Zeitschrift: Commentarii Mathematici Helvetici

Herausgeber: Schweizerische Mathematische Gesellschaft

Band: 55 (1980)

Artikel: Über Membranen mit speziellen Knotenlinien.

Autor: Brüning, Jochen

DOI: https://doi.org/10.5169/seals-42361

Nutzungsbedingungen

Die ETH-Bibliothek ist die Anbieterin der digitalisierten Zeitschriften auf E-Periodica. Sie besitzt keine Urheberrechte an den Zeitschriften und ist nicht verantwortlich für deren Inhalte. Die Rechte liegen in der Regel bei den Herausgebern beziehungsweise den externen Rechteinhabern. Das Veröffentlichen von Bildern in Print- und Online-Publikationen sowie auf Social Media-Kanälen oder Webseiten ist nur mit vorheriger Genehmigung der Rechteinhaber erlaubt. Mehr erfahren

Conditions d'utilisation

L'ETH Library est le fournisseur des revues numérisées. Elle ne détient aucun droit d'auteur sur les revues et n'est pas responsable de leur contenu. En règle générale, les droits sont détenus par les éditeurs ou les détenteurs de droits externes. La reproduction d'images dans des publications imprimées ou en ligne ainsi que sur des canaux de médias sociaux ou des sites web n'est autorisée qu'avec l'accord préalable des détenteurs des droits. En savoir plus

Terms of use

The ETH Library is the provider of the digitised journals. It does not own any copyrights to the journals and is not responsible for their content. The rights usually lie with the publishers or the external rights holders. Publishing images in print and online publications, as well as on social media channels or websites, is only permitted with the prior consent of the rights holders. Find out more

Download PDF: 06.12.2025

ETH-Bibliothek Zürich, E-Periodica, https://www.e-periodica.ch

Über Membranen mit speziellen Knotenlinien

JOCHEN BRÜNING*

Unter einer Membran M wollen wir im Folgenden ein beschränktes Gebiet des \mathbb{R}^2 verstehen, dessen Rand ∂M der folgenden Regularitätsbedingung genügt: ∂M besteht aus endlich vielen paarweise disjunkten Kurven in \mathbb{R}^2 , von denen jede homöomorph zu S^1 und stückweise unendlich oft differenzierbar ist. Wir betrachten die Eigenwerte $0 < \lambda_1 < \lambda_2 \cdots$ des Dirichletproblems für den Laplaceoperator Δ in M und zu jedem Eigenwert den zugehörigen Eigenraum, der bekanntlich aus in M reell-analytischen und auf M stetigen Funktionen besteht, die auf ∂M verschwinden. Über weitere allgemeine Eigenschaften dieser Eigenfunktionen, etwa in welcher Weise die Geometrie von M die Formierung von Knotenlinien und Knotengebieten beeinflußt, ist nur wenig bekannt (s. [1], Kap. VI, 6 und [2]). Wir wollen daher in der vorliegenden Note die Fragestellung umkehren und untersuchen, wie eine vorgegebene Eigenschaft der Eigenfunktionen die Geometrie von M einschränkt. Die in Rede stehende Eigenschaft fällt z.B. ins Auge, wenn man die Eigenfunktionen eines Quadrates betrachtet:

EIGENSCHAFT (K). Es gibt unendlich viele Eigenfunktionen ψ_i in M, deren sämtliche (innere) Knotenlinien Geradenstücke sind.

Wir können diese Situation auffassen als besonders enge Analogie zum Fall der schwingenden Saite. Es stellt sich nun heraus, daß alle Membranen mit der Eigenschaft (K) aufgezählt werden können.

SATZ. Die folgende Liste von Membranen mit der Eigenschaft (K) ist vollständig:

- a) Kreise.
- b) Kreissektoren,
- c) Kreisringe,
- d) Kreisringsektoren,
- e) alle Membranen, die sich durch endlich viele Spiegelungen an den Seiten aus einem der folgenden Polygone gewinnen lassen:
 - a) ein Rechteck,

Diese Arbeit wurde verfaßt mit Unterstützung des Sonderforschungsbereichs 40 "Theoretische Mathematik" an der Universität Bonn.

- β) ein Dreieck mit den Winkeln $\frac{\pi}{2}$, $\frac{\pi}{4}$, $\frac{\pi}{4}$,
- γ) ein Dreieck mit den Winkeln $\frac{\pi}{2}$, $\frac{\pi}{3}$, $\frac{\pi}{6}$.

