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Link cobordism

SyLvain E. CappeLL and JurLius L. SHANESON

Introduction

In this paper it is shown that, contrary to previous beliefs, link cobordism does
not reduce to knot cobordism. This is a consequence of a study of link cobordism
that applies the global methods of homology equivalences introduced in [CS2].

An m-link in the (n+2)-sphere S"*? is a smooth oriented sub-manifold
"< 8" where 3" =37U- U X" is the ordered disjoint union of m manifolds
that are piecewise linearly homeomorphic'” to the n-sphere. Two m-links 3, =
SoaU U3, 8" and 3,<S"*? are said to be cobordant if there is a
smooth oriented submanifold V< S"*?x[0, 1], piecewise linearly homeomor-
phic® to X,x[0, 1], which meets the boundary transversely in 9V, so that
VN(S"*?xi)=23, for i=0,1. Let C(n, m) denote the set of cobordism classes®
of m-links in $"*2. Thus C(n, 1)= C, is the usual knot cobordism group.

Links can arise from singularities of complex algebraic hyper-surfaces. More
generally, recall that the global understanding of knot cobordism via homology
equivalences, given in [CS2], was a key ingredient for the study of piecewise
linear embeddings and immersions and their singularities [CS3] [CS4] [CS5] [CS6]
[CS7] [CS8] [CS9]. A similar global point of view on links could enhance the
study of singularities and multiple points of P.L. singularities and could also serve
as a point of departure for the study of embeddings, immersions and singularities
of a class of objects wider than the class of manifolds. In addition, a description by
invariants of the Seifert surface type® as in [L] for knot cobordism, does not yet
exist for links.

A link 3" <S"*? is said to be split if the components 3, 1<i=<m, are
contained in mutually disjoint disks in S$"*2. It apparently has been believed for
some time (see [G1] [G2] and [G3], and the review of [G3], MR54 #3709) that

! This is the same as homeomorphic except possibly for n = 4,3,

2 By smoothing theory, C(n, m) can also be described as concordance classes [H] of P.L. locally flat
embeddings of a union of disjoint copies of S in §"*2.

3 “Local invariants”’, from our point of view.
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every link (or at least every boundary link, but see [G2]) is cobordant to a split
link, for n> 1. This is equivalent to the assertion that the map

¢:C.x - XC,=(C,)" = C(n, m),

given by placing knotted spheres into disjoint disks, is a bijective map (it is
obviously injective). Thus questions about higher dimensional link cobordism

would reduce to the case of knots.
This paper begins the study of links from the global point of view of [CS2]. In

particular we show:

THEOREM 1. For m=2 and n>4 odd, there exist infinitely many distinct
cobordism classes of m-links in S™*?, none of which contains a split link.

In other words, the map ¢ is actually very far from surjective. The cobordism
classes constructed will actually contain boundary links that also have the prop-
erty that each component is unknotted; i.e., isotopic to the trivial knot. With more
care, one can arrange examples with each (m —1)-sublink trivial, given m.

Theorem 1 has an interesting interpretation in terms of non-locally flat
piecewise linear cobordism. It is well-known that, if the smoothness hypotheses
are dropped from the definition, every P.L. (not necessarily locally flat or
smoothable) knot is concordant to the trivial knot (see [H]). From Theorem 1 it is
not hard to show that arbitrary P.L. link cobordism is highly non-trivial; in fact,
the set of cobordism classes of P.L. (not necessarily locally smoothable) m-links in
S$"*? will not be finite, for m =2 and n>?2.

An m-link 3" < S"** is called a boundary link if there are smooth disjoint
orientable submanifolds U,, ..., U, with aU, =3". Equivalently, let F,, be the
free group on generators xi, ..., x,,. Then 3" < 8"*? is a boundary link if and
only if there is a homorphism of m,(S"*>—23") onto F,, that sends a meridian'¥
about 3 to x; (see 1.1 below and [G1]). Similarly one defines boundary
cobordism of boundary links; see §1 for the exact definition. Let B(n, m) denote
the boundary cobordism classes of boundary m-links in S"*2. Let ¢: B(n, m)—
C(n, m) be the natural map; note that for m =1, ¢ is an isomorphism.

This paper determines B(n, m) in terms of the algebraic K-theoretic objects
introduced in [CS2], and uses them for some explicit calculations. Let

Fn:Z[F, 1> Z

* As long as one keeps the requirement that the homomorphism be onto, it is equivalent to require
merely that a meridian map to a conjugate of x; Recall that a meridian is a fibre of a tubular
neighborhood of 3.
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be the augmentation map of the integral group ring of F,,. Let I;(%,,) denote the
algebraically defined abelian group given in [CS2], and let f}(?m) denote the
cokernel of the natural map from the L-group L;(F,,) to I;(%,,). Let o, denote
the automorphisms of F,, that carry each x; to a conjugate of itself, modulo
inner automorphisms. By naturality &,, acts on [;(%,,). Let

Z 0
0 e 1

P, = z, if j= ) mod 4.
0 3

THEOREM 2. For n=2, B(n, m) is isomorphic®® to
(fn+3(gm)/&¢m) X mPn+l

In particular, it follows (see Theorem 6.1 below) from calculations in [CS2]
that B(n, m)=0 for n even, a result of Kervaire [K] for m =1 and of Gutierrez
[G1] for m>1. The above theorem for m =1 is a result of [CS2].

The precise nature of the isomorphism of Theorem 2 is discussed below.

However, recall that the I'-groups represent obstructions for normal maps to
be cobordant to homology equivalences with prescribed coeflicients (trivial integer
coefficients in the present case). The isomorphism of Theorem 2 then arises from
the view-point that the question of whether two links are cobordant is essentially
the same as the question of whether their closed complements are cobordant as
manifolds, relative boundary, via a cobordism that has the homology of a product
with [0, 1].

Now, an algebraic calculation given below shows that the natural map from m
copies of I,.5(%,) to [,.5(%,.) has a non-finitely generated cokernel. (On the i*"
copy, this map is induced by mapping F; to the subgroup generated by x,.
Actually the equivalent fact that the natural map

[is(Fn) = (Fos(FD)™

has a big kernel is what appears below). It follows that B(n, m) cannot split as a
sum of copies of B(n, 1)=C,.

If the map ¢ : B(n, m) — C(n, m) that forgets the ‘“boundaryness” happens to
be an isomorphism, then Theorem 2 provides a complete algebraic description of

® For boundary links one can show that connected sum along curves that miss the interiors of
bounding surfaces induces a group structure. But the proof of this seems to require some modification
to make the fundamental group of the complement free; see below or [G1].
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link cobordism, and Theorem 1 then follows from what has just been said.
However, it does not seem to be definitely known whether or not ¢ is bijective.®
Let %, ab : ZIF,/[F,., F,.]]— Z be the augmentation of the free abelian group. To
prove Theorem 1 we show (in §7) that it is possible to detect many elements in
C(n, m), and non-splitting in particular, by passing to I, ,3(%., ). Because the
free abelian group on more than one generator is not a high dimensional link
group, this requires a number of delicate arguments. The invariants involved in
the calculation mentioned above actually detect elements in [, 5(%,, .,), modulo
the image of (I',,3(%,))™, so that Theorem 1 follows.

The paper concludes with some remarks on the map ¢ and its possible
relations to algebraic questions.

§1. Boundary links

Let ¥=3,U...UZ,<8S""? be an m-link. Then Y has a tubular neighbour-
hood

Y=3x0c3IxD*cS""?,

D? the 2-disk, and for n =2 the embedding of X X D? is unique up to ambient
isotopy relative 3. For x; € 3, x; XdD? is called a meridian of X; or an i™ meridian
of 3. The orientation of 3, a fixed orientation of S"*?, and a convention (assumed
settled once and for all) give an orientation to each meridian. Thus, if each
meridian is connected to a basepoint, one obtains elements of m;(S""*—23),
well-defined up to conjugation. These are also called meridians, or meridianal
elements. For a fixed choice of meridianal elements we thus obtain a
homomorphism

7:F,—> m,(8""*-23)=ms.
PROPOSITION 1.1. (Compare [G1]). 3 = S"*? is a boundary link if and only

if T splits for some choice of meridians.

Proof. (Outline) If 7 splits, realize the splitting as a map of S"**>—3 to the
1-point union S'v...v S' of m circles and apply transversality (away from the
common point) to obtain disjoint surfaces bounding the components.

