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Spectra of manifolds with small handles

I. CHAvEL? and E. A. FELDMAN'?

To H. E. RaucH, in memoriam

In this paper we consider a compact connected C* Riemannian manifold M of
dimension n =2 and study the effect, on the spectrum of the associated Laplace-
Beltrami operator A acting on functions, of adding a ‘“‘small” handle to M.

The handles we consider are defined as follows: Fix two distinct points p,, p,
in M and for £ >0 define

B, =:union of the open geodesic disks about p,, p, of radius &,
Q,=:M-B,
I'. =:common boundary of B, and (2,
S. =:(n—1)-sphere in R" of radius &,
S=:8,.

For positive £ which is less than ; the injectivity radius of M and less than } the
distance from p, to p,, let M, be a compact connected C* Riemannian manifold
with €2, isometrically imbedded in M., and with a dlﬁeomorphlsm

¥, M, -Q, —[-1,1]xS
such that
C.=:M,-Q,=¥"[[-33]xS]

We refer to such an M, as obtained from M by adding the handle C, across T,.
Denote the respective spectra of M, M, by

spec(M)=:{0=A, <A =A,=---},
spec (M,)=:{0=o0y(e)<oi(e)<oy(e)='' '},

! Partially supported by N.S.F. Grant MCS 77-02757
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84 1. CHAVEL AND E. A. FELDMAN

where each distinct eigenvalue is repeated according to its multiplicity; and
denote the associated theta functions by

A=) e™, 6,1)=:) e "
i=0 i=0

Our interest in this paper is in determining whether the family of Riemannian
manifolds M, can be chosen so that

limo;(e)=A;, as €l0 (1)

forall j=1,2,....

Our first comment is that even if (1) is valid for all j, we do not expect that it
be valid uniformly in j. In fact, when M is 2-dimensional the Minakshisundaram-
Pleijel asymptotic expansion reads as [10, p. 45; 1, pp. 204-222]

AM)  x(M)

AM,) |, x(M)
4t 6

00~ 4qrt 6

+0(@), 6.()~ +O(t), (2)

as t|0 (where A(:), x(:) denote area and Euler-characteristic, respectively). If
(1) were valid uniformly in j then (2) would imply, by an easy argument, that
x(M,) = x(M) — an impossibility.

THEOREM A. We always have
limsup o;(e)<A;, as €l0 3)

forallj=1,2,.... A necessary condition that (1) be valid for all j is that v(e), the
lowest eigenvalue of C, with Dirichlet data on I',, satisfy

limv(e)=+x as &€]0. 4)
In particular, if for a fixed 1 >0, the (‘“long-thin’’) cylinder [—1/2, l/2]X S, is an
isometrically imbedded open submanifold of C, for every €, then v(e)<=?/I> and

(1) cannot be satisfied for all j.

To give a sufficient condition we require a definition,

DEFINITION 1. For any compact Riemannian manifold X of dimension
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n=2, we define the isoperimetric constant c,(X) by

. {vol,_, (Y)}"
X =gt ol (X)), vol. )P )

where vol, (-) denotes k-dimensional Riemannian measure, and Y ranges over
all compact (n —1)-dimensional submanifolds of X which divide X into 2 open
submanifolds X,, X, each having boundary ‘Y.

THEOREM B. Assume there exists a constant ¢ >0 such that

(M. )=c>0 (6)
for all €. Then (1) is valid for all j=1,2,....

That (6) is an indication of the ‘“‘smallness” of C, is given by

LEMMA 1. The sufficient condition ‘“(6) for all € implies

vol,, (C.)=0(e"), (7
v(e)=const/e? (8)
as £0.

Indeed, one proves (7) by picking Y=1TI,, and X, =C,, X, =1),.
In order to prove (8) from (6) and (7) let us recall, a definition and Cheeger’s
inequality for manifolds with boundary [4; 14].

