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H’ (R") is equidistributed with L* (R")®

STEVEN G. KrRANTZ

Abstract. Let 0<p <o, Let H® (R") be the real variable Hardy spaces defined by SEein and Weiss.
Let LP(R") be the usual Lebesgue space. It is s~hown that for fe LP there is an fe HP with the
distribution functions of |f| and |f| identical and ||flly;»=[lfll.». The converse is trivially true.

§0

For 0 <p <, let
Lo ={f: [ 1o ax =l <o}

Fix ¢ CZR"), J@(x)dx=1. Let ¥(R") be the Schwartz space, ¥'(R") the
Schwartz distributions, let ¢ (x) = ¢ "¢(x/€), and define

f*(x)=sup @. *f(x), fe¥".

e>0

Let |fllz==|f*||- for fe ¥ and H?(R™) ={f € &' :||f||gz» <°}. The space H®*(R") has
a number of important equivalent characterizations, for which see [3].

Elements of the space of distributions H”(R") may be represented by integra-
tion against L?(R") functions satisfying certain moment conditions (see Section 1).
It is with this in mind that all ensuing statements about H” should be read.

Note that xo;; on R cannot represent an H” function, 0<p =<1. So not all L
functions represent H® functions. Calder6n—-Zygmund operators are bounded on
H?, butnoton L?, 0<p=1.

If f:R" — C is measurable, let me(A) = |[{x :|f(x)|>A}|, A >0, where | |denotes
Lebesgue measure. Abusing terminology slightly, let us say that two functions
f1, f» are equidistributed if m; (A) = m; () for all A. Two function spaces X,, X, on
R" are said to be equidistributed if to every f, € X, there corresponds an f,e X,
so that f; and f, are equidistributed and vice versa. The main result of this paper is
that
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THEOREM A. The spaces H?(R") and L?(R") are equidistributed, 0 <p <o,
Indeed there are universal constants C = C(p, n) so that each fe LP? is equidistri-
buted with an f'€ H” satisfying 1/C <|fil.-/\lf le-= C.

The proof of this result is an application of the atomic theory of the H”
spaces. The result emphasizes that the distinction between H” and L” for a given
p is strictly a moment condition and does not involve size. The second inequality
in the theorem is trivial with C=1. So it is the first inequality that we prove.

This work was motivated by a question of Colin Bennett. John Garnett
independently discovered Theorem A for q=1, n=1.

§1. Proof of Theorem A
The atomic characterization of H” proceeds as follows. Let 0<p=1. Let
P, ={polynomials on R" of degree not exceeding k}, k=0,1,2,....

A measurable function a:R" — C is said to be a p-atom if

a is supported on a ball B(x, r)={ly —x|=r} (1.1)
la|=|B(x, n|~'" (1.2)
‘[ a(X)p(X) dx =0 Vp € @[(n/p)‘n]' (1.3)

THEOREM 1.1 ([11,[2],[4]). Let 0<p=<1. Let fe ¥'(R"). Then fc H°(R")
if and only if there is a sequence {a;};—, of p atoms and a sequence {\;};—, < C with
f=2Y A\a; in the sense of distributions and

Pe=<C Y AP

1/0) - L InP =|fl
Here C = C(n, p) is a universal constant.

Remark. Since, for 0<p=1,

[|Zraw)| ax=Z N flacor ac < Tinr =ciflee,

it is possible to represent elements of H” by L” functions.
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In order to prove Theorem A, it is enough to consider 0<p =<1 and to prove
that every fe LP.can be rearranged so that it is manifestly a linear combination of
p atoms {a;} with coefficients {A;}e I” satisfying |{A;Hi- =IfllL..

Now the main technical result which is required for the proof of Theorem A is

PROPOSITION 1.2. Let [a, b]J<R' and let f:[a, b]— [0, ®), f=0 off [a, b],
feL'(R). Let 0<k € Z. There is a measurable function f on [0, (b — a)), equidistri-
buted with f, so that § f(x)p(x) dx =0 for all pe P,.

Proposition 1.2 will be proved in Section 2. Taking it for granted, let us
complete the proof of Theorem A. In order to simplify notation, the details will
be given in R? only. Fix 0<p=1. Let f:R>—C, fe L". Assume for now that
|supp fl=1. Let Nf be the non-increasing rearrangement of f (see [7]). So
supp Nf =[O0, 1].

