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Sur les invariants d’homotopie rationnelle liés a la
L.S. catégorie

JEAN-MICHEL LEMAIRE ET FRANCOIS SIGRIST

§0. Introduction

Le but de cet article est de montrer 1'utilité du modele minimal homologique
(““modele de Quillen”) dans la détermination de la catégorie de Lusternik—
Schnirelmann rationnelle. Nous avons choisi un espace X pour lequel la
détermination de cat (X) nécessite le calcul explicite d’un invariant de Hopf
délicat (au sens de Hilton-Berstein). La simplicité du calcul a ’aide du modéele
minimal homologique nous a paru convaincante, d’autant plus que les estimations
classiques de cat (X) sont inopérantes pour ’espace en question.

Un résultat prélable, que le modéle minimal homologique fournit rapidement
et facilement, est la détermination de la catégorie des espaces formels. Nous en
prenons prétexte pour déployer simultanément les propriétés principales des
espaces formels et une panoplie d’estimations de cat (X), tant par défaut que par
exces. Un contre-exemple récent [5] ne laisse qu’une conjecture en suspens: un
espace de catégorie n est-il toujours un cOne itéré n fois? L’équivalence de cette
conjecture avec une propriété géométrique simple nous incline vers I’affirmative.

Ce travail est le fruit d’'une longue collaboration, encouragée par le Troisieme
cycle romand de mathématiques, que nous tenons a remercier ici.

Pour faciliter la lecture, nous donnons ici un résumé télégraphique de ce
travail.

§1. Topologie algébrique. Catégorie de Lusternik—Schnirelmann, définitions
équivalentes. Estimations par défaut, contréle de
qualité.

§2. Modele de Quillen. Description et premiéres propriétés. Nouveaux in-
variants estimant cat (X) par exces. Controle de
qualité.

§3. Espaces formels. Description axiomatique. Etude des applications
formalisables. Coincidence des invariants.

§4. Exemple explicite.
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104 JEAN-MICHEL LEMAIRE ET FRANCOIS SIGRIST

§1. Invariants

Nous supposerons dans cet article, avec les abus de langage traditionnels, que
les espaces topologiques sont rationnels, CW et nilpotents sinon simplement
connexes.

La catégorie de Lusternik—Schnirelmann d’un espace X est un invariant
homotopique entier dont la définition est:

cat (X)<n & X est réunion de n+1 ouverts contractiles dans X.

En approche directe, la détermination de cat(X) est malaisée; quelques
€chantillons utiles cependant:

LEMME (1.1). cat(X)<1¢& X est un co-H-espace
LEMME (1.2). Soit Cf le cone de f: X — Y. Alors cat (Cf)<cat(Y)+1

LEMME (1.3). Si cat (X)<n, tout cup-produit de longueur n+1 dans H*(X)
est nul.

Les progrés décisifs dans D’estimation de la catégorie de Lusternik-
Schnirelmann s’appuient sur deux interprétations dues respectivement a
G. Whitehead [17] et T. Ganea [6].

Premiére interprétation. Notons A:X — X"*! la diagonale, i:T"X — X"*!
I'inclusion du bouquet garni, et (pour la suite) g : X"*' — X™*V le quotient. Alors
cat (X)<n & il existe ¢ : X — T"X factorisant homotopiquement A :io¢p = A.

Deuxiéme interprétation. Considérons la construction de Milnor de BX, clas-
sifiant du H-espace 2X. Il en résulte une filtration de B{2X par ses espaces
projectifs successifs:

30X =0XP(1)— QXPQR)—> -+ — N2XP(n)— - — BOX=X.

Notons abusivement v: 2XP(n) — X la conversion de 'application 2XP(n)—
BQX en fibration de base X. Pour la suite également désignons par k : X — Cy la
cofibre de y. Alors cat (X)=<n & la fibration v a une section.

Outre les références originales, le lecteur consultera avec profit un article de
Gilbert [7], bien documenté, qui contient la démonstration de I’équivalence des
deux interprétations ci-dessus; nous nous contenterons de signaler que cette
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équivalence résulte de I’existence d’un carré

OXP(n) —s X

L b

TnXC___'___> Xn+1

cartésien a homotopie prés (homotopy cartesian).
Avec les notations introduites, définissons maintenant:

c(X)=“cup-length” de X:
c(X)sne(qoA)=0.

e(X) =longueur d’Eilenberg-Moore de X:
e(X)=sn& ke=0.

w cat (X) = catégorie faible de X:
wcecat (X)sné& qed =x*

Gw cat (X) = catégorie faible de Ganea de X:

Gwcat(X)=n& k= *.

