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Sur les invariants d'homotopie rationnelle liés à la
L.S. catégorie

Jean-Michel Lemaire et François Sigrist

§0. Introduction

Le but de cet article est de montrer l'utilité du modèle minimal homologique
("modèle de Quillen") dans la détermination de la catégorie de Lusternik-
Schnirelmann rationnelle. Nous avons choisi un espace X pour lequel la
détermination de cat(X) nécessite le calcul explicite d'un invariant de Hopf
délicat (au sens de Hilton-Berstein). La simplicité du calcul à l'aide du modèle
minimal homologique nous a paru convaincante, d'autant plus que les estimations

classiques de cat (X) sont inopérantes pour l'espace en question.
Un résultat prélable, que le modèle minimal homologique fournit rapidement

et facilement, est la détermination de la catégorie des espaces formels. Nous en

prenons prétexte pour déployer simultanément les propriétés principales des

espaces formels et une panoplie d'estimations de cat (X), tant par défaut que par
excès. Un contre-exemple récent [5] ne laisse qu'une conjecture en suspens: un
espace de catégorie n est-il toujours un cône itéré n fois? L'équivalence de cette

conjecture avec une propriété géométrique simple nous incline vers l'affirmative.
Ce travail est le fruit d'une longue collaboration, encouragée par le Troisième

cycle romand de mathématiques, que nous tenons à remercier ici.

Pour faciliter la lecture, nous donnons ici un résumé télégraphique de ce
travail.
§1. Topologie algébrique. Catégorie de Lusternik-Schnirelmann, définitions

équivalentes. Estimations par défaut, contrôle de

qualité.
§2. Modèle de Quillen. Description et premières propriétés. Nouveaux in¬

variants estimant cat(X) par excès. Contrôle de

qualité.
§3. Espaces formels. Description axiomatique. Etude des applications

formalisables. Coïncidence des invariants.
§4. Exemple explicite.
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104 JEAN-MICHEL LEMAIRE ET FRANÇOIS SIGRIST

§1. Invariants

Nous supposerons dans cet article, avec les abus de langage traditionnels, que
les espaces topologiques sont rationnels, CW et nilpotents sinon simplement
connexes.

La catégorie de Lusternik-Schnirelmann d'un espace X est un invariant
homotopique entier dont la définition est:

cat (X) ^ n <$ X est réunion de n + 1 ouverts contractiles dans X.

En approche directe, la détermination de cat(X) est malaisée; quelques
échantillons utiles cependant:

LEMME (1.1). cat (X) ^ 1 <=> X est un co-H-espace

LEMME (1.2). Soit Cf le cône def:X^Y. Alors cat (Çf)^cat (Y)+ 1

LEMME (1.3). Si cat(X)=^n, tout cup-produit de longueur n + 1 dans H*(X)
est nul.

Les progrès décisifs dans l'estimation de la catégorie de Lusternik-
Schnirelmann s'appuient sur deux interprétations dues respectivement à

G. Whitehead [17] et T. Ganea [6].

Première interprétation. Notons A:X-»Xn+1 la diagonale, i:TnX-»Xn+1
l'inclusion du bouquet garni, et (pour la suite) q :X"+1 —» X(n+1) le quotient. Alors
cat (X) ^ n O il existe <£ : X —» T^X factorisant homotopiquement A : î ° <f> — A.

Deuxième interprétation. Considérons la construction de Milnor de BOX, clas-
sifiant du H-espace (IX. Il en résulte une filtration de BOX par ses espaces

projectifs successifs:

Notons abusivement 7 : ÙXP(n) —» X la conversion de l'application (lXP(n) —»

BOX en fibration de base X. Pour la suite également désignons par k : X —> Cy la
cofibre de y. Alors cat (X) ^ n <£> la fibration 7 a une section.

Outre les références originales, le lecteur consultera avec profit un article de

Gilbert [7], bien documenté, qui contient la démonstration de l'équivalence des

deux interprétations ci-dessus; nous nous contenterons de signaler que cette



Sur les invariants d'homotopie rationnelle liés à la L.S. catégorie 105

équivalence résulte de l'existence d'un carré

nxp(n) —U x

cartésien à homotopie près (homotopy cartesian).
Avec les notations introduites, définissons maintenant:

c(X)="cup-length" de X:

e(X) longueur d'Eilenberg-Moore de X:

w cat (X) catégorie faible de X:

w cat(X)^n€> q°à^*

Gw cat (X) catégorie faible de Ganea de X:

Gw cat (X)^nO k ^ *.