DEFINITION. Let M be a compact manifold with boundary oM. We define
the constant h(M) by

. VOIn-——l (Y)
h(M) = lri}f vol,, (X)

where Y ranges over all compact (n—1) dimension submanifolds such that
dMNY =@, which divide M into X and X' where 8X NoM = §.

Cheeger’s argument [4] shows that A,(M)=h?*/4 where A;(M) is the first
eigenvalue for the Laplacian with Dirichlet boundary data.

Let M=C,, aM=TI, and X and Y submanifolds of M as in the above
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definition then vol,,_, (Y)=c'" vol, (X)" "' and

h(C,)=inf ¢ vol, (X)™"" = k/e

follow from (6) and (7). Therefore (8) follows from Cheeger’s inequality.

We next remark that whereas the necessary condition for the validity of (1) for
all j is a consequence of the max-min characterization of eigenvalues and thus
best interpreted via vibration.phenomena, the sufficient condition is obtained by
working with the respective fundamental solutions of the heat equation on M, M,.

Most important is the interpretation of these fundamental solutions via
Brownian motion, viz., if

p:MxXMx(0,©)—R

is the fundamental solution of the heat equation on M, then p(x,y,t) is the
probability density for a Brownian path in M starting at x at time O to be at y at
time t. Of course one has a similar statement for

pE :ME xME X(O’m)_—) R’
the fundamental solution of the heat equation on M,. Similarly, if we let
q€ :ﬂe Xae X(O,m)“—)R

denote the fundamental solution of the heat equation on (2, with Dirichlet data
on I', then q.(x, y, t) is the probability density that a Brownian path starting at
x € (), at time 0 will be at y e (2, at time t without having hit I', between time 0
and time t. In particular, for x, y in

My=:M~-{p,, p2}

(we now think of g, as vanishing on the complement of 2, X(2,) q.(x, y,t) is a
decreasing function in €, and

4.<p, 4q.=P. )]

on MxM x(0, ), M, XM, X(0,x), cf. [7; 12] for the application and details in
Euclidean space, and [9] for the construction on general Riemannian manifolds.

Our final concern is that we can construct manifolds M, M, for which (6) is
satisfied for all &.
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MAIN THEOREM. Let M be a compact 2-dimensional Riemannian mani-
fold, K : M — R its Gaussian curvature and M ={M— K *[0T}U{int K~ '[0]}. Then
M is open and dense in M. Given any two distinct points p,, p, in M then M, may
be constructed so that there exists ¢ >0 for which (6) is valid for all €. Thus M, may

be constructed so that A(M,)— A(M) as €l0 and so that (1) is valid for all
i=1,2,....

The theorem suggests that to the question “Can you hear the shape of a
drum?” [7] one should answer ‘“For a compact 2-manifold - not really.” For to
determine the Euler-characteristic, via (2), by actually listening to its tones
(square roots of the eigenvalues) one would have to know a priori that what is
heard in fact approximates all the tones with uniform accuracy. Anything less
could lead the listener astray in determining the Euler-characteristic.

We wish to thank our colleagues S. Kaplan and B. Randol for many helpful
discussions, and A. Heller for help with Lemma 5.

This paper is dedicated to the inspiring memory of H. E. Rauch, whom both
authors knew and admired as a friend, teacher, and mathematician.

§1. Proof of Theorem A

Denote the spectrum of (2, with Dirichlet boundary data (distinct eigenvalues
are repeated according to multiplicity) by

spec (£2,)=:{0<A;(e) <A (e)=As(e)=--}.

Then the max-min characterizations of the eigenvalues [5, Chap. VI] imply that
A;(e) is an increasing function of &, and the validity of the inequalities

Ai(e)= Ay, Ai(e)=0;_4(g) (10)

for j=1,2,.... Moreover, in [3] it was shown (cf. [13] for the case of domains in
Euclidean space) that

A(e)—> A, as €l0 (11)
for all j=1,2,... . Then (10), (11) imply (3).