For jeZ, let I, ={x:2' < Nf<2™'}. Then [0, 1]= UI, each I, is an interval
with endpoints a; <b,, and

* a1Sb1=(10$b0=a_15b_1=' .
Let k=[(2/p)—2] and for each j apply Proposition 1.2 to (Nf)|;, and %,. This
yields, for each j, a function f' on [0, |L;|] which is L? orthogonal to @,.
For each j, let |, =|L|=b, — a,. Write
O=al<Bi=al<Bi="-- ‘=a§w,<mvz,=l
where for each i=1,...,M,—1, Bi—ali=1, and B}, —al,=I. For each j and

1=i=<M, apply Proposition 1.2 to the function 1 on [df, B/] and #?,. Call the
resulting function K on [0, (8. — ad)]. Now define

= ¥ 3 xon(n- B b)-Fla- T 1)
X X([0,(8!—af)] (xz - ;le (BI- a,i'))h]i. (xz - ;g (BI- a’;))
Ejf_.:w :é A (x4, x3)

where A;; =2/([,)*®. Then f is equidistributed with f since Nf is. Also, each a; is a
p-atom. For each g;; satisfies (i) a;; is supported in a box of size <, X [;, (ii) each a;
satisfies |a;|~(1,)"*? ~|B(0, [,)|""?, and (iii) each a; is orthogonal to %, by
Fubini’s Theorem. In the verification of (iii) we have used the fact that if pe P,
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and heR is fixed then the function x+> p(x+h) is in &,. Finally,
Y NP =X M 2P 1 = X (271 Ginedy) <2 |l
i.j i i

Likewise, ¥ |A;° =||flE-/4. So fe H?(R?) by Theorem 1.1, and ||fllyr=||fll..-

This completes the proof of Theorem A in case |supp f| = 1. For the general
case, write f=) f; where each f;, except possibly one, has support of measure 1
and the odd one has measure not exceeding 1. Then each f; gives rise to an H”
function f; on [0, 1]x[0, 1]. Let

)= 2 Fi(ei =4, x2— 4)). O

§2. Proof of Proposition 1.2

The proposition proceeds from some rather more technical lemmas about
polynomials and about L' functions.

If f:R—>C, heR, let

Anf(x)=f(x+h)—f(x).

LEMMA 2.1. If 0<keZ, heR, and peP,, then A,peP._, (where
P_,={0}).

Proof. Apply the binomial theorem. [

LEMMA 2.2. Let h,,..., h, be non-zero real numbers with |h)|>2|h, 4|,
i=2,3,...,k+1. Then for pe P,

4, (A (...Q4,p)...)=0, (2.2.1)

and the expression on the left side of (2.2.1) may be written as
2k+1

Y ep(x+a) 2.2.2)

i=1

with g;= =1 for each j and the a; distinct.
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Proof. This follows from 2.1 by induction. [

Remark. By choosing the h; in Lemma 2.2 adroitly, we may arrange that the
a; are equally spaced, with any preselected distance d, between successive a;’s. By
renaming the g;’s if necessary, and by the translation invariance of Lemma 2.2,
we may suppose that

O>al>' . '>a2k+1

where a,_,—a,=d,, j=2,...,2*"1.

DEFINITION 2.3. If dy>0, O<keZ, and a,,..., Q=+, €;,..., Exxa1 ATE
selected according to Proposition 2.2 and the subsequent remark, let Tpo f(x)=

2k+1

-1 §f(x+aq;), any f:R—>C.

LEMMA 2.4. Let f:[0,1]—[0,®), fe L'(R). Let 0<MecZ. There exists a
function fy:[0,1/M]—[0,%) such that f is equidistributed with g(x)=
M 1 fu(x —j/M). In particular, m¢(A)=M - mg_(X) for every A >0.

Proof. Let fi,(x)=f(Mx). O

Proof of Proposition 1.2. Assume without loss of generality that a=0, b= 1.
Let other notation be as in the statement of the proposition. Apply Lemma 2.4
with M =2%*'. The resulting function f,, is supported on [0,27%7']. Let d,=
27%~1, Using Definition 2.3 let f= Tdf,,. Then f is equidistributed with f and
supp f<[0, 1]. Then if p e P, we have, letting R(x) = —x, that

[ p00f0 dx = [ pCTEAI) dx

(ch. of variable) = . R(T3Rp)(x)fa(x) dx.

But Rpe P, so Ti°Rp =0 whence the last line is 0 as desired. [

§3. Concluding remarks

The proof we have given of Theorem A uses the structure of R" rather
decisively. With considerable additional technical difficulty, a proof of the same
kind appears to work for the case when HP” is the non-isotopic Kahler H” on the
boundary of the unit ball B< C" (see [4]) and L? is the usual L? space with
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respect to rotationally invariant measure on dB. It would be interesting to know to
what extent Theorem A, or a modification thereof, holds for the H" spaces
defined on certain spaces of homogeneous type ([2], [5].
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Added in Proof: Results related to, but distinct from, Theorem A, have
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(1980), 211-233.
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