acyclic manifolds is bounded above by |7'|. Now, given a rep-
resenatative of an isotopy class of attaching curves in dY, there are precisely two
ways to attach the 2-handle h?, corresponding to the m;(SO)=2Z, ways of
choosing a trivialization of the normal bundle of the curve. Hence the number of
possible handle attachments yielding acyclic manifolds is bounded above by 2 |7'|.

COROLLARY 3.3. Suppose that Y*** (n=2) is an (n+1)-disk knot exterior,
and that w,dY)=Z. Then {(Y)=<2, and the two possibly different disk pairs are
obtained, each from the other, by re-attaching the 2-handle corresponding to the
normal bundle over the submanifold via the non-trivial element of mw(SO).

Corollary 3.3 yields an easy proof of the well-known result that there are at
most two inequivalent n-knots with the same exterior:

COROLLARY 3.4. ([B], [L-S], [Ka1], [Sw]). Let X"**(n=3) be an n-
sphere exterior. Then {(X)=<2. Moreover, if (X U,(D*xS"), {0} xS") denotes a
sphere pair obtained by sewing D?*xS™ onto X via some trivialization of the
S"-bundle over the meridian curve y=S'x{*}cdX, then the possibly different
sphere pair is (X U5 (D*%x S™), {0} X S™), where ¥ denotes the same meridian curve
with different trivialization of the S™-bundle (i.e., D*>*XS" is sewn in with a
w,(SO)-twist).

Proof. There is a one-to-one correspondence between n-sphere knots and
n-disk knots with unknotted boundary (n — 1)-sphere pair, obtained by removing
an unknotted disk pair (the neighborhood of a point on the submanifold) from the
sphere pair to obtain the required disk pair. An n-sphere knot and its correspond-
ing n-disk knot have the same exterior X. But X =S'XS", and m,(6X)=Z, so
by Corollary 2.4, {(X)=<2. That is, X (thought of as a disk exterior) determines at
most two inequivalent disk pairs. Therefore, thinking of it as a sphere pair
exterior, then {(X)=2 as well.

§4. Some questions

1. Given a positive integer N, does there exist an (n+ 1)-disk exterior Y with
{(Y)=N?

2. Is there an (n+1)-disk exterior Y with {(Y)= +?

3. If X is an n-sphere exterior and 7(X)=Z, must if follow that {(X)=1?
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