L’examen des définitions nous donne immédiatement la
PROPOSITION (1.4).

w cat (X)

c(X) =< e(X)

< Gw cat (X) <cat (X).

Ces différents invariants peuvent coincider dans des cas de stabilité bien
précis. Par exemple:

LEMME (1.5). Soit X (r—1)-connexe de dimension <2(k+1)r—2. Alors

c(X)sk=>wcat(X)<k
e(X)<k=>Gwcat(X)<k.
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Démonstration. (q ° A), =0 équivaut a 3(q c A)=*. C'est un résultat général
d’homotopie rationnelle que nous démontrerons ci-aprés (Proposition 3.12). Dans
ce cas particulier, il s’agit du résultat de Toomer [16]: c¢(X)=conil (2X). Les
restrictions dimensionnelles sont celles du théoréeme de suspension de
Freudenthal, nous pouvons donc conclure que (q ° 4)=*. Pour la deuxiéme
assertion, le raisonnement est identique.

LEMME (1.6). Soit X (r—1)-connexe de dimension <(k+2)r—2. Alors

wcat(X)sk > cat(X)<k
Gwcat(X)<sk D cat(X)<k.

Démonstration. La fibre homotopique commune 2 i:T“X — X**! et a
v:XP(k)— X est le joint k fois itéré X * 02X * - - - x X, Les hypotheses
dimensionnelles sont celles du théoreme de Blakers—-Massey qui donne directe-
ment les deux assertions.

Les méthodes de détermination inductive de cat (X) font appel aux diverses
notions d’invariant de Hopf. De l’article fondamental de Berstein—Hilton [2],
nous extrayons le résultat qui nous sera utile par la suite.

THEOREME (1.7). Soit Y (r—1)-connexe de dimension<(k+1)r—2 et
f:SY —> Y avec N=r+2. Notions i : Y = X = Cf. Alors

(a) cat Y<k. Enoutre ¢ : Y — T*Y factorisant A est unique a homotopie prés.

b) cat X<sk ST (i)opof=x%:SN—>TX

§2. Le modéle de Quillen

(2.1) Soit X un espace simplement connexe. Le modele de Quillen Ly de X
est une Q-algebre de Lie différentielle graduée minimale [1] qui détermine le type
d’homotopie rationnelle de X au sens suivant: Ly est défini a isomorphisme pres,
et tout choix de foncteur X ~— Ly est une équivalence de catégories d’homotopie
entre les espaces 1-connexes rationnels et les Q-algébres graduées connexes
minimales.

La description de Ly peut se résumer ainsi: (cf. [11]) Ly est I’algébre de Lie
libre L(s *H(X)) sur la désuspension de 'homologie rationnelle réduite, munie
d’une différentielle dont la partie quadratique (restreinte aux générateurs) est a
désuspension prés la diagonale réduite de H. En d’autres termes, Ly est
isomorphe comme algébre de Lie aux primitifs de la cobar-construction PQH(X),
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et la différentielle de Ly est de la forme d+8, ou d est la différentielle de
POH(X) et 8 une dérivation qui augmente la filtration de Lie de +2.

Rappelons enfin la propriété fondamentale de Ly: il existe un isomorphisme
naturel d’algebres de Lie: H(Ly)=n(X) = m(2X)®Q ou w(X) est munie du
crochet de Samelson.

L’existence de cet isomorphisme résulte de I’équivalence de catégories
mentionnée ci-dessus.

Une autre conséquence de cette équivalence de catégories d’homotopie, qui
résulte du travail fondamental de Quillen ([13]; cf. [8] (4.4.6)) est la suivante:

LEMME (2.2). Soit X un espace 1-connexe rationnel, f: S**' — X continue, et
soit Y=X Use"*?. Soit aeLyx un cycle représentant [fle H,(Lx)= m,,1(X).
Alors Ly est un modéle minimal de 1’algébre de Lie Ly rL(a), ou lal=n+1 et
da = a.

Ceci suggere la définition suivante: soit L une DG algebre de Lie libre,
connexe.

DEFINITION (2.3). Une filtration admissible sur L est la donnée

(a) d’un espace vectoriel générateur minimal V < L (de sorte que L =L(V))
(b) d’une filtration croissante (F,V) de V vérifiant F,V=0 et d(F,V)c
L(F,_,V)<L.

