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Spectra of manifolds with small handles

I. Chavel(1) and E. A. Feldman(1)

To H. E. Rauch, in memoriam

In this paper we consider a compact connected C°° Riemannian manifold M of
dimension n ^ 2 and study the eflfect, on the spectrum of the associated Laplace-
Beltrami operator A acting on fonctions, of adding a "small" handle to M.

The handles we consider are defined as follows: Fix two distinct points pl9 p2
in M and for e > 0 define

Be =: union of the open géodésie disks about pl9 p2 of radius e,

Fe =:common boundary of Be and Qe,

Se =:(n-l)-sphere in JRn of radius e,

For positive e which is less than \ the injectivity radius of M and less than \ the
distance from pt to p2, let Me be a compact connected C°° Riemannian manifold
with fle isometrically imbedded in Me, and with a diffeomorphism

such that

We refer to such an Me as obtained from M by adding the handle Ce across Fe.

Dénote the respective spectra of M, Me by

1 Partially supported by N.S.F. Grant MCS 77-02757
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84 I CHAVEL AND E A FELDMAN

where each distinct eigenvalue is repeated according to its multiplicity; and
dénote the associated thêta fonctions by

j=0 j=0

Our interest in this paper is in determining whether the family of Riemannian
manifolds Mg can be chosen so that

limer, (6) À, as e|0 (1)

for ail/ 1,2,....
Our first comment is that even if (1) is valid for ail /, we do not expect that it

be valid uniformly in j. In fact, when M is 2-dimensional the Minakshisundaram-
Pleijel asymptotic expansion reads as [10, p. 45; 1, pp. 204-222]

Attî

as f|0 (where A(-), x(') dénote area and Euler-characteristic, respectively). If
(1) were valid uniformly in j then (2) would imply, by an easy argument, that
x(Me) \(M) ~ an impossibility.

THEOREM A. We always hâve

^e)^^ as e>tO (3)

for ail \ — 1,2,.... A necessary condition that (1) be valid for ail j is that v(e), the

lowest eigenvalue of Ce with Dirichlet data on Fc, satisfy

lim v(s) +oo as e i 0. (4)

In particular, ifforafixedl>09 the ("long-thin") cylinder [-I/2, l/2]xSe is an
isometrically imbedded open submanifold of Cc for every e, then i>(e)<iT2/Z2 and
(1) cannot be satisfied for ail j.

To give a sufficient condition we require a définition,

DEFINITION 1. For any compact Riemannian manifold X of dimension
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n^2, we define the isoperimetric constant cx(X) by

Cl(X) - mf
{m.n (vol (X) vQl (^r (5)

where volk (•) dénotes k-dimensional Riemannian measure, and Y ranges over
ail compact (n - l)-dimensional submanifolds of X which divide X into 2 open
submanifolds Xu X2 each having boundary Y.

THEOREM B. Assume there exists a constant c>0 such that

Cl(Me)>c>0 (6)

for ail e. Then (1) is valid for ail j 1,2,

That (6) is an indication of the "smallness" of Q is given by

LEMMA 1. The suffïcient condition "(6) for ail e" implies

voln(Ce) 0(en), (7)

v(e)>const/e2 (8)

as e40.

Indeed, one proves (7) by picking Y Fe, and X1 C6, X2 Oe.

In order to prove (8) from (6) and (7) let us recall, a définition and Cheeger's
inequality for manifolds with boundary [4; 14].

DEFINITION. Let M be a compact manifold with boundary dM. We define
the constant h (M) by

where Y ranges over ail compact (n —1) dimension submanifolds such that
dMHY 0, which divide M into X and X' where dXDdM 0.

Cheeger's argument [4] shows that À!(M)^h2/4 where Ai (M) is the first
eigenvalue for the Laplacian with Dirichlet boundary data.

Let M Ce, dM Fe and X and Y submanifolds of M as in the above
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définition then voln_! (Y)>cl/n voln (X)n~1/n and

h(Q)>infc1/n voln(Xr1M>k/e

follow from (6) and (7). Therefore (8) follows from Cheeger's inequality.

We next remark that whereas the necessary condition for the validity of (1) for
ail / is a conséquence of the max-min characterization of eigenvalues and thus
best interpreted via vibration*phenomena, the sufficient condition is obtained by
working with the respective fundamental solutions of the heat équation on M, Me.