¢See [G2]. The failure of ¢ to be surjective would provide different types of examples of
non-splittable cobordism classes.
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Conversely, say 3; =9V, 1 <i=<m, with V, disjoint. Suppose that VN T, T as
above, is a boundary collar of V, and let V=V —Int VNT. Apply the Thom-
Pontrjagin construction (see e.g. [Sto]), in a relative form to (V,aV) in (§"*>—
Int I, 8T). The result is a map of S"*?*—Int T to S'v...v S*. The induced map
on fundamental group is easily seen to carry suitable meridians to generators
X ...Xn, Where F,, = m,(S'v...vS"), x; represented by the i™ circle.

By Stalling’s theorem [St], a map 7 given as above by a choice of meridians
induces a monomorphism of F,, into (ms)/(ms),, (7s), the intersection of the
terms in the lower central series. Thus if 7 splits, it induces an isomorphism of F,,
with (7rs)/(7s),,. Let a map 0: s — F,, be called a splitting map (for the link X) if
it is surjective and carries meridians to conjugates of the generators.”” Then 6
induces an isomorphism (7s)/(7s), — F,.. The next result follows:

PROPOSITION 1.2. Any two splitting maps for an m-link 3. in S™*? differ by an
automorphism of F,, that sends x; to a conjugate of x;,, 1<i<m.

Results analogous to 1.1 and 1.2 also hold for boundary cobordisms, which
will be defined momentarily. The details of 1.2 are left to the reader.

An F,, -link will be defined as an m-link X" < §"*?, together with a splitting
map 6. Two F,,-links (3, = S"*?, <,), i =0, 1, are said to be cobordant if there is a
cobordism Ve S"*2x] of 3,=8"*? with X, =S"*? and a surjective map of
m(S"*?>xI-V)— F,, that agrees with 6, and 6, under composition with the
natural maps from s, and @5, to m,(S"*?>XI—V), up to an inner automorph-
ism® of F,,. Such a cobordism will be called an F,, -cobordism. Let C,(F,,) denote
the F,,-cobordism classes of F,,-links in S"*2. Also, define boundary links to be
boundary cobordant if they have splitting maps for which the resulting links are
F,,-cobordant.

Let o/,, denote the group of automorphisms of F,, that map each x; to a
conjugate, modulo inner automorphisms. Clearly #£,, acts on C,(F,,) by composi-
tion with the splitting map.

PROPOSITION. 3. B(n, m)=C,(F,,)/d,..
This follows easily from 1.1 and 1.2

Note. Suppose that 7 is a link group with given normal generators &,,..., &,
i.e., by [K], = is finitely generated, H,(7)=Z"™, Hy(w)=0. Then C, (w) can be
defined, similarly, as cobordism classes of links with maps of the group of the
complement onto 7 that carry an i"™ meridian to a conjugate of £.

7 See footnote 4.
8 This is necessary because of ambiguity in the choice of basepoint.
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§2. Characteristic and complementary maps for links

Let Xyu(m,n)=S!v-++v SLvSi*iv.++v S**! be the indicated one-point
union of (oriented) circles and (n + 1)-spheres. Let Y4(m, m) be the disjoint union
of m-copies (S" XS, 1=i=m of S"XS"'. Let g: Yg(m, n) = Xy(m, n) be the
map defined as follows: for i# 1, m, define g | (S* x S™); by first collapsing ptx S"
to a point, to obtain S'v S"*'. Then map the circle summand to S} homeomor-
phically with degree one, and the (n+ 1)-sphere so as to represent the difference
of the homotopy class® represented by S'*! and SI'*}!; i.e., [S!*!]—-[Sr"!]. For
i =1, do the same thing, but map the (n + 1)-sphere so as to represent [S7*!], and,
for i=m, map it to represent —[S~*]. This defines g up to homotopy. Let
Xx(m, n) be the mapping cylinder of g.

PROPOSITION 2.1. (X4 (m, n), Y4(m,n)) is a simple Poincare pair (as
defined in [W], for example), of dimension (n+2).

In fact (X, Yy4) has the (simple) homotopy type of the m-fold interior
connected sum of S§'x D"*! with itself. In the present paper, however, only the
following easy fact is used essentially: (X, Yy) satisfies Poincare duality with
respect to integer coefficients; i.e., there is a class in H, ,,(Xy, Yx; Z), cap product
with which induces isomorphisms of H'(Xy; Z) with H, ,_;(Xy, Yy; Z).

We will identify 7, X, with F,, so that S represents x;.

If 7 is any link group, a similar construction using K (7, 1) instead of a wedge
of circles yields (X4(7), Yy). If 7 has no higher integral homology, then one still
obtains an integral Poincare complex.

PROPOSITION 2.2, Let 3" < S"*? be an m-link with tubular neighborhood
T=XxD?*cS"*? and let a;:dT = Y4 = Yyg(m, n) have the form K X ids: on each
component, K a degree one map of (oriented) homotopy n-spheres. Let 6 be a
splitting map for 3" < $"*%. Then a, extends to a map

a: (S —Int T) > Xyu(m, n)= X,

that induces 0 on fundamental groups and that induces isomorphisms on homology
groups with integer coefficients.

The map a will be called a complementary map for the F,,-link (3" < S"*2, 9).
Note that it has degree one, because its restriction to the boundary does.

® The common point in the 1-pt. union is the basepoint.
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Consider the union of X, with m-copies of S™ X D? attached along Yy, Z4
say. Then Z, has the homotopy type of S"** (this is easy to see) and contains a
link 3, the (ordered) union of m copies of S"x0c S™ x D?. Clearly a can be
completed to a degree-one map a:S"*?>— Z,, transverse regular to 3, with
(@) '34=23. The map & is called a characteristic map of the link 3 < S"*?; it
expresses 3 as the inverse image of a trivial link, in view of the discussion
following Proposition 2.1.

Proof of 2.2. For 1<i=n, m(X,) is trivial, and , . ,(X,) is the free module
over the integral group ring Z[F,, ], generated by the classes [S7*'],...[Sax ]
The map a, can easily be extended to the relative 2-skeleton of (X, dT), where
X=8""?—1Int T, so as to induce 6 on the fundamental group.

There remains a single obstruction to completing this extension to all of X,
o(ay 0)e H"*(X, T; m,.1(Xy)). By Poincare duality, this homology group with
local coefficients is isomorphic to Hy(X; m,.1(Xy)). Since 6 is onto, it is an
exercise in the definitions of homology with local coeflicients that the coefficient
homomorphism a : 7,.1(X4) = 7,11(Xs) ®zr, 1 Z=2Z""" induces an isomorph-
ism of Hy(X; m,.1(Xs)) and the homology group Hy(X; Z™') with trivial coeffi-
cients. So the map

agy: H"* (X, 0T; m,.1(Xy)) = H**(X,0T; Z™ )

induced by a is also an isomorphism. Thus it suffices to show that a,(o(a,, 6)) = 0.
The target of ay can be thought of as the free abelian group generated by
[S7*1],...,[Sa" ] Let m;: Xy — SI'*" denote the obvious map. Write

ax(o(a,; 0)) = m‘_:. BiLS; ]

Then B[S} ']= (m;)xaxo0(f, 6). But by naturality of obstructions, the right hand
term is just the obstruction in H"**(X, dT; m,.,(S! ")) = H"**(X,dT; Z) to ex-
tending ma, to all of X. From degree considerations it follows easily that this
obstruction vanishes. Thus ay(o(a,, 8)) = 0. Thus a exists. Since it has degree one
(as a, does), it induces a surjection on integral homology, by 2.1. But X and X,
have isomorphic (and finitely generated) homology, by Alexander duality for X
and direct calculations for X,. The final statement of 2.2 follows.

A relative form of 2.2 is also needed, to apply to a cobordism. However, in the
relative case there are some new twists.

PROPOSITION 2.3. Let (3,=8"*%,0,), i=0,1, n=2 be F,,-links in S"*2,
and suppose that they represent the same elements in C,(F,,). Let T, =3, X D*c



Link cobordism 27

S"*2 be tubular neighborhoods, and let o; : S"**—1Int T, = Xy4(m, n) = Xy be com-
plementary maps, as in 2.2. Then there is a cobordism V< S"*?x[0,1] of
3, S™? and 3, < S"*2, with tubular neighborhood T = V X D? meeting S"*> X i in
T: for i =0, 1, and maps

A:S"?x[0,1]-Int T = X,
B 3(X*, Yy — (X*, Y)

with the following properties:

() A|S""?x1-Int T, =ay;
(i) A|S"2x0-IntTy=B"° ay;
(iii) A(VXSY)< Yy and A |V XS! has the form K Xidg:;
(iv) B| Yy is the identity, B induces the identity*® on m, Xy, and B is a (simple)
homotopy equivalence; and
(v) A induces isomorphisms on integral homology groups.

