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Hp(Rn) is equidistributed with I,p(Rw)a)

Steven G. Krantz

Abstract. Let 0<p<°°. Let Hp (Rn) be the real variable Hardy spaces defined by Stein and Weiss.

Let Lp(Rn) be the usual Lebesgue space. It is shown that for feLp there is an feHp with the
distribution functions of |/| and |/| identical and II/IIhpHI/IIl"- The converse is trivially true.

§o

For 0<p<°°, let

L"(Rn) [/: j^ |/(x)|p dx -||f||E..<oo].

Fix (p€C7(Rn), J«p(x)dx l. Let ^(Rn) be the Schwartz space, 9"{Rn) the
Schwartz distributions, let <pe(x) e~n<p(x/e), and define

/*(x) sup<pe*/(x),
e>0

Let \\f\\H*m\\f*\\L'torfeSr and Hp(Rn) {feSff :\\f\\H»<°°}. The space Hp(Rn) has

a number of important équivalent characterizations, for which see [3].
Eléments of the space of distributions Hp(Rn) may be représentée by intégration

against Lp(Rn) functions satisfying certain moment conditions (see Section 1).

It is with this in mind that ail ensuing statements about Hp should be read.
Note that Xco.i] on R cannot represent an Hp function, 0<p< 1. So not ail Lp

functions represent Hp functions. Calderôn-Zygmund operators are bounded on
Hp, but not on Lp, 0 < p < 1.

If / : Rn -» C is measurable, let ^(À) |{x : |/(x)| > A}|, À > 0, where | | dénotes

Lebesgue measure. Abusing terminology slightly, let us say that two functions
fl9 f2 are equidistributed if mfi(À) mh(k) for ail A. Two function spaces Xl9 X2 on
Rn are said to be equidistributed if to every fx e Xt there corresponds an f2 e X2
so that fx and f2 are equidistributed and vice versa. The main resuit of this paper is

that

1 Research partially supported by NSF Grant #MCS77-02213.
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THEOREM A. The spaces Hp(Rn) and Lp(Rn) are equidistributed, 0<p<oo.
Indeed there are universal constants C C(p, n) so that each feLp is equidistributed

with an feHp satisfying l/C<||/l|Lp/||f||HP<C

The proof of this resuit is an application of the atomic theory of the Hp

spaces. The resuit emphasizes that the distinction between Hp and Lp for a given

p is strictly a moment condition and does not involve size. The second inequality
in the theorem is trivial with C= 1. So it is the first inequality that we prove.

This work was motivated by a question of Colin Bennett. John Garnett
independently discovered Theorem A for q 1, n 1.

§1. Proof of Theorem A

The atomic characterization of Hp proceeds as follows. Let 0<p<l. Let

&k {polynomials on Rn of degree not exceeding fc}, k 0,1, 2,

A measurable function a :Rn —? C is said to be a p-atom if

a is supported on a bail B(x, r) {|y — x| < r} (1.1)

|a|<|£(x,r)|-1/p (1.2)

a(x)p(x) dx 0 Vp € 0>[(n/p)_n]. (1.3)

THEOREM 1.1 ([1],[2],[4]). Let 0<p<l. Let feSf'(Rn). Then /€JFF(Rn)
if and only if there is a séquence {aJîli of p atoms and a séquence {Àjn^cC with

/ £ A,^ in the sensé of distributions and

Hère C C(n, p) is a universal constant

Remark. Since, for 0 < p < 1,

it is possible to represent éléments of Hp by Lp functions.
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In order to prove Theorem A, it is enough to consider 0< p < 1 and to prove
that every fe Lp.can be rearranged so that it is manifestly a linear combination of
p atoms {a,} with coefficients {À,}elp satisfying ||{à.}||pHI/IIl"

Now the main technical resuit which is required for the proof of Theorem A is

PROPOSITION 1.2. Let [a, fcJcR1 and let f:[a, b]->[0,oo), f 0off [a, b],
f e L1(R). Let 0 < fc € Z. There is a measurable function f on [0, (b - a)], equidistri-
buted with f, so that $f(x)p(x) dx=0 for ail p e <3>k.

Proposition 1.2 will be proved in Section 2. Taking it for granted, let us

complète the proof of Theorem A. In order to simplify notation, the détails will
be given in R2 only. Fix 0<p<l. Let /:R2->C, f<=Lp. Assume for now that
|supp/| l. Let Nf be the non-increasing rearrangement of / (see [7]). So

suppN/ [0,l].
For ;eZ, let 1, ={x:2J <N/<2'+1}. Then [0,1]= UIP each 1, is an interval

with endpoints a, ^ bv and

Let fc=[(2/p)-2] and for each j apply Proposition 1.2 to (Nf)|fj and &k. This
yields, for each /, a function f on [0, \Ij\] which is L2 orthogonal to &k.