Most important is the interprétation of thèse fundamental solutions via
Brownian motion, viz., if

p:MxMx(0,oo)-*R

is the fundamental solution of the heat équation on M, then p(x, y, t) is the

probability density for a Brownian path in M starting at x at time 0 to be at y at

time t. Of course one has a similar statement for

pe:MexMex(0,oo)->jR,

the fundamental solution of the heat équation on Me. Similarly, if we let

qe : ne x ne x (0, oo) -> R

dénote the fundamental solution of the heat équation on Qe with Dirichlet data

on Fe then qe (x, y, t) is the probability density that a Brownian path starting at

xefïe at time 0 will be at y € Oe at time t without having hit Fe between time 0

and time t. In particular, for x, y in

(we now think of qe as vanishing on the complément of Qex{ie) qe(x, y, t) is a

decreasing function in e, and

Re^P, Qe^Pe (9)

on MxMx(0,oo), Mc xMe x(0,oo), cf. [7; 12] for the application and détails in
Euclidean space, and [9] for the construction on gênerai Riemannian manifolds.

Our final concern is that we can construct manifolds M, Me for which (6) is

satisfied for ail e.
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MAIN THEOREM. Let M be a compact 2-dimensional Riemannian mani-
fold, K:M-+Rits Gaussian curvature and M {M-K"1^]}U{int K"1^]}. Then

M is open and dense in M. Given any two distinct points pl9 p2 in M then Me may
be constructed so that there exists c > 0 for which (6) is valid for ail e. Thus Me may
be constructed so that A(Me)-+A(M) as e|0 and so that (1) is valid for ail

The theorem suggests that to the question "Can you hear the shape of a

drum?" [7] one should answer "For a compact 2-manifold - not really." For to
détermine the Euler-characteristic, via (2), by actually listening to its tones
(square roots of the eigenvalues) one would hâve to know a priori that what is

heard in fact approximates ail the tones with uniform accuracy. Anything less

could lead the listener astray in determining the Euler-characteristic.
We wish to thank our colleagues S. Kaplan and B. Randol for many helpful

discussions, and A. Heller for help with Lemma 5.

This paper is dedicated to the inspiring memory of H. E. Rauch, whom both
authors knew and admired as a friend, teacher, and mathematician.

§1. Proof of Theorem A

Dénote the spectrum of 17e with Dirichlet boundary data (distinct eigenvalues
are repeated according to multiplicity) by

Then the max-min characterizations of the eigenvalues [5, Chap. VI] imply that
Aj(e) is an increasing function of e, and the validity of the inequalities

^(e^Vi* W^oi-xte) (10)

for / 1,2, Moreover, in [3] it was shown (cf. [13] for the case of domains in
Euclidean space) that

Ajte)-*^-! as e40 (11)

for ail / 1, 2,... Then (10), (11) imply (3).
With thèse preliminaries, establishing the necessary condition is done as

follows: Let the union of the spectra of Ce, fle with Dirichlet data on Fe be
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denoted by

where the eigenvalues hâve been re-listed in non-decreasing order and repeated
according to multiplicity. Then a max-min argument [5, p. 408] implies

oi(e)^ft(e) (12)

for ail / 0, 1, 2,.... Assume

a =:liminf v(e) as elO

is finite, and let Ak be the first eigenvalue of M which is strictly greater than a (in
particular, Ak_1<Àk). Then for any e for which we hâve

v(e)<Xk

we also hâve v(e)<\k <Àk+1(e), i.e.,

which implies

<rk(e)<fxk(e)<max{ï/(e), Àk(e)}.

Thus a<Àk implies by (11) that

lim inf ak(e)^lim inf max{v(e), Àk(e)} max {a, Àfc^J<Àk

as ejO. It is therefore impossible that 6k(e)-^Àk as e|0.

COROLLARY 1. If

liminf i^(e) a<+oo as eiO,

and kk is the first eigenvalue of M greater than a, then

lim inf ak (e) < Àk as eiO.

Remark 1. We note that (4) is also a necessary condition that @e(t)-» @(t),
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for any given f >0, e|0. Indeed, (12) implies that

But in [3] it was proved that the séries on the right-hand side of the above

inequality tends to @(t), uniformly on compact subsets of (0, <»), as eiO. That (4)
is a conséquence of @e(f)—» (9(0 is immédiate.