The map A will be called a complementary map for the cobordism whose
existence Prop. 2.3 asserts. The map B (which could be the identity, of course)
will actually be the identity outside the (n +2)-cell in a cell decomposition of Xy
relative Yy. Further, B8 will actually have the property that 82 is homotopic to the
identity relative Y. Therefore composing A with B8 would change a, to Ba; in (i)
and Bay to a, in (ii).

Proof of 2.3. Given any cobordism V< S"*?x[0,1] from 3,<=S™? to
3,<8""?, it is a standard fact that there is a tubular neighborhood T = V x D2
that meets S"*?Xi in a tubular neighborhood T, of 3;xD? i=0,1. By
hypothesis, we have a cobordism which admits a map

6:m(S"*?%x[0,1]-Int T)>F,,

whose composition with the inclusion induced maps agree with 6, i =0, 1, up to
inner automorphisms.

Consider the map g=a,U a; UK Xidg:, defined on X,UVxS'UX,;=9Q,
where X; =S""?Xi—IntT, i=0,1, and Q=8""?X[0, 1]-Int T. It is not hard to
see that a K exists that makes g a well-defined mapping. The existence of 6
implies that g can be extended over the relative 2-skeleton of (Q, Q). (This is
shown by an essentially standard argument; note, however, that it involves

'9 With respect to a given basepoint in Int Xy = X, — Y,.
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homotopies of a, and a; to themselves, relative boundary, that move basepoints
around elements in 7,(X,) and m,(X;) that map by the surjections 6, and 6, to
elements of F,, that induce by conjugation the inner automorphisms mentioned in
the preceding paragraph.)

Now let us assume temporarily that @ is actually an isomorphism; note that it
is automatically surjective, as 6, is. The first possibly non-zero obstruction to
extending g to all of Q lies in the homology group with local coefficients
H"**(Q,8Q; m,.1Xy). By Poincare duality, this group is isomorphic to
H,(Q, 7,1 Xx), which is just (m —1) copies of H,(Q; Z[F,,]), as m,., Xy is free
over Z[F, ] of rank m—1. But if  is assumed to be an isomorphism, then
H,(Q; Z[F,,]) is just H, of the universal covering space of Q and so trivial.

The only remaining obstruction is an element o(g, 6) in H**3(Q, dQ; m, > Xx).
The connecting homomorphism & maps H***(0Q; m,.,,Xy) onto this group, as an
(n+3)-manifold with boundary has the homotopy type of an (n+2)-complex.
(Using Poincare duality, one can show that & is actually an isomorphism.) Suppose
that B : (X, Yi) = (X, Yy) is any map satisfying (iv) in the statement of 2.3. As
H""Y( Xy, Yy; m11 Xg) =0 (either by direct calculation or Poincare duality and
2.1) the only obstruction o(B) for B to be homotopic to the identity relative Y,
lies in H" (X, Y Mni2 Xy)-

Let j* be the composite

H""*(Xo, 0Xo; Tni2 Xg) = H"2(3Q, X, U VXS, m, 12 Xy)
= H""?(0Q; my12 Xy)

of the excision isomorphism and the natural map. As for §, j* is easily seen to be
surjective.

Let gz =BaoUa; UK Xidg:. Then from the difference and composition for-
mulae for obstructions (see e.g. [Stn]),

o(gg; 0)—o(g; 0)=8j*ao(B).

Now, o :H" *(Xy, Y; TniaXs) = H (X, 0Xo; m,42X4) is also an iso-
morphism. This follows easily from 2.1, Poincare duality, and the fact that a, has
degree one. (Again use of 2.1 and duality can be replaced by a direct calculation.)

We assert that B can be chosen with o(B) arbitrary. In fact, choose a relative
cell decomposition of (X, Y4) with a single oriented (n +2)-cell. The (n +2)-co-
chains for this cell complex, with coefficients in ,.,Xy, can then be identified
with Homge ;(Z[F,.]; m.+2(Xs))=m,,2Xx in the obvious way. Given ye
T, +2Xx, there is a map B :(Xy, Yyi) = (X, Yy), that is the identity outside the
(n+2)-cell, such that the difference cocycle for homotopy of B to the identity,
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c(B, id), is precisely y. For example, just compose idv y with the map (X, Y)—
(XvS"*?,Y) obtained by pinching the boundary of a smaller (n+2)-cell to a
point. Of course, o(B) is just the class represented by c(f, id). Obviously B | Yy =
id and B induces the identity on the fundamental group. It is not hard to check
directly that B is a simple homotopy equivalence. But instead, note that , ., Xy =
(Z,[F,,)™! is all 2-torsion, so that B2 is homotopic to the identity, rel Y. Thus
B is a homotopy equivalence, and Wh(F,,) =0 (see [Ba]). Thus every co-cycle,
and hence every cohomology class, has the form o(B).

Therefore, choose B with o(B)=—o0(g, 0). Then o(gg 0)=0. Therefore gg
extends to all of Q; let A be an extension. Clearly A satisfies (i)—(iv) in 2.3. By
Alexander duality, it follows that X,< Q induces an isomorphism of integral
homology groups. By 2.2, a, also induces such isomorphisms. Therefore by (i) so
does A; i.e., A satisfies (V).

It remains to show that there is a cobordism in which the splitting map 0 is an
isomorphism. So suppose that V< S"*2x[0, 1], T, etc., are all as above, but that 6
is not necessarily one-to-one; of course 6 is onto because 6,(or 0,) is. Let
&,...,&em(S""?x[0,1]-Int T) be normal generators for the kernel of 6 (see
[Ku]). Of course, Q =8S"*"?>x[0, 1]—Int T is parallelizable, as S"**x[0, 1] is. Let
Q' be obtained from Q by framed surgery on circles representing &,,...,&. In
other words, choose disjoint embeddings Six D"*? < Int Q representing ;, and let
Q' be obtained from the disjoint union of Q —Int |J{_, S} xD"*? and J{_, D? X
S"*! by identifying the corresponding boundary components S} XS"*? 1=<i<r.
Here D} is a copy of a 2-disk, with boundary S;. This can be done in such a way
that Q' is also (stably) parallelizable [M].

By an application of Van-Kampen’s theorem, 7, Q’ is the quotient of 7, Q by
the normal subgroup generated by &, ..., . Hence 0 induces an isomorphism
0':m,Q' = F,. Obviously, the compositions of ' with the inclusion induced maps
7, X; = 7, Q' are the same as the compositions of § with the maps 7, X; = 7, Q,
i=0,1.

Since the circles S!x0 represent zero in homology H,;(Q) with integer
coefficients, it follows from the same type of argument as used in [K] that H,(Q)
is a free abelian group generated by n,, ..., n, say, and that H;(Q') = H,;(Q) (=0
by Alexander duality) for 3<i=<n. The Hopf sequence m,(Q')— H,(Q')—
H,(m,Q")=H,(F,)=0 shows that each m, is spherical, and so they can be
represented by disjointly embedded spheres, as n =2. Again we can take approp-
riate tubular neighborhoods and perform (interior) framed surgery to obtain a
(stably) parallelizable manifold Q". By general position or Van-Kampen, 7, Q' =
7,Q", so we have 0”:m,Q" — F,,, an isomorphism, with the compositions with the
inclusion induced maps from m,X; still unchanged. Again by the same type of
argument as in [K], one calculates that H;Q" =0 for 2<i<n.
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Of course 3Q =9Q". Let W= Q"Jyxs, T. Since S""*x[0,1]= QU vyxs, T, it
follows from Van-Kampen’s theorem that 7;Q is normally generated by m
meridianal classes, which of course can be represented by circles in the boundary
(connected to a base-point). Therefore 7,Q" = 7w, Q/{&,, . . ., &) is normally gener-
ated by classes represented by the same circles. Hence by Van-Kampen, 7, W is
trivial. By the Meyer-Vietoris sequence, it is not hard to see that H,(W)=0 for
1=i=n. Since n=2 (so that n=[n/2]), it then follows from Poincaré duality that
W is an h-cobordism.