With these preliminaries, establishing the necessary condition is done as
follows: Let the union of the spectra of C,, {2, with Dirichlet data on I, be
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denoted by
spec (C,) Uspec (£2,) =:{0< po(e) = (e)=" - -}

where the eigenvalues have been re-listed in non-decreasing order and repeated
according to multiplicity. Then a max-min argument [5, p. 408] implies

o;(e)=p;(e) (12)

forall j=0,1, 2,... . Assume
a=:liminf v(e¢) as ¢€l0

is finite, and let A, be the first eigenvalue of M which is strictly greater than « (in
particular, A, _; <A,). Then for any & for which we have

v(e)< A,
we also have v(e) <A, =\ .,(g), i.e.,
v(e)e{pole), . .., m (el
which implies
o (e)=w (e)=max {v(e), A (e)}.
Thus a <A, implies by (11) that
lim inf o (¢) <lim inf max {v(g), A (e)} =max {a, A, _;} <A,
as €l0. It is therefore impossible that 8, (e) — A, as €]0.
COROLLARY 1. If
liminf v(e)=a<+x as €l0,
and A, is the first eigenvalue of M greater than a, then
liminf o () <A, as ¢€l0.

Remark 1. We note that (4) is also a necessary condition that @_(t) —> @(t),
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for any given t >0, £]0. Indeed, (12) implies that

oo

O, ()=e @+ ) TN,
i=1

But in [3] it was proved that the series on the right-hand side of the above
inequality tends to @(t), uniformly on compact subsets of (0, ©), as £}0. That (4)
is a consequence of @, (t) — O(t) is immediate.
§2. Proof of Theorem B

LEMMA 2. Let dM, dM, denote the respective volume elements of M, M. (of

course they agree on (2,), and let f be any bounded measurable function compactly
supported on M,. Then

lim L p. (x, w, )f(w) dM. = L p(x, y, )f(y) dM(y),

uniformly in (x, t) € compact subsets of My (0, x), as €l0. In particular we have
limp,(x,y,t)=p(x,y,t) as &l0 (13)

on Myx M, % (0, ).

Proof. In [3] it was shown (cf. [13] for the case of domain in Euclidean space)
that

limq,(x,y,t)=p(x, y,t) as £l0

uniformly on compact subsets of MyXx M, X (0, «). Let K be a compact subset of
M, and pick ¢ sufficiently small so that {2, contains K and the support of f. Then
for xe K, te[a, b]< (0, ©) we have

lL {p. (x, w, 1) — q. (x, w, )}f(w) dMe(w)\

< max|f] L 9. (6, w, )~ 4. (x, w, )} dM, (w)

= max |f| {1 - L q.(x,y, t) dM(y)} = max |f| L {p(x, v, )—q.(x, y, )} dM(y),
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since
j p(x, w,t) dM,(w)=1= L p(x, y, t) dM(y).
M,

Thus

L . (x, w, Df(w) dM, ()~ L p(x, v, D(y) dM(y)

=2maxifl | (oG y,0-a.(x v, 0} aMO)
which goes to 0, uniformly in (x, t) € K X[a, b], as £} 0. Thus the lemma is proven.

To prove Theorem B we first reduce the problem to showing that for t
bounded away from 0, p.(z, w, t) is uniformly bounded above independent of «.

Assume that this has in fact been accomplished. Then one has by the
Sturm-Liouville expansion (cf. below) of p,, p that for any fixed ¢t>0,

8.(t)- 8(1) = L p.(2, 2, 1) M, (2) L p(x, %, 1) AM(x)
= j p.(z, z,t) dM,(z)— L p(x, x, t) dM(x)
Ce e

+j {p.(x,x, )—p(x, x, )} dM(x)=> 0 as ¢€]0.