§2. Proof of Theorem B

LEMMA 2. Let dM, dMe dénote the respective volume éléments of M, Me (of
course they agrée on QB), and let f be any bounded measurable function compactly
supported on Mo. Then

lim pe(x, w, t)f(w) dMe p(x, y, t)f(y) dM(y),

uniformly in (x, t)e compact subsets o/Mox(0, oo), as e|0. In particular we have

lim pe (x, y, t) p (x, y, t) as e |0 (13)

on MoxMox(0,oo).

Proof In [3] it was shown (cf. [13] for the case of domain in Euclidean space)
that

lim qe (x, y, t) p(x, y, t) as e|0

uniformly on compact subsets of MoxMox(0, oo). Let K be a compact subset of
Mo and pick e sufficiently small so that ile contains K and the support of /. Then
for x g K, t e [a, b] c (0, oo) we have

{pe(x, w, 0-<fc(x, w, t)}f(w)

s max |/| f {pe (x, w, t) - qe (x, w, t)} dMe (w)

max |/| {l -1 qe(x, y, t) dM(y)} max |/| f {p(x, y, t) - qE(x, y, t)} dM(y),
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since

f p(x, w, 0 dMe (w) 1 f p(x, y, t) dM(y).

Thus

| £ Pe fe w, r)/(w) dM6 (w) - f p(x, y, r)/(y) dM(

< 2 max |/| f {p(x, y, f - qe (x, y, t)} dM(y)

which goes to 0, uniformly in (x, f) € X x [a, b], as e |0. Thus the lemma is proven.

To prove Theorem B we first reduce the problem to showing that for t
bounded away from 0, pc (z, w, t) is uniformly bounded above independent of e.

Assume that this has in fact been accomplished. Then one has by the
Sturm-Liouville expansion (cf. below) of pe, p that for any fixed t>0,

eB(t)~ &(î) f p£(z, z, t) dMe(z)- f p(x, x, 0 dM(x)

\ Pe (2, z, t) dMe (z) - [ p(x, x, t) dM(x)

+ {pe (x, x, t) - p(x, x, r)} dM(x) -* 0 as e j 0.

Indeed, the first two integrands are bounded and the volumes of Q, Be tend to 0.
The convergence of the third intégral follows from (13) and Lebesgue's domi-
nated convergence theorem. Thus pc uniformly bounded independent of e implies
for t>0,

\im0B(t) &(t) as eiO. (14)

Finally assume there exists fc>l such that liminf crk(e)<Àk as e-^0. Let et

be a séquence going to 0, with crk(e|)—>crk<Àk as !—>«>. Then by (14), (3) and
Fatou's lemma we hâve

lim0ei(f)> X liminf exp(-crJ(el)0 Z exp(-limsuper,(
,=O j-0

6"^'+ Yé exP (-1™ SUp CTJ(el)0> @(0

which implies a contradiction.
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So to prove Theorem B we must bound pc above independently of e. To do so

we require some estimâtes of P. Li [8].

DEFINITION 2. Given a compact Riemannian manifold X of dimension
n>2we define the Sobolev constant of X, co(X), by

where / ranges over the Sobolev space of functions with L1-derivatives.

LEMMA (P. Li) 3. Let v=vo\n(X)9 co co(X). Then there exist constants

depending only on n such that
for any eigenfunction f with eigenvalue t^O we hâve

JTn/2/c0)exp{const(c0/D)2/n/T}, n>3
^^^ exp {const co/rt

for the k**1 eigenvalue rk of X we hâve

^f^ ^3 (16)
\{rkvlc0}2 n 2

for ail fc 1,2,....

Before turning to the proof of Theorem B we remark (as in [8]) that the

argument of [2, Section 3], when applied to compact X without boundary, yields

c1(X)<c0(X)<2c1(X). (17)

Also, by considering arbitrarily small géodésie disks, one has under ail cir-
cumstances

c1(X)^nn-1voln_1(S). (18)

We now prove Theorem B; recall that we must establish an upper bound on pe

which is independent of e. Assume (6). Then Lemma 1 implies

limvoln(Me) voln(M) as e|0. (19)

