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On the existence of escaping geodesics

Victor Bangert(1)

In [5] Cohn-Vossen remarks that to his knowledge the following question is
undecided

PROBLEM. Let M be a complète Riemannian manifold homeomorphic to
the plane. Does there exist an escaping géodésie c : R —» M without self-
intersections?

Hère "escaping" means that c is a proper map, cf. Section 1.

Recently the same problem, though in weaker form, has been posed by
Wojtkowski [9]. In [8] and [9] Wojtkowski applies symbolical dynamics to study
the géodésie flow of certain complète surfaces. The existence of escaping
geodesics is a crucial prerequisite for this application.

In this paper we solve Cohn-Vossen's problem in the affirmative. We hâve not
been able to find a gênerai method to construct escaping geodesics without
self-intersections.' Thus we use différent methods according to différent properties
of the géodésie flow. Intuitively the most difficult case is when there exists a closed
géodésie on M. In this case we use Lusternik-Schnirelmann theory on the space of
curves with fixed end-points. When closed geodesics do not exist we apply results
from [3]. We know that in this case bounded géodésie rays do not exist either.
Furthermore the possible self-intersections of geodesics are of a very restricted
type. This allows us to prove that through every point of a complète plane without
closed geodesics there exists a géodésie without self-intersections. Unfortunately
we are not afrle to exclude that this géodésie is oscillating.

Hence, in a final step, we prove that, in the absence of closed geodesics, the
existence of an oscillating géodésie implies the existence of an escaping géodésie
without self-intersections. We note that our arguments generalize to Finsler
metrics, at least if one admits self-intersections of the escaping géodésie.

I would like to thank W. Ballmann for helpful conversations on the Lusternik-
Schnirelmann déformation 2l~, cf. Section 2.

Work supported by the program Sonderforschungsbereich "Theoretische Mathematik" at the
University of Bonn
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1. Preliminaries

We consider a complète Riemannian manifold M homeomorphic to the plane
R2. Such M is called a complète plane. The distance function on M is denoted by
d. A curve on M is a piecewise C1-map 7:1 —» M defined on some interval JcR.
If I is compact the energy E(Y): Ji|7(t)|2<fc and the length L(y): Jr|7(r)| dt of

7 are finite. For I [a, b~\ length and energy of 7 are related by L2(y) ^ (b - a)E(y)
with equality if and only if 7 is parametrized proportionally to arc-length.
For p, q g M we dénote by Fp q the space of curves 7 : [0,1] -> M with 7(0) p,

7(1) q. Fpq is endowed with the compact-open topology. By fPA we dénote the
subspace of Fp q consisting of curves without self-intersections. Finally, for k ^ 0,

we let Fp\q be the set of curves in Fpq of energy =^*c and Fp\q: Fp>q nFp\q.
On a complète non-compact Riemannian manifold M the géodésie rays can be

divided naturally into the following three classes, cf. [8]:

DEFINITION. A géodésie ray c : [0,00) -» M is called
(i) bounded if its image c([0,oo)) is a bounded set.

(ii) escaping if c is a proper map, i.e. if c(0 diverges for every divergent
séquence ^ in [0,0°).

(iii) oscillating if neither (i) nor (ii) is true.

A complète géodésie c : R—> M is bounded resp. escaping if both its géodésie rays
are. In [6] escaping géodésie rays are called divergent. A géodésie c : [a, b] -> M is

called a géodésie loop if c(a) ~ c{b), c is called simple if c j [a, b) is one-to-one. A
géodésie c : R —» M is simple closed if c is non-constant, periodic and if, for its
smallest period co, c \ [0, w) is one-to-one.

2. Escaping geodesics in the présence of closed geodesics

In this section we prove the existence of an escaping géodésie without
self-intersections on a complète plane M containing a simple closed géodésie d.

Examples for such M are complète planes of finite surface area or, more
generally, complète planes containing a horn, cf. [2] and [8].

According to [3], Theorem 2, the existence of such a closed géodésie on M is

équivalent to the existence of a bounded géodésie ray or to the existence of a

compact, locally concave set D. This last property of M is essential for our proof.
Hère we can take as compact, locally concave set the dise D bounded by d. The
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following lemma is crucial:

LEMMA 1. For p.qeM and some k>0 let there be given a continuous
homotopy g:[0,1]—»Fp;q such that g0 and gt are curves in M-D which are not
homotopic in M-D. Then F£q contains a géodésie which intersects D.