Thus, by the h-cobordism theorem, W is diffeomorphic to $"*?>x%[0, 1]. (For
the case n=2, see [S2].) Since any diffeomorphism of S$"*? is isotopic to the
identity in the complement of any point or cell (by uniqueness of smooth disks in
manifolds), the cobordism, obtained as a composition of inclusions,

VeTc W=8""?x[0, 1]
is a cobordism of links isotopic’? to I, $™*? and 3, < S"*?. Since §” was an

isomorphism, this implies that the desired cobordism exists.

§3. An invariant for F,, -links.

Let (X"<=S"*2, 0) be an F,, -link. Let X=8""?>-Int T, T=3"XxD?c8"*? a
tubular neighborhood. Let

a :(Xa aX) - (X*’ Y*) = (X*(m’ n), Y*(m’ n))

be a complementary map. Let a,: (X, 0X,) = (Xi, Yy) be a fixed complementary
map for the trivial link (i.e., a link of m components that bound disjoint disks.)
Note that a, is a (simple)™® homotopy equivalence. A complementary normal
cobordism for (3" < S8"*?, 0) is defined to be any normal cobordism [B1] (H, B)
from a, to a; i.e.,

H:(W;0_W, 0, W, 3, W) = (Xx X[0, 1], X4 X0, X4 x 1, Y, x[0, 1]),
with - W=X,, ,W=X, H|d_W=a,, H € 9,W=aqa, and B is a stable linear

bundle map from the (stable) normal bundle of W to a bundle over X, X[0, 1].
(We assumed fixed an orientation of X, we require all normal maps to have

1 And so ambient isotopic by isotopy extension.
12 Wh(F,,)=0.
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degree +1, and we adopt the convention a(M X[0,1])=[M x1]-[M x0] for
oriented manifolds.)

LEMMA 3.1. A complementary normal cobordism always exists.

Proof. Let @ and a, be characteristic maps corresponding to a and «a,. Since
they have the same degree, they are homotopic; let H,:S$"**x[0, 1]— Z4 %[0, 1]
be a homotopy; i.e. H,(x, 0) = (ay(x), 0), H,(x, 1) =(a(x), 1). Let B, be a bundle
map, covering H,, of trivial bundles. Clearly H | S" X {0, 1} is already transverse to
34 %[0, 1]. By a small homotopy of H,, relative the boundary, we may assume
that H, is actually transverse to X, %[0, 1]. Further, it may be supposed that
H{'(Z4xD?x[0,1]) is a tubular neighborhood for H7'(34 %[0, 1]), extending
TUT,, and that the restriction of H; to this neighborhood is an SO(2) bundle
map. (Here T, is a tubular neighborhood of the trivial link. Recall also that
Zy=34XD?Uy, X4 and Yy=3 X S").

Now let W=S8""2x[0, 1]-Int (H (34 xD?*x[0, 1]). then it is not hard to
check that (H, | W, B, | W) =(H, B) is the desired normal cobordism. This proves
3.1.

Given an F,, -link (3 < S"*?, 09), let (G, C) be a complementary normal cobor-
dism,

G . (Ws a—wa a+W9 aow) - (X*x [Os 1]9 X*X 0, X*x 1, Y*X[O, 1])’

as above. Then G | 9_W is a homotopy equivalence, and G |9, W, by 2.2, induces
isomorphisms of homology groups. G |3(3+ W) is also a homotopy equivalence.
Let &#(=d(m)) be the diagram

Z(m(Yy)) — Z(m(Yy))

li*=i*(m) la

Zm Xy — Z
be the indicated diagram of integral group rings of fundamental groupoids, with a
the augmentation map and iy induced by inclusion of the boundary components.

(Thus &(m) can be identified with the result of taking integral rings in the
diagram

ZU .. UZ-4s7yu...uZ

F

F, — {e}).

It follows by [CS2] that the obstruction

O'(G’ C) € rn+3 ((D)
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is defined. (Since Wh(F,,)=0, we omit the s or h superscript.) This is the
obstruction’® to finding (G’, C') normally cobordant to (G, C) relative 3_W U
8. W, with G’ inducing isomorphisms of integral homology groups and with G’
restricting to a homotopy equivalence on the part of the boundary corresponding
to Yy x[O0, 1].

Let L, ,;(ix) denote the relative L-group [ W] of the inclusion induced map.
By [CS2] this is the same as I, 5 of the diagram

Z[ Y] —= Z[ Y4]

Z[F,.1-% Z[F, ).

Hence there is a functiorial map L, . ;(iyx) — I, 5(P).

PROPOSITION 3.2. Modulo the image of L, ,5(ix), the obstruction o(G, C) is
independent of the choice of complementary normal cobordism and in fact depends
only upon the F,,-cobordism class of (3 < S"*?, @).

Proof. First observe that if B is as in Proposition 2.3, then o(B°G, §C)=
o(G, C) for [§ any bundle map covering ; ﬁ is easily seen to exist, with domain
the target bundle of C. This equation holds because of functorial properties of this
obstruction [CS2] and because B induces the identity on the fundamental group.

Now suppose that (3,<S"*2, 0,) is F,,-cobordant to (3 <S"*2, 9), and let
(G,, C,) be any complementary normal cobordism for (3, < S"*?, 6,). Then to
prove 3.2 we must show that

0(G,, C)=0(G, C) modulo Image L, (iy).

Write G,:(Wy,d_W;, 3,Wy, 3, Wy) = (X X[0, 1], X X0, Xy X 1, Y X[0, 1]), as
for G; e.g., o_W,=X,, 0.,W;=X,;=8""?-Int T, a tubular neighborhood of
3, c8S"2

Let Vo S"*2x[0, 1] be the type of cobordism of 3 < S$"*? with 3, §"*?
whose existence™? is asserted in Prop. 2.3. Let Q be the complement of a tubular
neighborhood of V, so that 9Q =X U VX S'U X, and let

A:Q'—‘)X*

13 In Chapter I of [CS2] we assumed for simplicity that the “movable” part of the boundary was
connected, but the theory is similar in general. Compare [W, §9].

14 But note the slight change in notation, due to the fact that in the current discussion X, is used
for the trivial link complement.
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and B be as in 2.3, with respect to the complementary maps G | X and G, | X;;
i.e, A|X=G|X and A | X, =G, | X,. In view of the opening observation, it may
be supposed that B is the identity.

Let U=W UxQ Ux,W;

be obtained from the disjoint union by the indicated identification of boundary
components, Thus dU contains d,U = 3sW U,x V X S'U;x,90 W, and aU —Int 9,U
is just two disjoint copies of X,,.

Let G:Q — X4 x[0, 3] be defined as follows:

First, G| W=G. Then G|Q=(A, ¢), where ¢:(Q, X, X;)— ([1,2],1,2) is a
Morse function that restricts to a Morse function (without critical points) on the
boundary. Finally, G| W, =y°G,, where y(x, t)=(x,3-t) for xe X,, te€[0, 1].
We also wish to find a bundle map C extending C and C,. Now, G| X is a
homology equivalence and hence induces an isomorphism of stable bundle
theories; i.e., of real K-theory and in particular of K, and K_,. From this it is an
exercise to check that C exists, at least if one is willing to replace C by 6°C, é a
stable bundle map bundle map over the identity of X, %[0, 1]. From the opening
observation again (with B = identity), such a change doesn’t affect o(G, C); thus it
may be assumed that C exists.!>

By additivity [CS2] o(G, C) = 0(G, C)+ o ((A, ¢), C| Q)— o(G,, C,). The sign
is due to the reversal of orientation of W, required to orient U.

But by 2.3(v), (A, ¢) induces isomorphisms of integral homology, and from
2.3(iii) it follows that (A, ¢) restricts to a homotopy equivalence of 0Q —
Int (X,U X,) with Yy x[0, 1]. Therefore, o((A, ¢), C | Q)=0.

Further, the restriction of G to aU—Intd,U is just two copies of the
complementary map of the trivial link, mapping to X, X0 and X, X 3. Thus this
restriction is actually a (simple) homotopy equivalence. Therefore (G, C) actually
has an obstruction, in L, (i), which vanishes if and only if (G, C) is normally
cobordant to a homotopy equivalence, relative dU —Into,U. By naturality,
(G, C) is the image of this obstruction under the natural map L,.;(ix) —
I, .;(®). This completes the proof of 3.2.