Also, o-1(e) is bounded away from zéro, by either using Cheeger's inequality [4]
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with (19) or by using (17), (19), and (16) for fc 1. Thus we hâve that {o-^e),
voln (Me), co(MB)} are ail restricted to a compact subset of (0, »). Then there exist
constants independent of e for which Li's estimâtes now read as

||/||i<const||/||K2 n~3
(15')

[j n L

ffc1^-» n>3
|fcl/2
ffc n>3

rk>const|fcl/2 2
(16')

Now fix f >0 and let {4>(e)} be an orthonormal basis of L2{Me) consisting of
eigenfunctions corresponding respectively to {cr^e)}. Then the eigenfunction
expansion of pe is given by, and satisfies,

oo

PÀz, w, 0= I c-"'(

We proceed with estimate for the case n - 2 as this is the situation in which we
will construct our explicit examples (the argument for n > 2 is similar). From (15')
we hâve

pe(z, w, t)<const

with the constant independent of s. Now (16') implies the existence of a positive
integer /, independent of e, such that for ail / > / we hâve

Then (16') implies that

00

£ of(e)e"-°*(e)t^ £ of(e) + const £ iV2
j 1 j <J j seJ

which is bounded above, independently of e, by (3).
This concludes the proof of Theorem B.
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§3. The construction of Me for the main theorem

Let M be 2-dimensional and peM, i.e., either K(p)^0 or K vanishes

identically on some neighborhood of p. To p we associate a number a(p) with the

following list of properties:
(i) a will be less than the convexity radius of M (in particular, it is less than §

the injectivity radius of M). If K, the Gauss curvature of M, has maximum equal
to k then a will be chosen so that it is also less than tt/2Vk.

(ii) Set

B(p; r)=: metric disk about p of radius r.

Then we require that K either vanishes identically on B(p,a) or never vanishes

on B(p; a).
Should K never vanish on B(p; a) then a will be sufficiently small so that

irf|K(q)|>(§)sup|K(q)| (20)

where q ranges over B(p;a).
(iii) Let dA dénote the Riemannian élément of area and, as in the introduction,

A(-) dénote the area. Then we require that

A(B(p;a))<A(M)/8 (21)

ff KdA<7rl2. (22)

B(p,«)

In particular for

we hâve

K+dA<Tr/2. (23)

B(p,ot)

Remark 2. In a moment we shall change the Riemannian metric in a compact
subset of B(p;a), when K(p)^0, such that the new Gauss curvature does not
change sign. The Gauss-Bonnet formula implies that the left-hand side of (22)
does not change, hence (23) remains valid in the new Riemannian metric.
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If K(p) ^ 0, then for every e e (0, a/2) we introduce a new Riemannian metric
on B(p; e). The détails will be given for K(p)>0, as the case K<0 is similar. Let

on B(p;a). Then kjk2>l implies that for ail r satisfying 0<r<a we have

cos<

Introduce géodésie polar coordinates (r, 0) about p and write the given
Riemannian metric as

Then r\ satisfies Jacobi's équation

d2

dr2

with initial data

T,<M)-O,

Standard Sturmian

l i

OTj/dr)(0,e) 1.

arguments imply

n fsin Vk

;«) il r»(r,

r 2/

2r 11

9)-r/2
r/2

i.e.,

Geometrically, (24) implies that for each fixed 6, the tangent line to the curve
y r\(x, 0) (in the (x, y)-plane) at x r intersects the line y x for some x(r, 0)

satisfying r/2 < x (r, 6) < r.

Given e satisfying 0<e <a/2, set X!=:x(3e/4, 6) and replace y rj(x, 6) for
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Figure 1

0<x < e by y fj(x, 0) where

fj(x, 6) x for

tj(x, 0) is given by the tangent line to y r)(x, 0) at x 3e/4 for xx<x<
fj (x, 0) r\(x, 0) for 3e/4 < x < a.

Now smooth r\ to Tje which is a C00 function in (r, 0) and which satisfies

ï)«(r,0) r 0<r<5e/16

-n(r,^) o-.-« (25)

Finally replace

ds2 dr2 + T)2(r, 0) dO2

on fî(p;a), by

ds2 dr2 + Tî2(r, 0) d$2.

Then the new metrie is flat on the géodésie disk of radius 5 e/16, has non-negative
Gauss curvature on B(p; a), and agrées with the original metric on JB(p; a)nOB.
One sees easily that the smoothing may be chosen so that (21) can be replaced by

A(B(p;a))<A(M)/6.