On dira que ’algébre L est de longueur <n si elle admet une filtration admissible
de longueur n, i.e. vérifiant F, V=1V,

Remarque (2.4). Si L est de longueur n, il est en général faux que tout espace
générateur minimal porte une filtration admissible de longueur n: ainsi, soit

L=L(a,b,ce,f)

la|=1bl=1,  lc|=3, lel=4, |fl=6

munie de la différentielle définie par da=0=db, dc=[a,b], de=0, df=
[a, e]+[a, [b, c]).

La filtration admissible la plus courte sur ces générateurs est de longueur 3,
mais si ’on pose e’ =e+[b, c] le systtme de générateurs a, b, ¢, e’, f admet une
filtration admissible de longueur 2.
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A partir de la définition (2.3), nous introduisons les invariants d’homotopie
rationnelle f et F comme suit:

DEFINITION (2.5). Soit X un espace 1-connexe; f(X) est le plus petit entier
n tel qu’il existe une algebre de Lie libre de longueur n quasi-isomorphe a Ly.

DEFINITION (2.6). F(X) est la longueur de L.

Le lemme (2.2) fournit immédiatement une interprétation géométrique des
invariants f et F:

PROPOSITION (2.7). Soit X un espace rationnel 1-connexe.

(a) On a f(X)=<nsi et seulement si X a le type d’ homotopie d’un cone itéré X,,,
défini par

Xo=+*, Xi=C(fi:Yi=>Xi_1)

ou les Y; sont des bouquets de spheres (rationalisés) pour i=1,2,...,n.
(b) On a F(X)=<n si de plus les applications d’attachement f, sont instables
(3f.~*) pouri=2,...,n.

Le lemme (1.2) fournit immédiatement les inégalités:
PROPOSITION (2.8). cat (X)<f(X)<F(X).

Parvenus a ce point, il nous a longtemps semblé que la conjecture raisonnable
était cat (X) = F(X). Nous verrons d’ailleurs que les espaces formels et les espaces
coformels vérifient cette propriété, ainsi que ’exemple qui termine cet article.
C’est a Yves Félix que nous devons le premier contre-exemple, a savoir un espace
vérifiant cat=f=3, F=4. L’invariant F est donc un majorant strict de la
catégorie rationnelle: il permet néanmoins dans certains cas d’obtenir des majora-
tions intéressantes:

On a tout d’abord:

PROPOSITION (2.9) Si F(X)=<3, alors F(X) =f(X).

Démonstration. 11 est clair que F(X)=1 entraine f(X)=1. Compte tenu des
inégalités (2.8) il suffit d’établir que le modele minimal d’une algebre de longueur
2 est de longueur <2. Une algébre de longueur 2 peut s’écrire L(V@® W) avec
d| V=0 et dWcL(V); soit m: L(V)—> QL(V)=V la projection canonique sur
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les indécomposables, soit W’'=Ker (wd) et soit W’ un supplémentaire de W’
dans W. Soit V'=d(W")cL(V) et soit V" un sous-espace de L(V) tel que
V'@ V" soit un espace générateur minimal de L(V). Le quotient de L(V® W) par
I'idéal engendré par V'@®W" est quasi-isomorphe a L(V@® W) d’apres [1]
(Proposition 1.5) or par construction il est isomorphe a L(V'@ W') avec une
différentielle nulle sur V" et dW'c[L(V"), L(V")]: cette derniére algeébre est
donc le modéle minimal de L(V@® W) et elle est de longueur 2.
Ce résultat est le meilleur possible:

PROPOSITION (2.10) [5]. II existe des espaces X,,, pour tout n=0, vérifiant
f(X,)=3 et F(X,)=3+n.

La seule question qui reste ouverte est donc:
CONIJECTURE (2.11). Pour tout espace 1-connexe X, on a cat (X) = f(X).

Nous concluons ce paragraphe en montrant comment l'invariant F permet
d’établir des inégalités de contrOle dimensionnel de cat (X).

Le corollaire (2.14) ci-dessous est une reformulation partielle de (1.5) et (1.6),
le corollaire (2.15) est nouveau.

DEFINITION (2.12). Soit (x;) un systtme minimal de générateurs de
I’algebre de Lie libre L. Une chaine descendante de longueur k est une suite
Xi,...,% d¢éléments de ce systtme telle que dx; =0, et, pour tout j=
1,...,k—1,dx;,  admet au moins une coordonnée non-nulle suivant un crochet
basique ou figure x;.