L'examen des définitions nous donne immédiatement la

PROPOSITION (1.4).

c(X) ^
W Ca^(X) ^ Gw cat (X) *scat (X).

e{X)

Ces différents invariants peuvent coïncider dans des cas de stabilité bien
précis. Par exemple:

LEMME (1.5). Soit X (r- \)-connexe de dimension *s2(k + l)r-2. Alors
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Démonstration, (q ° A)* 0 équivaut à X(q ° A)— *. C'est un résultat général
d'homotopie rationnelle que nous démontrerons ci-après (Proposition 3.12). Dans

ce cas particulier, il s'agit du résultat de Toomer [16]: c(X) conilC£X). Les
restrictions dimensionnelles sont celles du théorème de suspension de

Freudenthal, nous pouvons donc conclure que (qo4)=*. Pour la deuxième
assertion, le raisonnement est identique.

LEMME (1.6). Soit X (r- l)-connexe de dimension^(fc + 2)r-2. Alors

w cat (X)^fc ^> cat

Démonstration, ha fibre homotopique commune à i:TkX—»Xk+1 et à

7 : fiXP(fc) -+ X est le joint k fois itéré QX * (IX * • • • * iîX. Les hypothèses
dimensionnelles sont celles du théorème de Blakers-Massey qui donne directement

les deux assertions.
Les méthodes de détermination inductive de cat (X) font appel aux diverses

notions d'invariant de Hopf. De l'article fondamental de Berstein-Hilton [2],
nous extrayons le résultat qui nous sera utile par la suite.

THÉORÈME (1.7). Soir Y (r - l)-connexe de dimension ^(fc + l)r-2 et

f:SN-*Y avec N^r + 2. Notions i:Y-*X Q. Alors
(a) cat Y^k. En outre <£ : Y-» TkY factorisant A est unique à homotopie près.

(b) catX^fc O T*(î) o <f> o /=* * : s* -* TkX.

§2. Le modèle de Qufllen

(2.1 Soit X un espace simplement connexe. Le modèle de Quillen Lx de X
est une Q-algèbre de Lie différentielle graduée minimale [1] qui détermine le type
d'homotopie rationnelle de X au sens suivant: Lx est défini à isomorphisme près,
et tout choix de foncteur X —»LX est une équivalence de catégories d'homotopie
entre les espaces 1-connexes rationnels et les Q-algèbres graduées connexes
minimales.

La description de Lx peut se résumer ainsi: (cf. [11]) Lx est l'algèbre de Lie
libre L(s~1H(X)) sur la désuspension de l'homologie rationnelle réduite, munie
d'une différentielle dont la partie quadratique (restreinte aux générateurs) est à

désuspension près la diagonale réduite de H. En d'autres termes, Lx est

isomorphe comme algèbre de Lie aux primitifs de la cobar-construction Ff2H(X),
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et la différentielle de Lx est de la forme d + ô, où d est la différentielle de

PQH(X) et 8 une dérivation qui augmente la filtration de Lie de +2.
Rappelons enfin la propriété fondamentale de Lx: il existe un isomorphisme

naturel d'algèbres de Lie: H(Lx) Tt(X) Tr*(QX)®Q où ir(X) est munie du
crochet de Samelson.

L'existence de cet isomorphisme résulte de l'équivalence de catégories
mentionnée ci-dessus.

Une autre conséquence de cette équivalence de catégories d'homotopie, qui
résulte du travail fondamental de Quillen ([13]; cf. [8] (4.4.6)) est la suivante:

LEMME (2.2). Soit X un espace 1-connexe rationnel, f: Sn+1 —» X continue, et
soit Y X \Jfen+2. Soit aeLx un cycle représentant [f]eHn(Lx) 7rn+1(X).
Alors LY est un modèle minimal de Valgèbre de Lie LxitL(a), ou |a| n + l et

da a.