A similar argument can be carried out when K(pi)<0.

(210
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We are now ready to define Me. Given p1? p2€M fix a to be less than <*(pi),
a(p2) and less than \ the distance from px to p2. For each i 1, 2, if K(pl) 0
leave well enough alone. If K(pt) ^ 0 then for every e < a/2 introduce the change
of metric in B(pt; e) just described. Call the new Riemannian manifold Mf.

Now attach the tube

T=:[-e/4, e/4]xSe/4

to Mj "at right angles" to the géodésie circles about pl9 p2 of radius e/4,

identifying {—e/4}x Se/4 with the géodésie circle about pl9 and {e/4}x Se/4 with that
about p2, of radius e/4. Put differently, in the polar coordinate System about each

p,, replace

T]e(r, 0) r 0<r<5e/16

with

74 0<r<e/4
e/4<r<5e/16

and identify the two circles {0}xSe/4.
The resulting manifold with "creased" Riemannian metric will be our Me and

we shall estimate CX(MB) for this "creased" metric from below. Once we, in fact,
verify the existence of c for which (6) is valid for ail e, it is easy to smooth the

"crease," with non-positive curvature near the crease, such that (6) is valid with c

replaced by c/2 for ail e.

§4. Estimating the isoperimetric constant

LEMMA (F. Fiala [6, p. 336; 11, p. 12]) 3. Let Mbe a complète Riemannian
surface with Riemannian measure dA, Gauss curvature K, K+ — max {K, 0}, and D
a simply connected domain in M of area A with smooth boundary of length L. Then

implies

L2-4irA+2A| \K+ dA

D
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COROLLARY 1. In the above,

r dA<7T
D

implies

L2>2ttA.

LEMMA (S. T. Yau [4, p. 489]) 4. For a compact n-dimensional Riemannian
manifold M, to evaluate cx(M) it suffices to let Y range over those compact
(n - \)-manifolds which separate M into connected open submanifolds Xu X2.

Remark 3. In [14] Yau proves this fact for Cheeger's isoperimetric constant.
However his induction argument and the Minkowski inequality (Triangle inequal-
ity if dim M 2) immediately yields the above lemma.

In what follows Le(-), dAe, Ae(-), Ke will dénote length, area élément, area,
and Gauss curvature of Me. We also write K* max{Ke, 0}.

To start with our estimate of cx(Me) from below, let 7 be a compact
1-manifold imbedded in ile, separating Me into Mu M2, and assume Ce çMlt Set

M? (M1-Q)UBe, where Be is, as originally defined, the union of the open
géodésie disks of radius e in M about pl5 p2. One easily checks that Ae(Q)/A(Be)
is bounded away from 0, +œ independently of e. Thus

L2(7)/min(Ae(M1), A6(M2))>constL2(7)/min(A(Mf), A(M2))

>constCx(M)>0

which is independent of e.

Also if 7 is any compact imbedded 1-manifold of length >a separating Me
into Ml9 M2, then

L2(7)/min (A^MJ, Ae(M2))>a2/Ae(Me)>const>0

by (19).
Thus our task is to estimate

L2(7)/min(Ae(M1),Ae(M2))
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where 7 ranges over compact imbedded 1-manifolds separating Me into con-
nected Mu M2 and such that

Since e < a/2 we immediately hâve

We will always hâve one of the domains, say Ml5 contained in Me -Qa and (19),
(21') allow us to assume Ae(M1)<Ae(Me)/2; so we are always estimating

from below.
Since Me - Oa is topologically a cylinder, we hâve that y is an imbedded circle

bounding a disk MxcMe-/îa or y is a pair of imbedded circles bounding a

cylinder M1^Me-Oa. In the first case, then by smoothing the "crease" with
non-positive curvature we would hâve (from Remark 2)

f K+
V-4

and therefore

in the approximating metric, which implies the inequality for our "creased"
me trie. So we need only consider the second case.

First let d(,) dénote distance in Mf and define for i 1,2

We are now considering y 7l U y2 where yl9 y2 are imbedded circles bounding

a cylinder Mx in Me—{ltx. We think of yt as "closest" to F,(a). First we shall

assume that 7, does not cross r,(e/4) for either i l,2, and then reduce the
gênerai case (viz., where at least one yx crosses /^(e/4)) to this one. The
assumption that neither yx crosses rt(e/4) involves three essential possibilities: (i)

7i, 72 S T, (ii) 71S Wlf 72 S Wx U T, (iii) 7l s Wlf 72 S W2.
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(i) If yl9 72çT then M^T, and LB(yt)^irel2, A^M^^tte2!*, which
implies

L2e(y)>47rAe(M1).