Indeed, the first two integrands are bounded and the volumes of C,, B, tend to 0.
The convergence of the third integral follows from (13) and Lebesgue’s domi-
nated convergence theorem. Thus p, uniformly bounded independent of € implies
for t>0,

lim®,(t)=O() as £|0. (14)

Finally assume there exists k =1 such that lim inf o, (¢) <A, as € = 0. Let ¢
be a sequence going to 0, with o, (g) = 0, <A, as | — «, Then by (14), (3) and
Fatou’s lemma we have

O(t)=1im O, (1) = i lim inf exp (—o;(g)t) = i exp (—lim sup o;(g)t)

=e ¢+ ) exp (—lim sup o;(g;)t) > O(t)

jr*k

which implies a contradiction.
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So to prove Theorem B we must bound p, above independently of €. To do so
we require some estimates of P. Li [8].

DEFINITION 2. Given a compact Riemannian manifold X of dimension
n =2 we define the Sobolev constant of X, c,(X), by

co(X) =: inf [{L |Vf|}n/§2£ {L If - Bl"/<n_1)}n—1]

where f ranges over the Sobolev space of functions with L'-derivatives.

LEMMA (P.Li) 3. Let v=vol, (X), co=co(X). Then there exist constants
depending only on n such that
for any eigenfunction f with eigenvalue v#0 we have

IFIB(=™2/c,) exp {const (co/v)*"/7}, n=3
- = 15
Il onst {“f I5(7%v/c3) exp {const cy/T0}, n="2 (15)
for the k™ eigenvalue 7, of X we have
2/min—1
k =< const {me(v/ ‘303 } n= 16
{mcvico} n=2
forallk=1,2,....

Before turning to the proof of Theorem B we remark (as in [8]) that the
argument of [2, Section 3], when applied to compact X without boundary, yields

ci(X)=co(X)=2¢,(X). (17)

Also, by considering arbitrarily small geodesic disks, one has under all cir-
cumstances

c,(X)=n"""vol,_, (S). (18)

We now prove Theorem B; recall that we must establish an upper bound on p,
which is independent of &. Assume (6). Then Lemma 1 implies

limvol, (M,)=vol, (M) as ¢€l0. (19)

Also, o,(¢) is bounded away from zero, by either using Cheeger’s inequality [4]
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with (19) or by using (17), (19), and (16) for k =1. Thus we have that {o,(¢),
vol, (M,), co(M,)} are all restricted to a compact subset of (0, ). Then there exist
constants independent of £ for which Li’s estimates now read as

n/2 n= 3

112 = const 12 { = (15)
T n=2

kVb p=>3 ,

T, = const {k”z I (16)

Now fix t>0 and let {®,(¢)} be an orthonormal basis of L*(M,) consisting of
eigenfunctions corresponding respectively to {o;(¢)}. Then the eigenfunction
expansion of p, is given by, and satisfies,

b (2w, 6)= T e, ()(2),()(w)

i=0

< ¥ e @),

We proceed with estimate for the case n =2 as this is the situation in which we
will construct our explicit examples (the argument for n > 2 is similar). From (15')
we have

pe(z9 W, t)SCOHSt {1 “+ Z o-iz(e)e—'ai(e)t}

j=1

with the constant independent of . Now (16") implies the existence of a positive
integer J, independent of &, such that for all j=J we have

o (e)e 7 =1.

Then (16') implies that

- -]

Y o02(e)e "< Y o?(g)+const ), j>?

i=1 i<y j=r

which is bounded above, independently of &, by (3).
This concludes the proof of Theorem B.
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§3. The construction of M, for the main theorem

Let M be 2-dimensional and peM, ie., either K(p)#0 or K vanishes
identically on some neighborhood of p. To p we associate a number a(p) with the
following list of properties:

(i) a will be less than the convexity radius of M (in particular, it is less than 3
the injectivity radius of M). If K, the Gauss curvature of M, has maximum equal

to k then a will be chosen so that it is also less than /2vk.
(i) Set

B(p; r)=:metric disk about p of radius r.
Then we require that K either vanishes identically on B(p; ) or never vanishes

on B(p; a).
Should K never vanish on B(p; a) then a will be sufficiently small so that

inf |[K(q)|> () sup |K(q)| (20)

where q ranges over B(p; «).
(iii) Let dA denote the Riemannian element of area and, as in the introduc-
tion, A(-) denote the area. Then we require that