Ceci suggère la définition suivante: soit L une DG algèbre de Lie libre,
connexe.

DÉFINITION (2.3). Une filtration admissible sur L est la donnée

(a) d'un espace vectoriel générateur minimal VciL (de sorte que L=L(V))
(b) d'une filtration croissante (FPV) de V vérifiant FoV 0 et d(FpV)a

On dira que l'algèbre L est de longueur ^n si elle admet une filtration admissible
de longueur n, i.e. vérifiant FnV= V.

Remarque (2.4). Si L est de longueur n, il est en général faux que tout espace
générateur minimal porte une filtration admissible de longueur n: ainsi, soit

L h(a,b,c,e,f)

|a| |b| l, |c| 3, |c| 4, |/| 6

munie de la différentielle définie par da Q db, dc [a, b], de 0, df

La filtration admissible la plus courte sur ces générateurs est de longueur 3,
mais si l'on pose e' e 4-[b, c] le système de générateurs a, b, c, e\ f admet une
filtration admissible de longueur 2.
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A partir de la définition (2.3), nous introduisons les invariants d'homotopie
rationnelle / et F comme suit:

DÉFINITION (2.5). Soit X un espace 1-connexe; /(X) est le plus petit entier
n tel qu'il existe une algèbre de Lie libre de longueur n quasi-isomorphe à Lx.

DÉFINITION (2.6). F(X) est la longueur de Lx.

Le lemme (2.2) fournit immédiatement une interprétation géométrique des

invariants / et F:

PROPOSITION (2.7). Soit X un espace rationnel l-connexe.

(a) On a /(X) ^ n si et seulement si X aie type d'homotopie d'un cône itéré Xn,
défini par

Xo=*, Xl C(fl:Yl^Xl_1)

où les Yt sont des bouquets de sphères (rationalisés) pour i 1,2,..., n.

(b) On a F(X)^n si de plus les applications d'attachement fx sont instables

Le lemme (1.2) fournit immédiatement les inégalités:

PROPOSITION (2.8).

Parvenus à ce point, il nous a longtemps semblé que la conjecture raisonnable
était cat (X) F(X). Nous verrons d'ailleurs que les espaces formels et les espaces
coformels vérifient cette propriété, ainsi que l'exemple qui termine cet article.
C'est à Yves Félix que nous devons le premier contre-exemple, à savoir un espace
vérifiant cat / 3, F 4. L'invariant F est donc un majorant strict de la
catégorie rationnelle: il permet néanmoins dans certains cas d'obtenir des majorations

intéressantes:
On a tout d'abord:

PROPOSITION (2.9) SiF(X)^3, alors F(X) /(X).

Démonstration. Il est clair que F(X) 1 entraîne /(X) 1. Compte tenu des

inégalités (2.8) il suffit d'établir que le modèle minimal d'une algèbre de longueur
2 est de longueur ^2. Une algèbre de longueur 2 peut s'écrire L(V©W) avec
d | V 0 et dWcz L(V); soit ir : L( V) -» QL(V) V la projection canonique sur
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les indécomposables, soit W Ker(7rd) et soit W" un supplémentaire de W
dans W. Soit V' d(W")^L(V) et soit V" un sous-espace de L(V) tel que
V© V" soit un espace générateur minimal de L(V). Le quotient de L(V© W) par
l'idéal engendré par V'©W" est quasi-isomorphe à L(V©W) d'après [1]
(Proposition 1.5) or par construction il est isomorphe à L(V"©W) avec une
différentielle nulle sur V" et dW'c[L(V"), L(V")]: cette dernière algèbre est

donc le modèle minimal de L(V©W) et elle est de longueur 2.

Ce résultat est le meilleur possible:

PROPOSITION (2.10) [5]. Il existe des espaces Xn, pour tout n^O, vérifiant

La seule question qui reste ouverte est donc:

CONJECTURE (2.11). Pour tout espace 1-connexe X, on a cat(X) /(X).

Nous concluons ce paragraphe en montrant comment l'invariant F permet
d'établir des inégalités de contrôle dimensionnel de cat (X).