§4. Calculation of F,, -link cobordism

In view of 3.2, the assignment of the obstruction (G, C) of a complementary
normal cobordism to an F,,-link induces a well-defined map

p=p(m, n): C,(F,) = I, .5(®@(m))/L,.3(ix)

15 We may write (G, C)=(G, C)Ux (A, ¢), C| Q) Ux,—(G,, C,), taking account of orientation.
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(The use of quotient notation on the right will be justified in §6, when it will be
shown that L,.;(iyx) maps monomorphically to I, ;(®).)

THEOREM 4.1. For n=2, but n# 3, the map p(m, n) is an isomorphism, for
all m. For n=3 it is a monomorphism onto a subgroup of index 2™.

The proof for the case n=2 involves some special arguments about low
dimensional normal maps and so will be omitted.*® For n = 3, the image of p is
the kernel of the composition natural map to Ly(ZU---UZ)(=Z™ by [S1]) and
reduction mod 2. If one passes to topological links, p extends to an isomorphism
of CI9P(F,) with I'¢(®)/Lg(iyx), and the quotient C;°F(F,)/C;(F,) is mapped
isomophically to Z3 by applying the map of [CS1] to each component. This
situation is in fact analoguous to what happens for the case m =1, discussed in
[CS1] and [CS2]. Therefore we will also not discuss in detail the case n =3. The
proof that p(3, m) is monic is almost the same as for higher n.

LEMMA 4.2. Forn=3, let £€ L, 3(iyx)(=L,  5(ix(m))). Then the trivial m-link
has a complementary normal cobordism, (G,, C;) say, with o0(G,, C;) = &

Assuming the lemma, let (3 < S"*?, 9) and (3, < S"*?, 0,) represent elements
of C,(F,), n=3, with the same image under p. Let (G, C) and (G,, C,) be
respective complementary normal cobordisms. By hypothesis,

0(63 C) - O'(Gl’ Cl) = ge Ln+3(i*)'
Let (G,, C;) be as in the lemma. Then the normal cobordism
"(Ge, Ce) UXO(G, C)

(see footnote 15 for this notation) is also a complementary normal cobordism for
(3 =8"*?, 9). Note that, as in the proof of 3.2, it may be necessary, in order to
take this union, to alter C, by composition with a bundle map over the identity of
X this doesn’t change o(G,, C;). By additivity,

a(—(G,, C)Ux, (G, C) =—£+a(G, C).

Thus we may assume without loss of generality that o (G, C) = o(G,, C,).
By additivity

a(—(G, C)Ux, (G4, Cy))=0;

16 In fact, C,(F,,)=0.
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hence this normal map is normally cobordant to a normal map (H, B), relative
X U X, (X, =complement of tubular neighborhood T, of ¥, < S"*?),

H:(W; X, X;,00W) = (XpX[-1,1], Xaee X—1, X X1, Yex[-1, 1]),

say, with H inducing a homotopy equivalence of 9,W with Y,x[—1,1] and an
isomorphism of all integral homology groups. Further, by the addendum to 3.3 of
[CS2], it may be assumed that H induces an isomorphism of 7, W with 7, X, =
F,.

By the s-cobordism theorem, there exists a diffeomorphism ¢ :9,W —
T x[-1,1]=3xS'x[-1, 1], with ¢(x)=(x,—1) for x€d,T<d,W. (for n=3
one would use, for example, [S3].) Let U= W|J,T x[-1, 1]; clearly we have

IX[-1,1]=3x0x[-1,1]e ¥ xD?[-1,1]=Tx[-1,1]< U.

Further, one component of dU, 4_Y say, is just S""?>=T|J,X and meets
3 x[-1,1] in ¥<=S8"*?. Further, by an agrument involving Van-Kampen’s
Theorem, U is easily seen to be simply connected, because H induces an
isomorphism of fundamental groups. By Meyer-Vietoris, it then follows that U is
actually a simply connected h-cobordism. Hence there is a diffeomorphism

¢:(U,0_U,8,U)— (S"*x[0, 1], "% 0, S""*x 1),

with ¢(x)=(x,0) for x€d_.U=8""? and with 9, U=9U—0_U. Therefore
¥(3 x[-1,1]) is a cobordism of 3 = S"*? to the link that is the image of 3 under
the composite

B
ScIXD? Uy Xy =0,U —25 §"*2 ¢, = ¢ |aT x 1.

From the fact that ¢, is the restriction of ¢, it follows easily (e.g., because
M X1 retracts to Mx0U3dM x I for any M) that ¢, extends to an orientation
preserving map from 3, xXD? to 3 xD? (recall X, =23,%S"'=4T,). Therefore
([B1] [LS] see also [Ka]), ¢7' extends to a homomorphism A : 3 x D>*— 3, x D?
with A (3, X0)= 23 X0, that is actually smooth on the complement of a point, say
near the boundary."” Thus we have the diagram

Sc3x DU, X, -4t gn+2

b 2

3,€3,xD*UX,=8""?

7 Actually [B1] [LS] only consider the case of S" x S', but the same arguments apply. Alterna-
tively, by [B1] [LS] [Kal, ¢, and h xidg: are piecewise linearly pseudo-isotopic, h: %, —3 a P.L.
homeomorphism. The assertion then follows from a standard smoothing theory argument (see [LR]
[HM] for basic smoothing theory.)
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where o is the indicated composition. In other words, the link ¥,=S"*? is
obtained from (¢ |8, U)(2) < S"*2 by composition with an orientation preserving
homeomorphism that is a diffeomorphism outside a finite set of points. In
particular the restriction of w to a smooth disk containing (¢ |d,U)(2) is
isotopic to the identity, by uniqueness of disks. Therefore these two links are
isotopic and so cobordant. Hence ¥ = S$"*? and 3,< S"*? are cobordant; this
proves that p is one-to-one, assuming Lemma 4.2.

To prove that p is surjective (for n =4), the realization theorem 3.4 of [CS2]
will be applied. Let £ € I,.3(P(m)). Let ag:(Xo, Yo) = (X, Yx) be a com-
plementary map for the trivial link as in §3. By the realization theorem, there
exists a normal cobordism (H, B),

H:(W; a—W’ a+w9 aOW)—’ (X*X[O, 1]’ X*XO’ X*l’ Y*X[O’ 1])9

with the following properties: (X =9, W)
(i) -W=X, and H|3_W =ay;
(i) H| X:X = X,x1 is 2-connected and induces isomorphisms of homology
groups;
(iii) H|3(3, W):8(3,W)— Y, Xx 1 is a homotopy equivalence; and
(iv) o(H, B)=¢&. (This invariant is defined in view of (i)—(iii).)

Now X =M,U-:-UM,, each M, homotopy equivalent to S" XS, via the
restriction of H. Therefore H | M, is homotopic to a P. L. homeomorphism, ¢,
say. Consider (SXxD?J,X, where S is the union of m copies of S" and
¢é=¢,U:--Ud,. By (ii), Van-Kampen’s theorem and the Meyer-Vietoris sequ-
ence SXD?|J,X has the homotopy type of S"*?; hence by the generalized
Poincare conjecture it is P.L. homeomorphic is $"*?. Hence we obtain a P.L.
(F,)-link S<S"*? with complement X and characteristic map a = H | X. By
smoothing theory [LR, HM], this link has a smoothing 3 < $"*?, with a smoothing
of X as the complement of a tubular neighborhood. In fact, using the normal map
to obtain a tangential retraction of W to X, it follows that this smoothing of X
extends over W. Since X, has a unique smoothing, a (smooth) complementary
normal map for 3 < $"*? is thus obtained, with obstruction & This proves that p is
surjective.

§5. The unlinking theorem and Lemma 4.2
THEOREM 5.1. Let 3"<S™? n=3 be an m-link and suppose that

m,(S"*?>—3) =F,, generated by meridians and m,(S"**—3)=0 for 1<i=<[n/2]+1.
Then 3 < S™*2 is trivial (i.e., the components bound disjoint disks.)
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For m =1, this is the unknotting result of [L2] [S3]. The general statement
appeared in [G1]. We briefly outline a proof of 5.1. Clearly ¥ <S"*? is a
boundary link. Let a: (X, dX) — (X4, Y4) be a complementary map, inducing an
isomorphism of the fundamental groups, X the complement of a tubular neigh-
borhood of T. One deduces from the hypotheses and Poincare duality that « is a
(simple) homotopy equivalence. (X, Yx) has the homotopy type of a connected
sum, in the interior, of copies of S'xD"*!. By the splitting theorem of [C], it
follows that X is a connected sum of homotopy S' X D"*!. To these one can apply
the fibering theorem [BL] to deduce the result, provided n=4. For n =3, one
argues essentially as in [S3], using [C] as well as [S1].