(ii) If 71S Wl5 72ç Wi U T then M^TUlMjfl Wx), which implies

Ae(MO ^ 7re2/4 + Ae (Mx H WO.

Now think of yt as bounding a disk D^B{px\ a)çMf. Then

Ae (D) 7T(s/4)2 + Ae (Mx H WO > Ae (M^/4,

and by Remark 2 and Fiala's inequality we therefore hâve

L2(7) ^ L2(7i) 2= 2ttA6 (D) > (tr/2)Ae (M,).

This argument, of course, covers the possibility: 72 c W2, 7i c W2 U T.

(iii) If 7x ç Wx, 72 c W2 then our argument is similar to the one just given. Let
Dt correspond to 7, as D corresponded to yx in (ii). Then we hâve

2tt £ {ire2/16 + Ae (Mi n W,)}
t

> X {ire2/8 + Ae (Mj n W,)} irAe (Af0.

In summary, when neither 7, crosses Ft(e/4) we hâve

MJ. (26)

For the gênerai case, we shall assume yx crosses r^e/4) transversally with an even
number of intersections, and show that we can replace yx with yx having fewer
intersections (therefore, ultimately no intersections), shorter length, and enclosing
with 72 larger area. Thus (26) will remain valid in the gênerai case.

So we now hâve yt crossing rt(e/4) transversally. We shall think of Me - Qa as

the cylinder R2-{0}, with yx and F^elA) winding about 0 once, let

D=:component of R2—{7J not containing Mx,
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assume for convenience that D contains 0, and let

{Du Dk}==:components of D-F^

We say that a component Dx is simple if its boundary consists of the union of 2
smooth arcs v and /x, with v part of 7! and \l part of F^e/4).

Given a simple Dt we hâve that either Dx ç Wx or D,çW2U T, with v ç Wx or
v Ç W2 U T respectively. However, in either case

- note that we are using hère the hypothesis that a was picked to be less than the
convexity radius of M. Then replace yx by yx by first replacing v by jul, then sliding

li a drop to the side of rx{el4) opposite to Dh and, finally, smoothing the corners.
Define 7 yt U72. Then Le(y)<Le(y), and Ml9 the domain in Me -17a bounded
by y, contains MjUDj which implies Ae(Ml)>Ae(Ml). Thus

The curve 7 has the same properties as 7, so we may repeat the argument just
given until we are left with a curve not intersecting ^(6/4). In this last case we
already hâve the estimate (26). Thus the last thing for us to verify is that given 7,
a simple Dt exists.

LEMMA 5. Let F, A be two simply closed smooth curves in R2-{0} which
wind about the origin once and which meet each other transversally. Let G be the

component of R2-A containing 0, and let {Gl9..., Gr} be the components of
G-F. Then there exists a component Gs whose boundary consists of two smooth

arcs; one a part of F and one a part of A.

Proof. We can assume F is the unit circle which O divides into a finite number
of arcs alternately belonging to G and R2-(GUA).

Let Go be the component of G - F containing 0, and consider the segments
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Figure 3

Ii,..., Ilx of GonF. (Of course if lt 1 then Go is simple. So assume otherwise.)
To each Ih, j1 l,... ,lt associate the component Gh of G-F distinct from
Go having Ih as part of its boundary. Gl9..., Gh are ail distinct for otherwise
A would not be simple by the Jordan curve theorem.

If there exists Gh having only Ih for the intersection of dGh with F then we are
done, for then Gn is then simple. So assume the opposite. Then to each
j1 l,...,l1 associate the segments Ihl,..., JHh of GhC\F-Ih and to each

segment IJiJa associate the component of G - F distinct from Gh, GJij2, having IJiJa

as part of its boundary. Again, the collection {GJij2} are ail distinct.
By continuing this process, if necessary, we exhaust ail the arcs of G - F and

the process stops. But then every component of the last step is simple.
This concludes the proof of Lemma 5 and, with it, the proof of the main

theorem.
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