Proof. To illustrate the idea we first forget about possible self-intersections
and only construct a géodésie c s F: Fp\q intersecting D. Our tool is the Birkhoff
curve shortening process 3) : F-^F, cf. [4], Section V, 7. To define 3) choose
some big keN. Then 2>: 2>k_2° • • • ° 3)0 where 3)l\F-^F, O^i^fc-2, is
defined as follows: For yeF we let

be the shortest géodésie from y(i/k) to y((i + 2)/k) while 3)xy coincides with 7 on
the rest of [0,1]. If k is large enough each 3)t is well-defined and continuous. We
set 3)n: 3) o 2>n~\ 3)l:=3). Then the following is true:

(i) For every yeF there exists a convergent subsequence of {3)ny}neN and

every limit curve of {3)ny}ne^ is a géodésie in F.

(ii) If yeF is contained in M-D then so is 3)y. Furthermore 7 and 3)y are
homotopic in M-D.

Hère (i) is the standard property of the Birkhoff curve shortening process
while (ii) is due to the fact that D is bounded by a géodésie. Now c is obtained as

follows: By (ii) the curves 3)ng0 and 3)ngt are not homotopic in M—D. Since
®n ° g is a homotopy from 3)ng0 to 3)ng1 the set In: {f e[0,1]| 3)ngt intersects
D} is non-void. In is compact and, by (ii), we hâve In^In+1. Hence there exists
* e[0,1] such that Sèngt intersects D for ail neN. Now every limit curve c of
{^"gtlneN has the desired properties.

We now proceed to construct a géodésie ceF: Fp\q intersecting D. This
géodésie is produced by a continuous, energy-decreasing déformation 3) h : f->F
which has "almost" properties (i) and (ii). To find such déformations is known to
be an intricate problem. Hère we use an adaptation to the présent situation of the
classical Lusternik-Schnirelmann déformation ®~, cf. [7]. S"" has been described
with great care in [1], and is actually only defined up to the choice of a constant.
The following two problems arise:

(1) S~~ is defined so as to map closed curves without self-intersections to
closed curves without self-intersections. When 3)~ is applied to curves with
end-points 2r may not leave the end-points fixed.

(2) 2?~ fails to hâve property (ii).
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Difficulty (2) can easily be helped since 3)~ almost has property (ii): For a>0
set Da: {peM\ d(p, q)^a for some qeD}. Then, given e>0, we can define
3)~ in such a way that 3)~~y does not intersect De if y does not intersect D2e. This
amounts to an appropriate choice of the constant involved in the définition of
2>~7, cf. [1].

To get around difficulty (1) we slow 2>~ down to the identity as soon as y
cornes to lie close to its end-points. This means the following: Choose two small
balls Bp and Bq about p and q and a function h : M-» [0,1] which vanishes in a

neighborhood of p and q and is identically one outside Bp U Bq. Choose some

very big k e N. Using the Lusternik-Schnirelmann construction we define
déformations 2>~, (3^i^fc-3), which replace

by the géodésie segment cyl from y(i/k) to

while the rest of y is so deformed that self-intersections are avoided. This
déformation takes place in some small neighborhood of cytl only. If k is big
enough the end-points of y will never lie in such a neighborhood. We define 2)^
by 3l ^ - Sk-3 ° ®îT-4 ° * ' ' ° ®3> Using similar arguments as before we can find
t e [0,1] such that (3)^)ngt intersects De- for en e • 2"n. When we restrict a limit
curve of {(Sh)n&}neN to an appropriate subinterval [so»5i]c[0,1] we obtain a

géodésie without self-intersections which starts in Bp, ends in Bq, intersects D and

has energy =^ic. If we let the radii of Bp and Bq converge to zéro we obtain a

géodésie cet intersecting D.
Now we can prove

THEOREM 1. Let M be a complète plane containing a simple closed géodésie
d. Then there exists an escaping géodésie c : R—» M without self-intersections.

Proof. c will be obtained as a limit of geodesics constructed by means of
Lemma 1. We first construct a séquence of homotopies gn which satisfy the
assumptions of Lemma 1. Take any smooth dise D' containing D in its interior
where D is the set bounded by d. Then there exists k>0 such that for ail

p, qedDf there is a homotopy h : [0,1]—* r£q such that h0 and ht are contained
and not homotopic in M-~D and such that ail the curves f^ are contained in D'.
Obviously we can assume that the curves ^ are parametrized proportionally to