Le corollaire (2.14) ci-dessous est une reformulation partielle de (1.5) et (1.6),
le corollaire (2.15) est nouveau.

DÉFINITION (2.12). Soit (x.) un système minimal de générateurs de

l'algèbre de Lie libre L. Une chaîne descendante de longueur fc est une suite

xlfc,..., xll d'éléments de ce système telle que dxli 0, et, pour tout /

1,..., k -1, dxlj+1 admet au moins une coordonnée non-nulle suivant un crochet

basique où figure xh.

Il est clair que toute algèbre de Lie de longueur ^n admet une chaîne

descendante de longueur ^n. On remarque alors:

LEMME (2.13). Soit X un espace (r-l)-connexe, et soit (xk,..., *i) une

chaîne descendante de Lx. On a

En particulier, dim X^kr.

Démonstration. Comme Lx =L(s"1H(X)), on a, Vx e Lx, |x| ^ r~ 1 ou x 0 et

comme Lx est minimale, tout bord est de filtration de Lie au moins 2, d'où

Vi€{l,2,...,k-1}, Ix^Hd
d'où le résultat par sommation.
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Remarquons qu'on retrouve, au moins pour les espaces rationnels, le résultat
classique:

/w dimX
cat(X)^

COROLLAIRE (2.14) (Toomer [16]). Si X est (r- l)-connexe, on a:

(c(X) fc et

Démonstration. Soit xk+i,..., xx une chaîne descendante de Lx. Comme la
partie quadratique de la différentielle d'un générateur est la transposée du

cup-produit, il existe au moins un indice i0 tel que x^ figure dans un crochet
basique de longueur ^3 apparaissant dans dxlQ+1. On a alors Ix^+il^

d'où

On obtient de même le résultat suivant:

COROLLAIRE (2.15). Soit X un espace (r - l)~connexe à cup-produit rationnel

trivial. Alors

r dimX+r-1 dimX 1
catX^ <- -+-.2r-l 2r-l 2

Démonstration. Cette inégalité résulte de l'implication:

(c(X) l et F(X)^k)=»dimX^(2fc-l)r-fc4-l

qu'on obtient en remarquant que tout bord de Lx est de filtration de Lie ^3.

§3. Espaces et applications tonnelles

Nous rassemblons dans ce paragraphe quelques résultats sur les espaces et les

applications formelles qui sont nécessaires pour la justification des propriétés de

notre exemple du paragraphe suivant, ainsi que quelques autres résultats
intéressants. Les notations adoptées sont celles de [1].
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THÉORÈME ET DÉFINITION (3.1). Les propositions suivantes sont
équivalentes: tout espace l-connexe X vérifiant Vune d'elles sera dit formel.

(HF 1) LX^POH*(X) (comme DG algèbres de Lie)
(HF2) II existe un espace vectoriel générateur minimal Vc=Lx tel que d(V)a

[V,V]c=Lx
(HF3) Soit Ex le modèle de Sullivan. La projection canonique ZEX-*

H(EX) H*(X) admet une extension multiplicative à Ex:

ZEX >H*(X)

(HF4) II existe un quasi-isomorphisme d'algèbres de cochaînes

(3.2) Exemples d'espaces formels

(a) Les sphères et les K(Q, n) sont formels.
(b) Un produit, un wedge d'espaces formels est formel.
(c) (R. Douglas) Un rétracte d'espace formel est formel (d'après HF3).
(d) Une variété kaehlérienne compacte, un espace riemannien homogène

symétrique compact sont des espaces formels ([3], [15]) lorsqu'ils sont 1-

connexes.

Pour une autre caractérisation des espaces formels en termes de "modèles filtrés",
voir [14].

La catégorie rationnelle d'un espace formel est des plus faciles à calculer:

PROPOSITION (3.3). Si X est formel, on a

cat(X).

Démonstration. D'après HF 1, on a Lx Pf2H*(X). Or la filtration de co-
algèbre de H*(X) est admissible, et de longueur c(X). ¦

Ainsi, tous les invariants que nous avons cités ou introduits coïncident sur les

espaces formels.
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Remarque (3.4). Les espaces coformels ([18], [4]) ou ir-formels ([9], [11])
vérifient par définition les conditions suivantes, duales des (HFt).