A(B(p; @)) <A(M)/8 (21)
jj K dA <m/2. (22)
B(p;a)

In particular for
K" =:max {K, 0}
we have
j j K* dA < /2. (23)
B(p;a)

Remark 2. In a moment we shall change the Riemannian metric in a compact
subset of B(p; ), when K(p)#0, such that the new Gauss curvature does not
change sign. The Gauss—Bonnet formula implies that the left-hand side of (22)
does not change, hence (23) remains valid in the new Riemannian metric.
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If K(p)# 0, then for every ¢ € (0, a/2) we introduce a new Riemannian metric
on B(p; €). The details will be given for K(p) >0, as the case K <0 is similar. Let

k,=:inf K, k, =:sup K
on B(p; a). Then k,/k,>% implies that for all r satisfying 0<r<a we have

cos vk, r<2{817n%—r—%}.
2

Introduce geodesic polar coordinates (r, ) about p and write the given
Riemannian metric as

ds? = dr*+n(r, ) d6>.

Then n satisfies Jacobi’s equation

2

0
Fﬂ"'K'ﬂ:O

with initial data
1n(0,60)=0,  (an/or)(0,0)=1.

Standard Sturmian arguments imply

an {sin vk, r_l}
o (r,0)=<cos vk, r<2 —————sz "
<2{ﬂ_(5_f_’2_1}=ﬂ£521:1!_2_
- r 2 r/2
i.e.,
m_m—r2
ars 2 24)

Geometrically, (24) implies that for each fixed 6, the tangent line to the curve
y =n(x, 0) (in the (x, y)-plane) at x =r intersects the line y =x for some x(r, 0)
satisfying r/2<x(r, 0)<r.

_ Given ¢ satisfying 0<e <a/2, set x,=:x(3€/4, 6) and replace y =n(x, ) for
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y=n(x3)

r}2

-

Figure 1
0=<x=¢ by y=n(x, 8) where
n(x,0)=x for O0=x=<x,,
n(x, 6) is given by the tangent line to y =n(x, 0) at x =3¢/4 for x, <x <3¢/4,

n(x, 8) =n(x, 0) for 3e/d=x=a.
Now smooth 7 to n, which is a C” function in (r, ) and which satisfies

n.(r,0)=r 0=r=5¢/16
= =Xx=
n.(r, 0) =n(r, 0) E=x=a (25)
2
Mso, <o  o=x=a
or ar

Finally replace

ds* = dr*+ n*(r, 0) d6?
on B(p; a), by

ds? = dr*+ n(r, 0) d6>.
Then the new metric is flat on the geodesic disk of radius 5¢/16, has non-negatile
Gauss curvature on B(p; a), and agrees with the original metric on B(p; a) N {2,.
One sees easily that the smoothing may be chosen so that (21) can be replaced by

A(B(p; a)) < A(M)/6. 1))

A similar argument can be carried out when K(p,)<0.
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We are now ready to define M,. Given p,, p,€M fix a to be less than a(p,),
a(p,) and less than 3 the distance from p, to p,. For each i=1,2, if K(p,)=0
leave well enough alone. If K(p;) # 0 then for every £ < a/2 introduce the change
of metric in B(p;; €) just described. Call the new Riemannian manifold M.

Now attach the tube

TE: [_8/4, 8/4]X SE/4

to M* “at right angles” to the geodesic circles about p,, p, of radius £/4,
identifying {—¢/4} X S,,, with the geodesic circle about p,, and {¢/4} X S, , with that
about p,, of radius ¢/4. Put differently, in the polar coordinate system about each
p;» replace

n(r,0)=r 0=r=5¢/16
with
eld 0=r=<¢/d
(o=
&.(r, ) r e/ld=r=>5¢/16

and identify the two circles {0} X S, ,.