Proof of 4.2. First assume n=4. Let ay:(X,, 0Xy) = (X4, Yi) be a com-
plementary map for the trivial link. Let £€ L, . ;(iy). By the realization theorem
[W, §9], there is a normal cobordism of a, to a : (X, 4X) = (X, Yy), with surgery
obstruction &, where a is a homotopy equivalence. By the same argument as in
the last part of the proof of 4.1 (that p is surjective), it follows that there is an
m-link 3 < $"*? with closed complement X and with a complementary normal

map having (the image of) £ as its obstruction. But by 5.1, such a link is also
trivial.

For the case n =3, the next result shows that there is nothing to prove.

PROPOSITION 5.2. L;(ix)=0 for j even.

Proof. For all j there is the exact sequence [W]
L (i) .
L(ZU-++ UZ)—2— L(F,)— L(ix) 2>L_,(ZU---UZ).

Bydefinition[W],L,(ZU - - - UZ)=L(Z)=L(Z2)®" - - ®L,(Z).By[C], ;(F,) =
lj,-(Z)G} . -@l}(Z), where f,,-(w) denotes the cokernel of the natural map from
f,,-(e), e the trivial group.

For j even, L;(Z)=0 by [S1] (see also [W]), and also from [S1] L;(Z) = L;(Z)
for j odd, as L.4(e)=0. Composed with the isomorphism L,(F,,)=
[:,- (Z2)D-- -GBI:,-(Z), L,;(i4) becomes the obvious map, and thus is an isomorphism for
j odd. For j even, L;(ix) can be identified with the natural map L(ZU - - UZ)—
L;(e). This proves 5.2.

§6. Discussion of and proof of Theorem 2

Let %, :Z[F,]— Z denote the augmentation for the integral group ring.
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Then (see [CS2]) there is a (natural) ladder of exact sequences:

L,s(ZU---UZ)— L,.3(F,) = Lyus(ix(m)) > L, . ,(ZU- - - U Z)

L

Loas(ZU+ - -UZ) =Ty s(F) > T sy @(m)) > L, 5(ZU- - -U Z)

For n even, I, 5(%,.)=0, by [CS2]. Further, for n even L,.,(F,,) = I',.,(%,.) is
injective; for the natural map L, ,(F,.)— L, .(e) is actually an isomorphism [C]
and factors through the map to I, ,(%,). Thus, by a part of the 5-lemma, the
natural map L, ;(ix(m))— I,.3(®P(m)) is surjective. (It is actually injective as
well.) Thus we obtain

THEOREM 6.1. For n even, C,(F,,) =0. Hence (by Prop. 1.3), B(n, m) is also
trivial for n even.

This proves Theorem 2 for the case n even, of course. For n odd, by 4.1 and
5.2, for n# 3 at least,

P . Cn(Fm) - Fn+3(¢(m))

is an isomorphism. Let I',.(%,) denote the cokernel of the natural map from
L, .5(F,), as in [CS2]. This equals the cokernel of the map from L, . ;(ZU---U Z),
as this latter map factors surjectively through L, .;(F,)=L,.s(e). By [S1],
L,(ZU---UZ)is just mP,.,, and, by [CS2], T, %..) =0. Thus one obtains

THEOREM 6.2. For n# 3 the sequence
0 I s(Fon) = CulFr) > P,y =0
is (split) exact.

The sequence is one of abelian groups, given the group structure*® on C,(F,,)
provided by the bijection p. From [CS2] and definitions (compare [CS2, §13]) 4 is
easily seen to be given by the Arf invariants (n =4k —3) or indices (n =4k + 1) of
the components, viewed as knots. In particular, the sequence of 6.2 splits; this is
automatic for the index, and for the Arf invariant, see [CS3, 4.8]. Further, the

18 See note 5. One can use 4.1 or 6.2 and the connectivity in 3.4 of [CS2] to obtain connectivity, up
to cobordism. See also the proof of 7.1 below.
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sequence respects the natural action of f,, on I,,,(%,.) and the trivial one on
mP, .,. Thus one has Theorem 2, except for n = 3. In this case, the image of A is
the subgroup of index 2, and so the result is still true for 1/24A.

In the case n =3, one obtains precisely the result of 6.2 by passing topological
locally flat link cobordism, exactly as for knots.

Finally, let us view the m-fold product C(n,1)X:::-xC(n,1)=C(n,1)™ as
contained in C(n, m) and B(n, m) by placement of m knots in disjoint disks. Then
C(n, 1) = C,(F,) and the above results are natural with respect to the obvious map
Fa(F) X X T a(F) = I,5(F) that is induced on the i™ component by
mapping Z into the subgroup generated by x;. So one deduces

THEOREM 6.3. The isomorphism of 4.2 (or the split exact sequence 6.2)
induces an isomorphism

Cn (Fm)/c(n’ 1)m = Fn+3(gm)/(rn+3(gl))m'

We leave the reader to work out the details. An algebraic calculation similar
to one that will be given below can be used to show that the right side is not
finitely generated. Non-splitting follows for boundary cobordism of boundary
links, but it will be proved for arbitrary cobordism in the remainder of the paper.

§7. Detecting elements of C(n, m)

Let %, 4 : Z[F, o] — Z be the augmentation, where F,, ,, is the abelianiza-
tion of F,,. Let

6:C,(F,)— C(n,m)

denote the forgetful map, and let jy: I, ,3(%,) = I, ,3(%,.q) be the natural map
induced by the quotient projection. Of course, jy induces jg: [, 3(%Fn)—
r wt+3(F m.ab); the latter is the quotient of I', ,3(#,, .,) by the image of L, 5(F,, q)
under the natural map. Let y:I,.s(%)— C,(F,.) be as in Theorem 6.2.

THEOREM 7.1 Suppose n>1 is odd and m <(n—1)/2. Let £ I, ,5(%,,), and
suppose that™® &y(¢)=0. Then®® j.£=0.

190e C(n, m) is the class containing the trivial link.
20 Observe also that o, trivially on I, 3(F o)
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Let A,:C(n, m) > mP, ., be the map that takes the Arf invariant (n =4k +1)
or index (n =4k +3) of each component. Thus A = A,8, A as in §6. Then 7.1 and
6.2 imply most of the following:

COROLLARY 7.2. If n is odd and m <(n—1)/2, then the composite juy™"
(defined on the kernel of A) induces an epimorphism

e:kernel A > I’ n+3(F i ab)-

Of course, that € is actually onto follows from the fact that j, is surjective
[CS2].
These results can be summed up in a diagram

Cn(Fm) (-E—)fn+’3(gm)®m Pn+1

j.s 11’ L DPid

Ima (‘E_’Ai’ f‘n+3(gm,ab)@mpn+l_>0

T

C(n, m) 0

Note that elements of C(n, m) can be detected by 7.1 or 7.2, even when
m >(n—1)/2, by first mapping to C(n, m’), m' =(n—1/2) <m by forgetting about
some components. Such a map is obviously surjective, so one obtains at least a
surjection to I, 3(F v ap)-

Proof of 7.1. Let n=2k—1. Let (3"<S"*? 0) be a link representing an
element in C,(F,,) in the kernel of 4; i.e., in the image of vy, that also maps to the
trivial element in C(n, m). Let X be the closed complement of a tubular
neighborhood of 3. Then, without loss of generality it may be assumed that
0:m,X — m Xy=F,, is an isomorphism and that . X =0 for 1<i<k —1. In fact,
in view of Theorem 4.1, and the definition of p, it follows directly from 3.4 of
[CS2] (with j = k) that every link has such a highly connected representative. We
leave the details to the reader (note that n in 3.4 of [CS2] is (n+2) here.)