(irFi) Ex =Hom («ir(X), Q) où % est la construction de Koszul, ([1], (0.18)).
(irF2) II existe un espace vectoriel générateur minimal (7 <= Ex tel que d(U) c

S2UaEx.
(irF3) II existe une extension multiplicative

ZLX > tt(X)

Lx

(ttF4) II existe un quasi-isomorphisme d'algèbres de Lie

Plus précisément, on peut "dualiser" les idées de Stasheff et Halperin ([14]; cf.
[11], [4]) et exprimer plus précisément (ttF4) en disant que Lx est le modèle

bigradué de ir(X). La filtration associée au premier degré est admissible, et
coïncide sur les générateurs de Lx-à savoir s~1H4î(X)-avec la filtration
d'Eilenberg-Moore. On établit ainsi:

PROPOSITION (3.5). Si X est coformel, on a

et par conséquent e(X) Gw cat (X) cat (X) F(X).

Ainsi (S3vS3) {Jye2N*2, où y est un élément quelconque de filtration de Lie
N de l'algèbre de Lie libre tth.(S3vS3)(8)Q, est un espace coformel, vérifiant
e =cat F 2, (cf. [10], Ex. 1) et c — 1. Notons que cet espace vérifie w cat= 1

pour tout N, d'après ([2] Th. 4.3.). (Pour N^4 cela résulte évidemment de (1.5).)
Un espace formel est un espace dont le type d'homotopie rationnel est

déterminé par l'homologie. La notion analogue pour les applications peut être
introduite, moyennant quelques précautions dues au fait que les modèles ne sont
définis qu'à isomorphisme près.

Rappelons d'abord que l'on a des isomorphismes naturels:
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La naturalité tient au fait que les modèles minimaux sont uniques à isomor-
phisme près, lui-même unique à homotopie près. Un espace X est formel s'il
existe <px : Lx —> PQH*(X) tel que O<px ax, ou encore s'il existe i/fx:Ex —>

H*(X) tel que Hbtfx) /3X.

Ceci conduit à la définition suivante:

THÉORÈME ET DÉFINITION (3.6). Les conditions suivantes sont
équivalentes pour une application / : X —» Y entre espaces formels X et Y:

(AF 1) II existe des isomorphismes <px et <pY, tels que Qcpx ax, Qq>Y otY et

que le diagramme suivant

(3.6.1)

Pflf*

commute à homotopie près.

(AF2) II existe des quasi-isomorphismes i/rx et il/Y, tels que (ifet)* |3X et
(i/fY)* j8Y, et que le diagramme suivant

(3.6.2)

H*(X) < F H*(Y)

commute à homotopie près.

On dira que f est formalisable si elle vérifie (AF 1) ou (AF 2).

L'équivalence de (AF 1) et (AF 2) provient du fait que ([1], §3) les foncteurs
min PO Hom Q) et minHom (9??, Q) sont des équivalences de catégories
d'homotopie entre [min Alg*] et [min Lie*], compatibles avec l'homologie (ou la
cohomologie).

Remarque (3.7). Nous évitons l'usage de l'adjectif "formelle" dans ce

contexte, dans la mesure où il n'existe pas de choix naturel pour cpx ou ij/x. Un tel
choix est cependant possible sur certaines sous-catégories d'espaces topologiques,
par exemple la catégorie des variétés kaehlériennes compactes et des applications
holomorphes: la théorie de Hodge fournit alors un quasi-isomorphisme naturel
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entre les formes différentielles complexes et la cohomologie: ceci justifie l'assertion

«les applications holomorphes entre variétés kaehlériennes compactes sont
formelles» qui se trouve dans [3].

On remarquera en particulier qu'il n'y a aucune raison pour que la composée
de deux applications formalisables le soit: nous donnons un exemple de cette
situation en (3.10).

EXEMPLES (3.8). Soient X et Y deux espaces formels. Les projections
Xx Y—»X, Y, les diagonales 4n:X-*Xn, sont des applications formalisables:
ceci résulte de l'isomorphisme naturel EXxy ExÇ$Ey-

On a évidemment:

LEMME (3.9). Une application formalisable et homologiquement triviale est

(rationnellement) homotope à zéro.