Il est clair que toute algébre de Lie de longueur =n admet une chaine
descendante de longueur =n. On remarque alors:

LEMME (2.13). Soit X un espace (r—1)-connexe, et soit (x,...,X;) une
chaine descendante de Lx. On a

‘xk l = kr - 1
En particulier, dim X = kr.

Démonstration. Comme Ly =L(s *H(X)), on a.VxeLy, |x|=r—1oux=0et
comme Ly est minimale, tout bord est de filtration de Lie au moins 2, d’ou

ViE{l,z,...,k"’l}, Ix!+1|=‘dxt+1l+1>‘xl‘+r—1+1

d’ou le résultat par sommation. ]
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Remarquons qu’on retrouve, au moins pour les espaces rationnels, le résultat
classique:

dim X
cat (X)) < m: .

COROLLAIRE (2.14) (Toomer [16]). Si X est (r—1)-connexe, on a:
(cX)=k et FX)zk+1)>dmX=(k+2)r—1.

Démonstration. Soit x,.,,...,X; une chaine descendante de Ly. Comme la
partie quadratique de la différentielle d’un générateur est la transposée du
cup-produit, il existe au moins un indice i, tel que x; figure dans un crochet
basique de longueur =3 apparaissant dans dx_.;. On a alors |x .=
x| +2(r—1)+1 d’ou

dim X—-1=|x|=(k+Dr—1+r-1. |
On obtient de méme le résultat suivant:

COROLLAIRE (2.15). Soit X un espace (r—1)-connexe a cup-produit ration-
nel trivial. Alors

caltX<dim X+r-1_dimX 1
T 2r—1 2r—1 2°

Démonstration. Cette inégalité résulte de I’'implication:
(cX)=1 et FX)=k)2>dimX=Q2k—-1)r—-k+1

qu’on obtient en remarquant que tout bord de Ly est de filtration de Lie =3.

§3. Espaces et applications formelles

Nous rassemblons dans ce paragraphe quelques résultats sur les espaces et les
applications formelles qui sont nécessaires pour la justification des propriétés de
notre exemple du paragraphe suivant, ainsi que quelques autres résultats
intéressants. Les notations adoptées sont celles de [1].



Sur les invariants d’homotopie rationnelle liés a la L.S. catégorie 111

THEOREME ET DEFINITION (3.1). Les propositions suivantes sont
équivalentes: tout espace 1-connexe X vérifiant I'une d’elles sera dit formel.
(HF 1) Ly =PQOH(X) (comme DG algébres de Lie)

(HF 2) Il existe un espace vectoriel générateur minimal V < Ly tel que d(V)c

(HF 3) Soit Ex le modéle de Sullivan. La projection canonique ZEy —
H(Ex) = H*(X) admet une extension multiplicative a Ex:

ZEx— H*(X)

'l

Ex
(HF 4) Il existe un quasi-isomorphisme d’algebres de cochaines

Ex—— H*X).

(3.2) Exemples d’espaces formels

(a) Les spheres et les K(Q, n) sont formels.

(b) Un produit, un wedge d’espaces formels est formel.

(¢) (R. Douglas) Un rétracte d’espace formel est formel (d’aprées HF 3).

(d) Une variété kaehlérienne compacte, un espace riemannien homogene

symétrique compact sont des espaces formels ([3],[15]) lorsqu’ils sont 1-
connexes.

Pour une autre caractérisation des espaces formels en termes de ‘“modeles filtrés”’,
voir [14].
La catégorie rationnelle d’un espace formel est des plus faciles a calculer:

PROPOSITION (3.3). Si X est formel, on a
¢(X) = F(X) = cat (X).

Démonstration. D’aprés HF 1, on a Ly =PQH.(X). Or la filtration de co-
algebre de H,(X) est admissible, et de longueur c(X). ||

Ainsi, tous les invariants que nous avons cités ou introduits coincident sur les
espaces formels.
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Remarque (3.4). Les espaces coformels ([18],[4]) ou w-formels ([9], [11])
vérifient par définition les conditions suivantes, duales des (HF,).

(7wF,) Ex=Hom (4m(X), Q) ou € est la construction de Koszul, ([1], (0.18)).

(wF,) 1l existe un espace vectoriel générateur minimal U c Ex tel que d(U) <
S?U c Ey.

(wF;) 1l existe une extension multiplicative

-
-

-’
rd
-

Lx
(7wF,) 1l existe un quasi-isomorphisme d’algébres de Lie
Ly—n(X).