Let (H, B),

H:(W;3_W, 8, W, dgW) > (X X[0, 1], X X0X, X 1, Yy X [0, 1])

be a complementary normal cobordism for (3"< S"*2 9), so that 9_ W=

Xo,0.W=X, etc. Let x€ C,(F,) be the element represented by (3" < S"*2, 9).
Then the surgery obstruction,
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vanishes, where we identify L, . ,(ZU:+-UZ)=mP,.,. Therefore (H, B) |9, W is
normally cobordant relative the boundary to a homotopy equivalence. This
normal cobordism can be attached to W along d,W; in other words, one may as
well suppose at the beginning that H|9,W:9,W — Y, %[0, 1] is a homotopy
equivalence. In particular, the obstruction nel, ;(%,) for (H, B) to be nor-
mally cobordant to a homology equivalence, relative the boundary, is defined
[CS2]. If £ is the image of 1 in I, (%), then it is clear from the definitions that
v(&€)=x, and £ is the unique such element, by 6.2. Thus, we must prove that
ix€=0.

Recall the definition of n. By surgery below the middle dimension, it may be
assumed that H is ((k + 1)-connected. Then intersection numbers define a form

¢ : Hy.(W; ZF, ) X Hi i (W5 ZF,)) > ZF,,..

Note that H, . ,(Xy; ZF,.) =0, so that H,,(W; ZF,,) is the kernel of Hy. Further,
let

w:He (W3 ZF,)) > ZF,/{y + (- 1)y}

be the self-intersection form defined by (H, B); see [CS2]. Then 7 is represented
by the form

aw = (Hk+1(W; ZFm), (b’ “‘)-

Now let V< §"*?x[0, 1] be a cobordism of 3" = §"*2 to the trivial link. Let U
be the complement of the interior of a tubular neighborhood of V that meets the
boundary in a tubular neighborhood of aV; thus aU=XUVxS'UX,. By
Alexander duality, the inclusions X < U, X, < U induce isomorphisms on integral
homology. Thus (see also 2.2), (U, dU) has the same homology as #,, (S' X D"*?,
Stx 8§+,

Let T"=S"x-:-x8" and let g: U— T™ induce the composite of 6 with the
quotient mapping F,, = F,, ,=mT". Choose any bundle map c¢ of stable
normal bundles covering g; since both normal bundles are trivial, this exists. By
surgery, (g, c) is normally cobordant to (g, c;), relative the boundary, with
g (k+1)-connected. Let y,, u; be the intersection and self intersection, defined
on H,,,(Uy; Z[F,..,]). Again, u, is in general defined on the kernel of (g,), but
H(T™; Z[w,T™]) =0 of course, for all i.

Now we assert that the form

aU1 = (Hk+1(UI; Z[Fm,ab])9 Y1, M‘l)
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actually represents®" an element of I, (%, ). Thus, Q1-Q6 on page 286 of
[CS2] must be checked (with n =(—=1)"*', A=Z). But Q1-QS5 hold in general for
highly connected normal maps of manifolds, by arguments similar to those of [W],
for example. To see Q6, first note that, with R =Z[F, ., ], H.,,(U;; R)=
H, .,(g;; R) via the connecting homomorphism, by the usual long exact sequence.
Also, H,,,(g; Z)=H,.,(U,; Z), because H, . ,(T™)=H,.,(T™)=0 since m=<
(n—1)/2=k — 1. Therefore by Lemma 1.4 of [CS2] we may write

Hk+1(U1; 2)= Hk+1(U1; R)®RZ’

where Z has the R-module structure given by the augmentation. Of course, this
identification carries (y,)z;=¢,®Z and (w,), to the usual integral forms on
H,.,(U,; Z).

Thus, it is desired to show that the usual intersection form (e.g., defined by
general position on chains) is unimodular on H,.,(U,, Z). This form is well-
known to be given by

(x, y) = (D€y(x), y),

¢:H.,(U,)— H.,U,,doU,) the natural map, D Poincare duality, and ( , )
the Kronecker product (evaluation) of cohomology on homology. Since g, is
(k +1)-connected and H, ., (T™)=H,(T™)=0, H**'(U,) is free and ( , ) is a
duality pairing (i.e., H**'(U,)=Hom, (H,(U,); Z)), by universal coefficients.
Since U, =dU and H|X:X — X, induces isomorphism of homology (see
2.2,3.1), an easy argument with the Meyer-Vietoris sequence shows that
H, ,,(0U,)=H,(0U,;) =0. Thus €y is also an isomorphism. Therefore H, . ,(U,) is
also free, and (v,)z is unimodular; i.e., (Q6) is satisfied.

Next, it is asserted that o, actually represents the trivial element in
I, 3(Fna) To see this, let (G, C), G:P"**— T™, be a normal cobordism of
(g, ¢) to (g;, ¢1), relative the boundary. Thus one has 6P =U U,,U,, G|V =g,
G | V, = g,. By surgery, we may suppose that G is (k + 1)-connected. By handle
subtractions, it may also be assumed that H, (P, U;; R)=0; i.e., (P,U,) is
(k + 1)-connected. (See [W, §1] for example.) The effect of these handle subtrac-
tions on ay, is to just add some standard kernel over R, so that the element in
I, 3(%,.q) that it represents is unchanged.

Now let K be the image of the connecting homorphism

aR
H,.,(P,U;; R)— H, ,1(Uy; R).

21 Observe that this is not implied by any of the general results on homology equivalence of [CS2].
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Then as in [W, 5.7] for example, vy, and u, vanish on K, i.e., K satisfies (PS1) of
[CS2. p. 286]. To check (PS2), first note that, by 1.4 of [CS2], H, (P, U,; Z)=
H, .,(P, U,; R)®xZ. Therefore, it suffices to check that the image of

az
H, (P, U,; Z)—> H, ,1(U;; Z)

is a summand of half the rank. To see this, consider the sequence (with Z
coefficients)

;]
0— H,.,(P,U,)—/ H, ,(U;)=> H,(P)—> K, (P, U,)=0

On the left, this sequence is exact because H, ,,(P)= H"*'(P, 9P), which is in turn
isomorphic to H**(P, U,)=0. This latter isomorphism follows from the exact
sequence of the triple U, < dP < P, excision, and the fact that (U, oU) has the
same homology as #,, (S'xD"*2, §1x §"*"). Similarly, H, ,,(P)=H"*%(P,9P)=
H***(P, U,). Thus H, ,,(P)=Hom, (P, U,); Z) is free and so the sequence splits; it
also follows that rank H,.,(U,)=2 rank H,.,(P, U,). Thus ay, represents zero in
Lo s(F ).

Next let Q=W Uy U,. This dQ is diffeomorphic to the double of X,. Let
h:XyeXxI— T™ induce the abelianization map on fundamental groups. Because
H| X:X — X4 is a homology equivalence and vy is trivial (X < $"*2), the target
bundle of B is also trivial. (Homology equivalences induce isomorphisms of stable
linear bundle theory, as BSO is a simple space, or, alternatively, by the Atiyah-
Hirzebruch spectral sequence.) Therefore let h be a (stable) bundle map from the
target of B, covering h. Since X < U induces isomorphisms of homology groups
(and so also of bundle theories again), the bundle map ¢ may be chosen with
¢ | X = hoB. Then one also has ¢, | X =h°B.

Thus Q admits the normal map (h ° H, h °cB)U(gy, cy) to T™. Let vy, be the
intersection form on H,,,(Q; R), and let u, be the self-intersection form defined
by this normal map; it is also defined on H; ,,(Q; R) because H;(T™; R)=0, all i.
We assert that

aQ = (Hk+1(Q, R)a ‘YQ’ “'Q)
represents an element of L, 3(mT™) =L, 3(F . ab)-

To see this claim, let f=hoHUg,;. Then H,,.,(Q, R)=H, ,(f; R), as
H,(T™; R)=0. Since H is (k+1)-connected, H;(h°H, R)=H;(h; R) for i<
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k+1, e.g., by 1.4 of [CS2] and a suitable long exact sequence. Similarly, as
X =0 for 1<i=<k—1 and 0 is an isomorphism (so that H | X is k-connected,
H,(f| X; R)=H;(h; R) for i < k. Since g, is also (k + 1)-connected, it now follows
from the Meyer-Vietoris sequence that H;(f; R)=0 for i<k + 1. Furthermore,
for any R-module M, H***(h;M)=0. For H""3(h;M)=H"*"?(Q,M)=
H,(Q, dQ; M); the first isomorphism follows from the exact sequence and the
vanishing of H,(T™; M) for i=k>m, the 2" by Poincare duality. But
H,(Q; M)= H,_(f; M) =0; the first isomorphism holds because m < k again, the
2" from what has already just been noted (and 1.4 of [CS2]). Further, 9Q is the
double of X, (i.e., 3(X, %[0, 1]) up to homotopy), and it is easy to check in
several ways (even using a cell decomposition, for example), that H,_,(0Q; M) =
0. Thus H**(h; M)=H,(Q, 9Q; M)=0. Therefore by [W,2.3], H.,,(Q, R) is
projective. From [Ba], it is therefore stably free. Therefore, after adding copies of
Sk*1x §%*1 to U, by connected sum, if necessary (i.e., perform trivial surgeries), it
may be supposed that H,,,(Q, R) is free.
To see that vy, is unimodular, recall that its adjoint is given by the composite