On the existence of escaping geodesics 63

arc-length. Now choose points pnj=qn at distance rteN from D'. There exist
geodesics cn, d» of length n such that cn joins pn to D' while d» joins D'to qn. We
define a homotopy gn : [0,1]-> f^ by requiring that g" be the composition of
cn, 1% and d^ parametrized proportionally to arc-length. Then JB(gtn)^(2n + >/K)2

for ail te[0,1] and gn satisfies the assumptions of Lemma 1. Thus there exists a

géodésie y'ne fPnMn which intersects D and has length L(y'n) (E(7;))1/2^2n + Jk.
Let 7n : [On, 6n]-> M be a unit speed parametrization of y'n such that an<0<bn
and Yn(0)€D. Then bn-an L(yn)^2n+y/K. Since pn and qn are points at
distance n from D'^D we hâve —On^n + Jic and bn^n + y/i<. Let d be a limit
vector of the séquence (7n(0)} and define c(t) exp (tv). Then c(f) lim yn(t) and

c does not hâve self-intersections. We hâve

Now d(c(t), D)^î-Jk implies that c \ [0, <») is escaping. An analogous argument
shows that c | (-o°, 0] escapes as well.

Remark. Our géodésie c even has the following property which is stronger
than being escaping: Both its rays c \ [0, o°) and c \ (—», 0] are almost minimizing
in the sensé of [6], Définition 7.1; i.e. there exists A>0 such that d(c(t),

3. Escaping geodesics in the absence of closed geodesics

On a complète plane M the absence of simple closed geodesics has surpris-
ingly strong implications on the géodésie flow, cf. [3], Section 2. As far as

self-intersections are concerned the geodesics on M hâve similar properties as

geodesics on complète planes of positive Gaussian curvature, cf. [5]. Hence it is

not surprising that [5], Satz 11 has an analogue in our situation:

THEOREM 2. Let M be a complète plane without simple closed geodesics.
Then through every point of M there exists a géodésie c : R —» M without self-
intersections.

Remark. By [3], Theorem 2, the géodésie rays of c are not bounded.

Proof. According to [3], Corollary 2 a non-constant géodésie c : R —> M either
has no self-intersections or c détermines uniquely a simple géodésie loop
c I [*i> hi- Hence we can repeat Cohn-Vossen's proof of [5], Satz 11: Assume that
ail geodesics through peM hâve self-intersections. For every unit vector v e TpM
let c dénote the simple géodésie loop determined by the géodésie c(f) exp (tv).
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Obviously cv and c_v bound the same dise but with the opposite orientation. Since

this orientation dépends on v continuously we obtain a contradiction.

We are not able to conclude that the géodésie c from Theorem 2 is escaping.
This is actually part of the following open problem: Can oscillating géodésie rays
exist on complète planes without simple closed geodesics?

Regardless of the answer to this question the following proposition complètes
the proof for the existence of an escaping géodésie without self-intersections on
every complète plane:

PROPOSITION. Let M be a complète plane without simple closed geodesics.
Suppose there exists an oscillating géodésie ray d : [0, oo) —» M. Then there exists an
escaping géodésie without self-intersections.

Proof. We fîrst recall that a totally convex set C ç M is a closed set such that

every géodésie which joins two points of C is contained in C. The totally convex
hull Ac of a set A ç M is the intersection of ail totally convex sets containing A.
Using this concept and a resuit from [3] we will find a séquence st diverging to oo

such that d(st) converges to the initial vector of an escaping géodésie without
self-intersections.

Choose a séquence ^ diverging to °° such that lim d(tl) :p exists. Let B be a

compact bail about p and, for hgN, let Kn dénote the closure of BDd([n, oo)).

Then the totally convex hull Kcn of Kn contains d([t, oo)) for some t>0. According
to [3], Corollary 1, there exist points qn g Kn fldK£. Let q be a limit point of the

séquence qn. Since Kcn is a decreasing séquence of closed sets we hâve qe
n^n :C. Now qnedKn implies qedC. Since qneKn we can find a séquence s,

diverging to oo such that limd(sl) :w exists and weTqM. Then the géodésie
c:R—>M with initial vector c(0) w is contained in C since c(t) limd(st + t)
for ail t e R. Actually c is contained in the boundary dC of the totally convex set
C since q c(0)edC. Hence c is either a simple closed géodésie or an escaping
géodésie without self-intersections. The first case is excluded by assumption.

Finally we note that an escaping géodésie without self-intersections can easily
be constructed on ail complète non-compact Riemannian manifolds which contain
a non-separating compact hypersurface or which hâve at least two ends. In
particular the answer to our problem is yes for ail complète non-compact surfaces

M which are not planes. For such surfaces one can even obtain geodesics without
self-intersections which "start" and "end" in the same end of M unless M =* S1 x R.

Obviously one can ask many interesting questions in this context, even in the
2-dimensional case. We just mention two of them:

1. Are there infinitely many escaping geodesics on every complète plane M,
or even one through every point of M?
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2. What is the minimal number of escaping geodesics without self-
intersections on complète planes?
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