Plus précisément, on peut “‘dualiser” les idées de Stasheff et Halperin ([14]; cf.
[11], [4]) et exprimer plus précisément (7wF,) en disant que Ly est le modele
bigradué de w(X). La filtration associée au premier degré est admissible, et
coincide sur les générateurs de Ly -2 savoir s 'Hy(X)-avec la filtration
d’Eilenberg-Moore. On établit ainsi:

PROPOSITION (3.5). Si X est coformel, on a
e(X)=F(X)
et par conséquent e(X) = Gw cat (X) = cat (X) = F(X).

Ainsi (S°v S?) U, e*V*?, ou vy est un élément quelconque de filtration de Lie
N de l'algébre de Lie libre m4(S*vS?)®Q, est un espace coformel, vérifiant
e=cat=F=2, (cf. [10], Ex. 1) et c=1. Notons que cet espace vérifie w cat=1
pour tout N, d’apres ([2] Th. 4.3.). (Pour N <4 cela résulte évidemment de (1.5).)

Un espace formel est un espace dont le type d’homotopie rationnel est
déterminé par I’homologie. La notion analogue pour les applications peut étre
introduite, moyennant quelques précautions dues au fait que les modeles ne sont
définis qu’a isomorphisme pres.

Rappelons d’abord que 'on a des isomorphismes naturels:

ax: QLy—=-> s 'Hy(X; Q)

Bx : H(Ex)“i’H*(X, Q).
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La naturalité tient au fait que les modeles minimaux sont uniques a isomor-
phisme pres, lui-méme unique a homotopie prés. Un espace X est formel s’il

existe ¢x:Lx = POHw(X) tel que Qox = ax, ou encore s’il existe Y :Ey —
H*(X) tel que H(y) = Bx.

Ceci conduit a la définition suivante:

THEOREME ET DEFINITION (3.6). Les conditions suivantes sont
équivalentes pour une application f: X — Y entre espaces formels X et Y:

(AF 1) Il existe des isomorphismes @x et @y, tels que Qox = ay, Qey = ay et
que le diagramme suivant

L

LX ! —> LY
ox | = ox | = (3.6.1)
PQf,
POH(X) — POH(Y)

commute a homotopie pres.

(AF 2) Il existe des quasi-isomorphismes {x; et Py, tels que (Px)*=PBx et
(Py)* = By, et que le diagramme suivant

EX< L EY
~ 1 Ux ~| ¥y (362)
H*(X) «—————— H¥(Y)

commute a homotopie pres.
On dira que f est formalisable si elle vérifie (AF 1) ou (AF 2).

L’équivalence de (AF 1) et (AF 2) provient du fait que ([1], §3) les foncteurs
min P2 Hom (?, Q) et min Hom (€?, Q) sont des équivalences de catégories
d’homotopie entre [min Alg*] et [min Liey], compatibles avec I’homologie (ou la
cohomologie).

Remarque (3.7). Nous évitons 1'usage de I’adjectif “‘formelle” dans ce con-
texte, dans la mesure ou il n’existe pas de choix naturel pour @x ou y¥x. Un tel
choix est cependant possible sur certaines sous-catégories d’espaces topologiques,
par exemple la catégorie des variétés kaehlériennes compactes et des applications
holomorphes: la théorie de Hodge fournit alors un quasi-isomorphisme naturel
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entre les formes différentielles complexes et la cohomologie: ceci justifie I’asser-
tion «les applications holomorphes entre variétés kaehlériennes compactes sont
formelles» qui se trouve dans [3].

On remarquera en particulier qu’il n’y a aucune raison pour que la composée
de deux applications formalisables le soit: nous donnons un exemple de cette
situation en (3.10).

EXEMPLES (3.8). Soient X et Y deux espaces formels. Les projections
XXY— X, Y, les diagonales A™: X — X", sont des applications formalisables:
ceci résulte de I'isomorphisme naturel Ex.y = Ex®E,.

On a évidemment:

LEMME (3.9). Une application formalisable et homologiquement triviale est
(rationnellement) homotope a zéro.

EXEMPLE (3.10). Soit X=S7, Y=3(5*>%x8*=8*vS*vS’, Z=S* Soit
j: X — Y Tinclusion de S7, et f: Y — Z la suspension de la multiplication de S>.
La composée foj est I'application de Hopf S’ — S* qui est rationnellement
non-triviale, et par conséquent non-formalisable, d’aprés le lemme précédent. Or
j est évidemment formalisable, et f ’est aussi. En effet

Ly =L(as, bs, c¢), d=0
Ly = L(es)

Li:ar>e, b—e, c>A[e, €], (pour un certain A€Q*) et il suffit de choisir
¢@x : Ly — POQH(X) = Ly défini par

ex(a)=a, ox(b)=b, e@x(c)=c—A[a,b]
et ¢y = id, pour obtenir le carré commutatif (3.6.1) |

EXEMPLE (3.11). On peut montrer qu’une suspension est toujours formali-
sable (cf. '’exemple précédent).