H,.(Q R)—*> H,.,(Q,3Q; R)—> H**(Q, R)—— Homg (H,.,)Q, R), R),

e(x)(y)=(x,y). Again, as dQ is the double of X,, one easily sees that € is an
isomorphism, and D is by Poincare duality. Since H,,.(Q, R)=H, ,(f, R) and
H,(f; R)=0 for i=k+1, the analogue 1.4 of [CS2] implies that e is also an
isomorphism. Thus <y, is unimodular, and a, represents an element of

Ln+3(Fm,ab)'
Consider now the map

H,.1(U;, RY® H,.1(W, R)— H, ,,(Q, R)

induced by inclusions of the two subspaces of Q. Note that
H, .1(W;R)=H,.,(H; R)=H,,,(H; ZF,,) ® 2, R=H, ,,(W; ZF,) ®,¢_R.

The middle isomorphism follows from connectivity of H and 1.4 of [CS2], the
others from an exact sequence and the fact that X, has no homology (or even
cells) in the relevant dimensions. The above map preserves intersections and self
intersections, and therefore induces a map

A :CIU1 1 (aw @ZFm R)“"’ 1476
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of forms, where L denotes orthogonal direct sum. Again, the assumptions on X
imply that H|X is (k)-connected, so that by arguments as above,
H, (X; R)®r Z = H,(X; Z), which vanishes by Alexander duality. Therefore, by
the Mayer-Vietoris sequence, A Qg Z is surjective.

Both domain and range of A become unimodular when tensored over R with
Z; this was shown for ay, and ayw, and «g is already unimodular over R. A map
of unimodular forms is always injective. Hence A @ Z is an isomorphism. From
this one easily sees that the elements of the type x@® y D A (xD y) will constitute a
presubkernel [CS2,p.287] for (ay, L aw Lzr. R) L (—ap); i.e., this sum repres-
ents the trivial element in I, ,3(%,, ). But so does ay, and ay represents an

element from L, ;(F,. ). Thus j4(£), represented by ay, @2r_ R, is trivial, as was
to be shown.

§8. Proof of Theorem 1

First note that one has the commutative diagram

fn+3(‘ql)m i $ C(”? 1)"‘ = Cn XX Cn

l I

fn+’%(gm) —_— C(n, m)

Here ¢ was defined in the introduction, and the unlabeled map is given in §6 (it is
induced on the i™ component by mapping Z to the subgroup of F,, generated by
x;). Therefore, from 7.2 (see also 7.3) one obtains the diagram (¥, =%, )

(e, 80"

C(n)m—____)f‘n+3(g—l)m @ mPn+1

l¢ lk*w

(r Al\ 5
Im ——-)Fn+3(g7m,ab)®mpn+1

where ky is induced on the i summand by mapping Z to be subgroup of F,, ..
generated by the image of x;. It is easily seen that k4 is a monomorphism, by
considering the various projections &, ., = %, (i.e. F,, o, — Z). (In [CS, §13], it is
shown that (g, A,)™ is an isomorphism.)

PROPOSITION 8.1. The map (&, A,) induces a surjective map

Ex. Im S/C(n)m - ~n+3(gm,ab)/f',.+3(91)m
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Theorem 1 will now be proven by showing that the target of g4 is not finitely
generated.

First of all, since L,.5(Z™) and L, 5(Z) are finitely generated (e.g. by [S1)), it
sufficies to prove that the quotient I, ,3(%,, o/ +3(F,)™ is not finitely generated.
Let ¢:1, . 3(Fa) = [h13(F)™ be induced by the projections of F, ., =ZP
- -+ Z to the various summands. Then it suffices to show that the kernel of ¢ is
not finitely generated, for m =2.

Case 1. n+3=0(mod 4)

Let s,teF, ., be two independent generators. The map to the complex
numbers that sends s and t to e*"/? and the other generators (if any) to 1
transforms a form a over Z[F,, .,]= R, representing an element of I, .3(%,, o),
into a Hermitian form a, over the complex numbers. As in [CS5] the assignment

a — signature of a,
induces a homomorphism
Cp : Fn+3(gm,ab) —5 &

Now consider the forms over R (on a rank 2 free module) given by the
matrices

s+s1-2 1 )

“(N)z( 1 N(t+t1-2)

N =1 an integer. Then a(N) (with the pu-form given by s—1 and N(t—1) on
generators) represents & € I, 3(F,, ). The components of (£y) are easily seen
to be represented by forms of the type

G ) (o)

1 = 1 0/

with w of the appropriate basis element also zero; i.e. ¢(&y) = 0. It is an exercise
to check that

0 if N(e*™P+e?™P-2y-1<0
Cp(gN)': -2 lf N(ezwilp+e—2wi/p_2)2_1>0

Since (e*™P+e 2"/ —2)? is a decreasing sequence tending to zero as p — o, it
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follows there is a strictly increasing sequence N, so that

0 if N=N,
G lén) = {——2 if N>N,.
This clearly implies that the elements & generate a subgroup of I, 5(%,. ) that
is not finitely generated.

Case 2. n+3=2(4). In this case, put

a(N)= (t-;tl—1 N(s“11 = s))’

(with u having values t and s~' on the generators of this 2-dimensional form).
This time a homomorphism to Z, for each p, is defined by sending s and ¢ to
e>™” and other generators to 1, multiplying by v—1 to obtain a Hermitian form,
and then taking the signature. An argument similar to case I then shows again
that the elements & represented by a(N) contain an infinite subset of linear
independent elements, and that (&) =0.

Note. One can obtain an explicit construction of non-splittable links by
applying the construction of [CS2, Thm 1.8], to the forms a(N) and the com-
plementary map of the trivial link ((h, ¢) in 1.8 of [CS2].) From the explicit form
of a(N), it can be verified that any component of these links will have comple-
ment of the homotopy type of the trivial knot. Hence, it will be trivial, by [L] [S3].
With more work, one can arrange examples in which each proper sublink is
trivial; this requires larger matrices and uses 5.1.

§9. Concluding remarks

For any m-link group = with given normal generators x,,...,X,, (“meri-
dians”), one can define C,(w), cobordism classes of links with group . Recall
from [K] that = is an m-link group if and only if it normally generated by m
elements and H,(w)=0. An element of C,(m) is represented by an m-link
3" < $"*2, together with a homomorphism m,(S"*?)— 3" — 7 that sends a set of
meridians to x;, ..., X,,. Similarly, the cobordism relation is defined as it was for
Ca(F).

Let %, : Zw — Z be the augmentation. Then, by analogy with 6.2, it is natural
to conjecture that

Cn(w)gin+3(‘aiw)®m Pn+1‘ (9°1)
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The methods of this paper seem potentially capable (with more work) of proving
this result, at least in the case that H;(w)=0 for i=2.

Link groups form a partially ordered set, with = < #' if there is a homomorph-
ism 7 — 7' preserving meridians, up to congugacy. (Use the free product amalga-
mated along meridians to see that given = and #’, there is #" with n<#', 7w <
w".) Thus, from (8.1), one would get

C(n9 m) = llll] (fn+3(g1r)/‘9gw)®mpn+l' (9'2)

Here o/, would denote the automorphisms of 7 that send meridians to conjugates
of themselves. To prove (9.2), of course, it would suffice to have 9.1 for a cofinal
set of 7. For example, it would be especially fortunate if the set of 7+ with H;()
trivial for i =2 were cofinal.

It would remain to study further the groups I’,.s(%. ). For example, to assert
that B(n, m)— C(n, m) is surjective (“‘every link is cobordant to a boundary
link”) would amount to the assertion that the natural map I, .(%,)—
lim ([, 5(%,)/4,) is surjective.
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