EXEMPLE (3.10). Soit X S7, Y X(S3xS3) S4vS4vS\ Z S4. Soit

j : X -* Y l'inclusion de S7, et / : Y -» Z la suspension de la multiplication de S3.

La composée f ° j est l'application de Hopf S7 -» S4 qui est rationnellement
non-triviale, et par conséquent non-formalisable, d'après le lemme précédent. Or
/ est évidemment formalisable, et / l'est aussi. En effet

b3, c6), d 0

Lz=L(e3)

Lf.a^e, b»->e, c»-»À|>, e], (pour un certain À€Q*) et il suffit de choisir

<Px : Lx -> P/2H*(X) Lx défini par

<px(a) a,

et <pY id, pour obtenir le carré commutatif (3.6.1) ¦
EXEMPLE (3.11). On peut montrer qu'une suspension est toujours formalisable

(cf. l'exemple précédent).

Nous nous contenterons d'établir l'énoncé suivant, qui résulterait de (3.9) et

(3.11), et que nous avons utilisé dans (1.5):

PROPOSITION (3.12). Soir /: X-» Y une application continue entre espaces
rationnels. Si 0 /# : H*(X; Q) —? H*(Y; Q), alors Xf est homotope à zéro.
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Preuve. Nous aurons besoin d'introduire la notion suivante: soit u : L —> M un
morphisme d'algèbres de Lie libres. Filtrons L et M par la filtration de Lie. Si

u £ 0, il existe un entier k ^ 0 et un seul tel que u augmente la filtration de k et
pas de k +1. Le morphisme u induit alors une application polynomiale homogène
de degré d'homogénéité k +1

p(ii) : QL=F1L/F2L -* E|5+1Af Fk+1M/Fk+2M

que nous appellerons la partie principale de u. Comme une suspension a le type
d'homotopie rationnel d'un bouquet de sphères, on a

et L2f : Lxx -* ^i;y est homotope à zéro si et seulement si elle est nulle. Posons
abusivement pour alléger l'écriture, Xf LXf.

Exprimons à présent que Sf est un morphisme de co-H-espaces: on obtient le
diagramme commutatif (car les différentielles sont nulles!):

Cx

°ù Cxx et Qy sont les comultiplications des suspensions XX et XY. Il est clair que
la partie principale de ces comultiplications est la diagonale x —> (x, x) sur les

indécomposables. Posant g (XfvXf) ° Cxx Qy ° ^/» la partie principale de g
vérifie:

Vx g QL, p(g)(x) (p(g)(x)ï + (p(g)(x))"

où ' et " désignent les inclusions de M dans Mu M. En composant avec les

codiagonales LjlL-* L et MuM-+ M, on obtient:

Vx € QL, pC£/)(2x) 2pC£/)(x)
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ce qui montre que p(Xf) doit être homogène de degré 1, et alors

p(2f) Q2f U£0, ou bien 2f 0.

Ceci achève la démonstration. ¦
Nous terminons ce paragraphe par l'étude de la diagonale

An+1 : X-*Xn+1 (n^l) d'un espace formel de catégorie fc.

D'après (3.3), l'espace X est de catégorie fc si et seulement si c(X) fc. Par
ailleurs, la diagonale An+1 est formalisable. Le choix approprié du foncteur L
permet donc de supposer que LAn+i P£1A%+1, où

est la comultiplication itérée de H#(X)9 qui est un morphisme de coalgèbres. Dire
que c(X)^fc revient à dire que l'image de A%+1 est contenue dans FkH%(X), où

est la filtration canonique de coalgèbre; si fc ^ n, on a la factorisation:

A l+1 : Lx=

Cette factorisation fournit la factorisation "catégorique" de zin+1! En effet:

LEMME (3.13). Si X est formel, le bouquet garni TnXeXn+1 est formel

COROLLAIRE (3.14). On a î^nx^Pa{FnH^{X)).