Nous nous contenterons d’établir I’énoncé suivant, qui résulterait de (3.9) et
(3.11), et que nous avons utilisé dans (1.5):

PROPOSITION (3.12). Soit f: X — Y une application continue entre espaces
rationnels. Si 0= fy : He(X; Q) — ﬁ*(Y; Q), alors 3f est homotope a zéro.
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Preuve. Nous aurons besoin d’introduire la notion suivante: soit u: L — M un
morphisme d’algebres de Lie libres. Filtrons L et M par la filtration de Lie. Si
u# 0, il existe un entier k =0 et un seul tel que u augmente la filtration de k et
pas de k + 1. Le morphisme u induit alors une application polynomiale homogéne
de degré d’homogénéité k +1

p(uw): QL=F'L/F’L — E§*'M =F*"'M/F***M

que nous appellerons la partie principale de u. Comme une suspension a le type
d’homotopie rationnel d’'un bouquet de sphéres, on a

Lyx = (L(Hy (X)), d=0)=L

Lyy = (L(Hx(Y)),d =0) =

et Ls;: Lyx — Ly est homotope a z€ro si et seulement si elle est nulle. Posons
abusivement pour alléger I’écriture, 3f = Ly;.

Exprimons a présent que 3f est un morphisme de co-H-espaces: on obtient le
diagramme commutatif (car les différentielles sont nulles!):

xf
L — M
EfVZf l
J.L JL

ou Csx et Csy sont les comultiplications des suspensions 3X et 3Y. Il est clair que
la partie principale de ces comultiplications est la diagonale x — (x, x) sur les
indécomposables. Posant g = (3fv 3f) o Cyx = Csy © 3f, la partie principale de g
vérifie:

Vx € QL, p(g)(x) = (p(g)(x)) + (p(g)(x))"

’

ou ' et ” désignent les inclusions de M dans Mz M. En composant avec les
codiagonales Ly L - L et M2 M — M, on obtient:

VxeQL, p(3f)(2x)=2p(Zf)(x)
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ce qui montre que p(Xf) doit étre homogene de degré 1, et alors
p(Zf)=Q3f=fx#0, oubien 3Xf=0.
Ceci achéve la démonstration. |

Nous terminons ce paragraphe par 1'étude de 1la diagonale
A" X— X" (n=1) d’un espace formel de catégorie k.

D’apres (3.3), I’espace X est de catégorie k si et seulement si ¢(X)=k. Par
ailleurs, la diagonale A™*' est formalisable. Le choix approprié du foncteur L

~

permet donc de supposer que L, =POALY ou
A;+1 . H*(X) — H*(Xn+l) —_ H*(X)®n+1

est la comultiplication itérée de Hy(X), qui est un morphisme de coalgebres. Dire

n+1

que c¢(X)=<k revient a dire que I'image de AL"" est contenue dans F, Hg(X), ou
F4H4(X) est la filtration canonique de coalgebre; si k <n, on a la factorisation:

Lyn=POQAL : Ly =POH(X) — PO(F,Hy (X)) < Lyn+.

Cette factorisation fournit la factorisation ‘“‘catégorique” de A"*'! En effet:
LEMME (3.13). Si X est formel, le bouquet garni T"X < X"*' est formel.
COROLLAIRE (3.14). On a L~y = PQ(F, Hy(X)).

Preuve du corollaire. On a bien Hy(T"X) = F,H4(X). [ |

Preuve de (3.13). On considére T"X comme somme amalgamée d’exemplaires
de X" le long d’exemplaires de X" . Le lemme résulte alors du:

LEMME (3.14). Soit

XC:‘_l_..) X1

P;Z liz
iy

Xz""""') Y

un carré cocartésien dans lequel les fleches iy, i, sont des cofibrations fermées, les
espaces X, X,, X, sont formels et les inclusions i,, i, sont formalisables et injectives
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en homologie. Alors Y est formel et j,,j, sont formalisables et injectives en
homologie.

Preuve. En choisissant convenablement les modeles minimaux, on peut sup-
poser que

L, = PQ(i)y : POH(X) > POHL(X;), j=1,2.