The resulting manifold with ‘“‘creased”’ Riemannian metric will be our M, and
we shall estimate C,(M,) for this ‘“‘creased” metric from below. Once we, in fact,
verify the existence of ¢ for which (6) is valid for all &, it is easy to smooth the
““crease,” with non-positive curvature near the crease, such that (6) is valid with ¢
replaced by c¢/2 for all e.

§ 4. Estimating the isoperimetric constant

LEMMA (F. Fiala [6, p. 336; 11, p. 12]) 3. Let M be a complete Riemannian
surface with Riemannian measure dA, Gauss curvature K, K™ = max {K, 0}, and D
a simply connected domain in M of area A with smooth boundary of length L. Then

JJK* dA <2«

D
implies

L*—47A +2Aij+ dA =0.

D
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COROLLARY 1. In the above,

JIK+ dA <

D
implies
L*=27A.

LEMMA (S. T. Yau [4, p. 489]) 4. For a compact n-dimensional Riemannian
manifold M, to evaluate c,(M) it suffices to let Y range over those compact
(n —1)-manifolds which separate M into connected open submanifolds X,, X,.

Remark 3. In [14] Yau proves this fact for Cheeger’s isoperimetric constant.
However his induction argument and the Minkowski inequality (Triangle inequal-
ity if dim M = 2) immediately yields the above lemma.

In what follows L (), dA,, A.(+), K, will denote length, area element, area,
and Gauss curvature of M,. We also write K. =max {K_, 0}.

To start with our estimate of c,(M,) from below, let y be a compact
1-manifold imbedded in (2., separating M, into M,, M,, and assume C, < M,. Set
M¥=(M,-C,)UB,, where B, is, as originally defined, the union of the open
geodesic disks of radius € in M about p,, p,. One easily checks that A_(C,)/A(B,)
is bounded away from 0, +« independently of &. Thus

Li(y)/min (A, (M,), A,(M,))=const L*(y)/min (A(MY), A(M,))
= const ¢;(M)>0

which is independent of &.
Also if v is any compact imbedded 1-manifold of length =« separating M,
into M;, M,, then

L2(y)/min (A, (M,), A, (M,))=a?/A,(M,)=const>0

by (19).
Thus our task is to estimate

L2()/min (A, (M,), A.(M,))
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where y ranges over compact imbedded 1-manifolds separating M, into con-
nected M,, M, and such that

L (y)<a, yNint(C,)#0.
Since £ <af2 we immediately have
YyeEM, -0,

We will always have one of the domains, say M,, contained in M, —Q_ and (19),
(21') allow us to assume A,(M,)<A_(M,)/2; so we are always estimating

Li(v)/A.(My)

from below.

Since M, Qs topologically a cylinder, we have that vy is an imbedded circle
bounding a disk M; M, —(2, or vy is a pair of imbedded circles bounding a

cylinder M, € M, — (.. In the first case, then by smoothing the ‘‘crease” with
non-positive curvature we would have (from Remark 2)

J K dA . <m
M, -4,

and therefore
Li(y)=2wA.(M,)

in the approximating metric, which implies the inequality for our ‘“creased”
metric. So we need only consider the second case.
First let d(,) denote distance in M* and define for i =1, 2

I(t)=:{qe M¥:d(q,p,) =t}
W,={qe M*:¢/4=d(q, p)<a}.

We are now considering vy = vy, U<y, where v,, 'y, are imbedded circles bound-
ing a cylinder M, in M, — . We think of vy, as “closest” to I',(a). First we shall
assume that y, does not cross I;(e/4) for either i=1,2, and then reduce the
general case (viz., where at least one v, crosses I;(¢/4)) to this one. The
assumption that neither vy, crosses I';(&/4) involves three essential possibilities: (i)
Y1, Y2 T, (i) v & Wy, v, WL UT, (iii) v, Wy, v, W,.
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(i) If vy, v, T then M, =T, and L (y,)=mwe/2, A, (M,)<me?/4, which im-
plies

Li(y)z4mA,(M)).
(i) If vy, W,, v, W, UT then M, < TU(M, N W,), which implies
A, (M) =me*/4+ A, (M, NW,).