For each /, let Z, |JJ|ss6J — a,. Write

where for each i 1,... ,MJ-1, f$\-a\=lv and ^Mi~^iMi — ^v ^or each / and

1<ï<Mp apply Proposition 1.2 to the function 1 on [aj, $] and $Pk. Call the
resulting function hj on [0, (/3{ - aj)]. Now define

j=-ooi i N
m=-oo / > m=-oo /

-Ï Oî-«oVî(x2-Ï 01-«o
p=l / x p=l

11 AlJalJ(x1,x2)
J =r —OO | s 1

where \l} 2J(^)2/P- Then / is equidistributed with / since Nf is. Also, each a,, is a

p-atom. For each a», satisfies (i) a», is supported in a box of size < l, x {,, (ii) each a,,
satisfies k,|~Oir2/p~|B(0, Ul~1/P' and (Jii) each ^i is orthogonal to ^k by
Fubini's Theorem. In the vérification of (iii) we hâve used the fact that if p g 9k
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and fiejR is fixed then the function x*-+p(x + h) is in 0>k. Finally,

I \K\P * I Jm2jp \] Z

Likewise, E|Ajp^||/|Ê-/4. So /eHp(R2) by Theorem 1.1, and ||/HHpHI/IL-
This complètes the proof of Theorem A in case |supp/| 1. For the gênerai

case, write / Z /, where each /j, except possibly one, has support of measure 1

and the odd one has measure not exceeding 1. Then each /j gives rise to an W
function /j on [0, l]x[0,1]. Let

§2. Proof of Proposition 1.2

The proposition proceeds from some rather more technical lemmas about
polynomials and about L1 functions.

If /:R-»C, heR, let

LEMMA 2.1. 1/ 0<keZ, heR, and pe&k, then àhpe^k_x {where

Proof. Apply the binomial theorem.

LEMMA 2.2. Let hl9...9hk+1 be non-zero real numbers with |hJ|>2 |h,+1|,

/ 2, 3,..., k 4-1. Then for p e &k,

AKJAhk(...(àhip)...)^0, (22A)

and the expression on the left side of (2.2.1) may be written as

(2.2.2)

with Sj ± 1 for each j and the a, distinct.
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Proof. This follows from 2.1 by induction.

Remark. By choosing the h} in Lemma 2.2 adroitly, we may arrange that the

a, are equally spaced, with any preselected distance d0 between successive a} 's. By
renaming the a,'s if necessary, and by the translation invariance of Lemma 2.2,
we may suppose that

where a^ - a, d0, / 2,..., 2k+1.

DEFINITION 2.3. If do>0, 0<keZ, and ax,..., a2^9 el9...,e2*+* are
selected according to Proposition 2.2 and the subséquent remark, let T£° f(x)

flY any/:R->C

LEMMA 2.4. Let /:[0,1]-^ [0,oo), feL\R). Let 0<MeZ. There exists a

function /M:[0,1/M]—»[0, o°) such that f is equidistributed with g(x)

Zjli fM(x-jlM). In particular, m,(A) M • mfM(A) /or et?ery A > 0.

Proof. Let/M(x) /(Mx). D

Proo/ of Proposition 1.2. Assume without loss of generality that a 0, 5 1.

Let other notation be as in the statement of the proposition. Apply Lemma 2.4
with M 2k+1. The resulting function fM is supported on [0, 2~~k~1]. Let do

2~k~\ Using Définition 2.3 let /=T^/M. Then / is equidistributed with / and

supp /ç [0,1]. Then if p € 0>k we hâve, letting l*(x) -x, that

J p(x)/(x) dx |p(x)(Tto/M)(x) dx

(ch. of variable) J R(TÎ°Rp)(x)fM(x) dx.

But Rp € ^k so 7t°^P 0 whence the last line is 0 as desired.

§3. Concluding remarks

The proof we hâve given of Theorem A uses the structure of Rn rather
decisively. With considérable additional technical difficulty, a proof of the same

kind appears to work for the case when Hp is the non-isotopic Kàhler Hp on the

boundary of the unit bail B g Cn (see [4]) and Lp is the usual Lp space with
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respect to rotationally invariant measure on dB. It would be interesting to know to
what extent Theorem A, or a modification thereof, holds for the Hp spaces
defined on certain spaces of homogeneous type ([2], [5]).
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