Comme le foncteur L est une équivalence de catégories d’homotopie qui respecte
les fibrations et les cofibrations, on a:

Ly =POH(X,) Lpon,xx) PAH(X5)

L’algébre L, est engendrée par Hy(X;)+ Hyu(X;) = Hy(X,) Ou,x) He(X5) =
H,(Y), et la restriction de la différentielle est quadratique, donc Ly = PQH(Y)
d’apres (HF 2).

Remarque (3.15). On peut démontrer (3.13) au moyen du modele de Sullivan,
a partir du fait que Epx est le modéle minimal de P'algébre (Ex)®"*!/I, ou
I=E,®"*! est le produit tensoriel des idéaux d’augmentation de chaque facteur,
et ceci pour X connexe quelconque, formel ou non (Y. Félix, non publié).

Remarquons enfin que ’étude qui précede fournit une autre démonstration de
I'inégalité cat (X) =< c(X) pour un espace formel X.

§4. Un exemple

A T'appui de notre conjecture (2.9), nous avons choisi un espace a quatre
cellules se prétant a la détermination de tous les invariants introduits aux para-
graphes 1 et 2. Considérons

X=(S>vCP?» | €’

le complexe cellulaire dans lequel 'application attachante « est le produit de

Whitehead de I’identité de S? et de I’application de Hopf y: S° — CP2. Notre but
est le

THEOREME (4.1).

cX)=wcat(X)=e(X)=Gwecat(X)=2 cat(X)=f(X)=F(X)=3.
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La détermination de cat (X) nécessite un calcul détaillé de modéles minimaux,
et constitue la partie principale du théoréme; au préalable, nous commentons les
autres propriétés.

Il est clair que c(X) =2. Quant a e(X) =2, il faut soit faire appel a I’autopsie
des meurtres [10], soit raisonner avec la nilpotence homologique du modele de
Sullivan. Cette derniere technique fournit une démonstration assez aisée, mais
sort totalement du cadre de cet article.

Comme X est simplement connexe de dimension 7, on obtient w cat (X) =2 et
Gw cat (X) =2 par le lemme (1.5). Bien entendu, le lemme (1.6) est inapplicable!

Finalement, il est immédiat que F(X)=<3 par la proposition (2.7): I’écriture
méme de la décomposition cellulaire de X le montre comme triple cOne avec des
attachements homologiquement triviaux, donc instables par la proposition (3.12).
Vu le résultat final, il est inutile de démontrer que F(X)=3. Il reste cat (X) a
déterminer.

En notant Y = S?vCP?, nous nous trouvons exactement dans les notations et
les hypothéses du théoréme de Berstein—Hilton (1.7). Pour établir que cat (X) =3,
il suffit donc de montrer que T?(i) ¢ ‘- a:S°— T?X est homotopiquement
non-triviale. Par approximation cellulaire, nous sommes ramenés a étudier 1’appli-
cation

sy, YyesT)Y U’ Ue' U e'=2Z

ce que nous ferons a I'aide des modéles minimaux.
PROPOSITION (4.2). Le modéle minimal de CP? est L(y, z) avec
lyl=1  dy=0

|z|=3  dz=3ly,y]

Dans ce modele, I’application de Hopf y:S°—CP? a [y, z] comme cycle
représentatif.

Démonstration. Le modéle minimal de la sphére S? est L(y), avec |y|=1 et
dy=0. 11 est donc additivement engendré, comme son homologie, par y en
dimension 1 et [y, y] en dimension 2. (Rappelons que [y, [y, y]]=0.) L’homotopie
rationnelle de S? a donc deux générateurs correspondant a y et [y, y]. En notation
habituelle, ceuxci sont ¢ € m,(S?) et [, t]€ m5(S?). Un cycle représentant I’applica-
tion de Hopf S> — S? est donc [y, y]. Par le Lemme (2.2), le modéle minimal de
CP? a bien la structure annoncée. Il en résulte que CP? est formel, puisque les
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différentielles du modele sont purement quadratiques (HF 2). A I'aide de (HF 1),
nous pouvons confirmer le résultat en explicitant la coalgébre d’homologie de
CP?. En notant abusivement y et z les générateurs homologiques, il vient en effet

Ax(y)=1@y+y®1 Au(y)=0
A4(2)=1Qz+y®y+z@1  A(2)=yQy=3Hy,yl

Le calcul (facile) de I’homologie du modele minimal de CP? fournit un seul
générateur en dimension 4, représenté par le cycle [y, z].