Now think of vy, as bounding a disk D < B(p,; a) = M¥. Then
A.(D)=m(e/4)*+A. (M, N W)= A, (M,)/4,

and by Remark 2 and Fiala’s inequality we therefore have
Li(v)=L:(y,) =2mA, (D) = (n/2) A, (M,).

This argument, of course, covers the possibility: vy, W,, vy, W,UT.
(iii) If v, = W,, v, < W, then our argument is similar to the one just given. Let

D; correspond to vy; as D corresponded to vy, in (ii). Then we have
LAy L Li(v)= L 2wA, (D)

=2m ) {me?/16+ A (M, NW,)}

> Y {me?/8+ A, (M, N W)} = wA, (M),

In summary, when neither v, crosses I';(¢/4) we have
Li(y)=(m/2)A. (M,). (26)

For the general case, we shall assume vy, crosses I';(¢/4) transversally with an even
number of intersections, and show that we can replace vy, with ¥, having fewer
intersections (therefore, ultimately no intersections), shorter length, and enclosing
with vy, larger area. Thus (26) will remain valid in the general case.

So we now have v, crossing I',(¢/4) transversally. We shall think of M, — {2, as
the cylinder R?—{0}, with vy, and I';(¢/4) winding about 0 once, let

D =:component of R?*—{vy,} not containing M,,
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" M,
u© Li(e/4)

Figure 2

assume for convenience that D contains 0, and let
{D,,...,D.}=:components of D—1I,(&/4).

We say that a component D, is simple if its boundary consists of the union of 2
smooth arcs v and u, with v part of vy, and w part of I';(g/4).

Given a simple D, we have that either D,< W, or D, W, UT, with v W, or
v< W,UT respectively. However, in either case

L(v)>L(w)

- note that we are using here the hypothesis that a was picked to be less than the
convexity radius of M. Then replace vy, by ¥, by first replacing v by u, then sliding
w a drop to the side of I';(¢/4) opposite to D,, and, finally, smoothing the corners.
Define ¥ = ¥; Uvy,. Then L_(y)=<L,(vy), and M,, the domain in M, —(2_ bounded
by ¥, contains M, U D, which implies A, (M,)= A, (M,). Thus

L2(y)/A. (M) = L2(¥)/ A, (M,).

The curve ¥ has the same properties as y, so we may repeat the argument just
given until we are left with a curve not intersecting I';(¢/4). In this last case we
already have the estimate (26). Thus the last thing for us to verify is that given vy,
a simple D, exists.

LEMMA 5. Let I, A be two simply closed smooth curves in R*>—{0} which
wind about the origin once and which meet each other transversally. Let G be the
component of R>*— A containing 0, and let {G,,..., G,} be the components of
G —T. Then there exists a component G, whose boundary consists of two smooth
arcs; one a part of I' and one a part of A.

Proof. We can assume I is the unit circle which 2 divides into a finite number
of arcs alternately belonging to G and R*>—(G UA).
Let G, be the component of G—1I" containing 0, and consider the segments
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Iy
L

Figure 3

I,..., I, of 6001" . (Of course if [; =1 then G, is simple. So assume otherwise.)
To each I, j,=1,...,1, associate the component G; of G-I distinct from
G, having I, as part of its boundary. G,, ..., G, are all distinct for otherwise
A would not be simple by the Jordan curve theorem.

If there exists G;, having only I; for the intersection of dG; with I" then we are
done, for then G; is then simple. So assume the opposite. Then to each
ji=1,...,1; associate the segments I ,,...,J;, of Z}:ﬁl“—l,-1 and to each
segment I; ; associate the component of G —1I' distinct from G, G, ;,, having I ;
as part of its boundary. Again, the collection {G,;} are all distinct.

By continuing this process, if necessary, we exhaust all the arcs of G—1I" and
the process stops. But then every component of the last step is simple.

This concludes the proof of Lemma 5 and, with it, the proof of the main
theorem.
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