Preuve du corollaire. On a bien H^CPX) FnH*(X). M

Preuve de (3.13). On considère T^X comme somme amalgamée d'exemplaires
de Xn le long d'exemplaires de Xn~\ Le lemme résulte alors du:

LEMME (3.14). Soit

A^—»A

1,. I:

un carré cocartésien dans lequel les flèches iu i2 sont des cofibrations fermées, les

espaces X, Xl9 X2 sont formels et les inclusions il9 i2 sont formalisables et injectives
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en homologie. Alors Y est formel et jl9j2 sont formalisables et injectives en

homologie.

Preuve. En choisissant convenablement les modèles minimaux, on peut
supposer que

L, PfiO,)* • POH+(X) -> POH^XX j 1, 2.

Comme le foncteur L est une équivalence de catégories d'homotopie qui respecte
les fibrations et les cofibrations, on a:

LY s POH^X,) itpon^o POH*(X2)

L'algèbre LY est engendrée par HHc(X1) + H*(X2) H*(X1)eH#(x)Hîic(X2)
H*(Y), et la restriction de la différentielle est quadratique, donc LY PQH*(Y)
d'après (HF2).

Remarque (3.15). On peut démontrer (3.13) au moyen du modèle de Sullivan,
à partir du fait que JE^x est le modèle minimal de l'algèbre (Ex)®"*1/!, où
J Êx<8>n+1 est le produit tensoriel des idéaux d'augmentation de chaque facteur,
et ceci pour X connexe quelconque, formel ou non (Y. Félix, non publié).

Remarquons enfin que l'étude qui précède fournit une autre démonstration de

l'inégalité cat(X)=^c(X) pour un espace formel X.

§4. Un exemple

A l'appui de notre conjecture (2.9), nous avons choisi un espace à quatre
cellules se prêtant à la détermination de tous les invariants introduits aux
paragraphes 1 et 2. Considérons

X (S2vCP2) LJe7

le complexe cellulaire dans lequel l'application attachante a est le produit de

Whitehead de l'identité de S2 et de l'application de Hopf 7 : S5 -* CP2. Notre but
est le

THÉORÈME (4.1).

c(X) w cat (X) e(X) - Gw cat (X) 2 cat (X) /(X) F(X) 3.
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La détermination de cat (X) nécessite un calcul détaillé de modèles minimaux,
et constitue la partie principale du théorème; au préalable, nous commentons les

autres propriétés.
Il est clair que c(X) 2. Quant à e(X) 2, il faut soit faire appel à l'autopsie

des meurtres [10], soit raisonner avec la nilpotence homologique du modèle de

Sullivan. Cette dernière technique fournit une démonstration assez aisée, mais

sort totalement du cadre de cet article.
Comme X est simplement connexe de dimension 7, on obtient w cat (X) 2 et

Gw cat (X) 2 par le lemme (1.5). Bien entendu, le lemme (1.6) est inapplicable!
Finalement, il est immédiat que F(X)=^3 par la proposition (2.7): récriture

même de la décomposition cellulaire de X le montre comme triple cône avec des

attachements homologiquement triviaux, donc instables par la proposition (3.12).
Vu le résultat final, il est inutile de démontrer que F(X) 3. Il reste cat (X) à

déterminer.
En notant Y S2vCP2, nous nous trouvons exactement dans les notations et

les hypothèses du théorème de Berstein-Hilton (1.7). Pour établir que cat (X) 3,

il suffit donc de montrer que T2(i) • 4> • a : S6 -* T2X est homotopiquement
non-triviale. Par approximation cellulaire, nous sommes ramenés à étudier l'application

ce que nous ferons à l'aide des modèles minimaux.

PROPOSITION (4.2). Le modèle minimal de CP2 est L(y, z) avec

|y| l dy 0

|z| 3 dz=|[y,y].

Dans ce modèle, Vapplication de Hopf y:S5—»CP2 a [y, z] comme cycle
représentatif.