L’application de Hopf y: S°>— CP? a donc un cycle représentatif qui est un
multiple de [y, z], purement quadratique. Il s’ensuit que ’espace CP> est formel.
Le calcul de la coalgébre d’homologie de CP? analogue au précédent, fournit
alors facilement [y]=[y, z] achevant la démonstration. Bien entendu, la formalité
de CP? résulte aussi de [3]!

COROLLAIRE (4.3). Le modeéle minimal de Y = S*v CP? est L(x, y, z) avec
Ix|=lyl=1  dx=dy=0
|z|=3 dz =3[y, y]-

PROPOSITION (4.4). Le modéle minimal de T?Y est L(x;, y: zi, XiX;, XY,
YiXis ViV X%iZj» 2% YiZj ZiY5, 2:25) 1=1,2,3, (i, ) =(1, 2), (1, 3), (2, 3), avec

lx|=ly|=1 dx, = dy, =0

|z:| =3 dz; =[y, y:]

x| =3 dxx; =[x, x;]

%y;|=3 dx,y; =[x y;]

lyix;| =3 dy.x; =[yi, %]

iyl =3 dyy; =[ys ¥

|xiz;| =5 dx;z; =[x, z;1+[xy;, ;]
|zox;| =5 dzx; = [z, 1+ [yx;, v:]
lyiz;| =5 dy.z; = [y, z1+[yys yi]
|zy;| =5 dzy; =z, y;1+ [y i1

‘Zizi\ =7 dZiZj =z, Zj] + [)’izj, y: ]+ [Zin’ )’j] +%[}’in, Yi)’j]-
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Démonstration. La liste des générateurs est bien siir s 'H,(T?Y). Le corol-
laire (3.14) raméne a nouveau le calcul des différentielles a celui des coproduits en
homologie. Nous donnons seulement deux échantillons de calcul explicite, qui
suffisent a expliquer les notations et les quelques abus de langage:

Ay(x12)=(1Qx; +x, 1) (1R 2, + y, Ry, +2,& 1)=
1®x,2,+x,Q 2, +y,@x,y, + %Y, @y, + 2,0 x, +x,2,1

A*(xlzz) =[xy, 2o]+[%1¥2, ¥2]

Ay(212)=(1Q 2z, +y,Qy, +2; @ 1)(1Q 2, +y, 8y, +2,&1)
=1®2,2,+y,80y12,+2,02,+y,Q2,y,+y,1y,0y:¥,+ 2,y,Qy,
+2,02z,+y,2,8y,+2,2,¥1

A*(Z122) =[zy, 2]+ [y122, yil+[z1y2, YZ]+%[YIYZ’ y1Y2l-

PROPOSITION (4.5). L’application ¢: Y — T?Y factorisant A> est donnée
sur les modeéles minimaux par:

bg(x)=x;+x,+ x5
éx(y)=y,ty,ty;
bx(z) =21+ 22+ 23+ Y1 Y2+ y1Y3 T Y2 Y.

Démonstration. Y est un espace formel de catégorie 2. Il suffit donc de
remplacer ¢4 par A, en vertu de Lemme (3.13). Le calcul est alors immédiat.

PROPOSITION (4.6). Le modeéle minimal de Z=T*Y Ue’ U e’ U e’ est
Loy 2 L(uy, us, us) avec |u|=6 et du; =[x, [y;, z]1. uoome®

Démonstration. L’application «:S®— S*vCP? a [x,[y, z]] comme cycle
représentatif. Comme les différentielles du, sont décomposables, le modele ob-
tenu par I’application du Lemme (2.2) est minimal.

Démonstration du théoreme (4.1). Nous devons démontrer que ’application
S¢3 Y5 T?Y S Z est non triviale. Par la Proposition (4.5), cette composition a
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dans L,

[x,+x;+ x5, [y, + YotV¥3, 21+ 2+ 25+ Y1y, + Y,y yoys]]

comme cycle représentatif. Tout revient donc a montrer que ce cycle n’est pas un
bord. Une inspection tres simple des différentielles de L, méne rapidement au
résultat: les seules différentielles de L, qui contiennent le générateur y,y, sont

dy,z; =[y1, z,]+[y1y2, ¥2]
dz,y, =[zy, y2]+[y1y2, 1]

dz,z,=[zy, 2,]+[y12,, y]+[21¥2, YZ}+%[Y1)’2, y1Yal-

Aucun bord ne peut donc atteindre [x,, [ys, y1y.]] qui est manifestement touché

par le cycle donné. Donc cat (X) =3, achevant la démonstration du théoréme
(4.1).
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