Démonstration. Le modèle minimal de la sphère S2 est L(y), avec |y| l et
dy 0. Il est donc additivement engendré, comme son homologie, par y en
dimension 1 et [y, y] en dimension 2. (Rappelons que [y, [y, y]] 0.) L'homotopie
rationnelle de S2 a donc deux générateurs correspondant à y et [y, y]. En notation
habituelle, ceuxci sont t € tt2(S2) et [i, i]e tt3(S2). Un cycle représentant l'application

de Hopf S3 —> S2 est donc |[y, y]. Par le Lemme (2.2), le modèle minimal de
CP2 a bien la structure annoncée. Il en résulte que CP2 est formel, puisque les
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différentielles du modèle sont purement quadratiques (HF 2). A l'aide de (HF 1),

nous pouvons confirmer le résultat en explicitant la coalgèbre d'homologie de
CP2. En notant abusivement y et z les générateurs homologiques, il vient en effet

i*(y) 0

Le calcul (facile) de l'homologie du modèle minimal de CP2 fournit un seul

générateur en dimension 4, représenté par le cycle [y, z].
L'application de Hopf 7 : S5 —> CP2 a donc un cycle représentatif qui est un

multiple de [y, z], purement quadratique. Il s'ensuit que l'espace CP3 est formel.
Le calcul de la coalgèbre d'homologie de CP2 analogue au précédent, fournit
alors facilement [7] [y, z] achevant la démonstration. Bien entendu, la formalité
de CP3 résulte aussi de [3]!

COROLLAIRE (4.3). Le modèle minimal de Y S2vCP2 est L(x, y, z) avec

|x| |y| l dx dy=0

\z\ 3 dz=è[y,y].

PROPOSITION (4.4). Le modèle minimal de T2Y est L(xl, y,, z,, xxxv x{yv
Vi*j> M,, x,zv ztXj9 y,z,, z,y,, zxz,) î 1,2, 3, (i, j) (1,2), (1, 3), (2, 3), avec

k| |y,|=l dxl=dyl=0
|zj 3 <k,=[y.,yJ

k^| 3 dxlxJ=[xl,xJ]

ky,| 3 d^y,=[x,,y,]

3 dylxJ=[yl,xJ]

3 dy,y,=[ywy,]

kz,| 5 dx.Zj =[x,, zJ + IXy,, yj
\ 5 dztXj [z,, xJ]4-[ylxI, yj
l 5 dytz, [yt, zJ + Cy.y,, yj

| zxy} | 5 dzxy, [z,, y, ] + [y,yp y, ]

12,2,1 7 dz.z^lz,, 2,3 + ty.z,, yj+tzj,, yj+lty^, y.yj.
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Démonstration. La liste des générateurs est bien sûr s~1H:|:(T2Y). Le corollaire

(3.14) ramène à nouveau le calcul des différentielles à celui des coproduits en
homologie. Nous donnons seulement deux échantillons de calcul explicite, qui
suffisent à expliquer les notations et les quelques abus de langage:

I®x1z2+x1®z2+y2®x1y2+x1y2®y2+z2®x1+x1z2®i

+ z2<8> zx

PROPOSITION (4.5). L'application <f>: Y->T2Y factorisant A3 est donnée

sur les modèles minimaux par:

Démonstration. Y est un espace formel de catégorie 2. Il suffit donc de

remplacer $* par A%, en vertu de Lemme (3.13). Le calcul est alors immédiat.

PROPOSITION (4.6). Le modèle minimal de Z=T2Y Ue7Ue7LJe7 est

LT2Yjih(uu u2, u3) avec \ut\ 6 et du, [x,, [yl9 z,]].

Démonstration. L'application a:S6-^S2vCP2 a [x, [y, z]] comme cycle

représentatif. Comme les différentielles du, sont décomposables, le modèle
obtenu par l'application du Lemme (2.2) est minimal.

Démonstration du théorème (4.1). Nous devons démontrer que l'application
S6 A Y-» T2Y <=* Z est non triviale. Par la Proposition (4.5), cette composition a
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dans Lz

comme cycle représentatif. Tout revient donc à montrer que ce cycle n'est pas un
bord. Une inspection très simple des différentielles de Lz mène rapidement au
résultat: les seules différentielles de Lz qui contiennent le générateur y^ sont

2, y2]

dz xy2 [z u y2] + [yiy2, y il
dz1z2 [zl9

Aucun bord ne peut donc atteindre [xl9 [y3, yiy2]] qui est manifestement touché

par le cycle donné. Donc cat(X) 3, achevant la démonstration du théorème
(4.1).
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