Der Beweis des Satzes wird sich aus einer Reihe von Hilfssätzen ergeben. Wir betrachten also eine feste Membran M mit der Eigenschaft (K). Bezeichnet l_j die Anzahl der inneren Knotenlinien der Eigenfunktion ψ_j , d.h. die Anzahl der in M von Rand zu Rand laufenden Geradenstücke, auf denen ψ_j verschwindet, so ist unsere erste Bemerkung, daß l_i mit j gegen Unendlich strebt. Genauer gilt

HILFSSATZ 1. Es bezeichne μ_j den zu ψ_j gehörigen Eigenwert. Dann gibt es eine Konstante C>0 und $j_0\in\mathbb{N}$, so daß für $j\geq j_0$

$$l_j \ge C\sqrt{\mu_j}$$
.

Beweis. Bezeichnet L_j die Gesamtlänge der inneren Knotenlinien von ψ_j und d(M) den Durchmesser von M, so ist

$$L_j \leq d(M)l_j$$
.

Damit folgt die Behauptung aus [2].

Der nächste Hilfssatz enthält den Schlüssel zum Beweis des Satzes.

HILFSSATZ 2. Es sei $N \subseteq M$ ein Knotengebiet von ψ_j , $c:(a,b) \to M$ ein inneres Geradenstück $\subseteq \psi_j^{-1}(0)$, das N berandet, g die zugehörige Gerade im \mathbb{R}^2 und $\sigma:\mathbb{R}^2 \to \mathbb{R}^2$ die Spiegelung an g. Dann liegt N ganz auf einer Seite von g und $\sigma(N)$ ist ebenfalls ein Knotengebiet von ψ_j .

Insbesondere sind alle Knotengebiete von ψ_i kongruent.

Beweis. Es sei g_0 : = c((a, b)). Wir setzen für $p \in \sigma(N) \cup g_0$

$$\tilde{\psi}_{i}(p) := -\psi_{i} \circ \sigma(p).$$

Dann löst $\tilde{\psi}_i$ das Anfangswertproblem

$$(\Delta + \mu_i)\tilde{\psi}_i = 0$$
 in $\sigma(N)$,
 $\tilde{\psi}_i = 0$ längs g_0 ,

$$\frac{\partial \tilde{\psi}_j}{\partial n} = \frac{\partial \psi_j}{\partial n} \text{ längs } g_0.$$

Hierbei bezeichnet μ_j den zu ψ_j gehörigen Eigenwert und n die nach $\sigma(N)$ weisende Normale von g_o . Da ψ_j dasselbe Problem löst, stimmen nach dem Satz von Cauchy-Kowalewski ψ_j und $\tilde{\psi}_j$ überein in \bar{X} , wenn X die von g_0 berandete Komponente von $\sigma(N) \cap M$ bezeichnet. Wäre nun nicht $\sigma(N) \subset M$ —und damit $X = \sigma(N)$ —, so gäbe es $p \in \bar{X}$ mit $p \in \sigma(N) \cap \partial M$; dann folgte aber $\tilde{\psi}_j(p) = \psi_j(p) = 0$ und damit $\psi_j \circ \sigma(p) = 0$, was wegen $\sigma(p) \in N$ nicht sein kann. Also ist $\sigma(N) \subset M$ und deshalb ein Knotengebiet von ψ_j . Dann ist aber auch $N \cap \sigma(N) = \emptyset$, so daß N ganz auf einer Seite von g liegt. Wir nennen nun zwei Knotengebiete N', N'' von ψ_j äquivalent, wenn es Knotengebiete $N' = N_0$, $N_1, \ldots, N_k = N''$ gibt derart, daß \bar{N}_i und \bar{N}_{i+1} eine innere (gerade) Knotenlinie von ψ_j gemeinsam haben. Es seien $N = N_0, N_1, \ldots, N_l$ die Elemente der Äquivalenzklasse von N, die nach dem bisher Bewiesenen alle zu N kongruent sind. Setzen wir dann

$$Y:=\bigcup_{i=0}^l \bar{N}_i,$$

so ist $Y \subseteq \overline{M}$ und $\partial Y \subseteq \psi_j^{-1}(0)$; nach Konstruktion ist also $\partial Y \subseteq \partial M$ und damit $Y = \overline{M}$, d.h. alle Knotengebiete von ψ_j sind kongruent.

Die Einschränkungen für die geometrische Gestalt von M folgen nun wesentlich aus der Tatsache, daß **unendlich viele** Eigenfunktionen gerade Knotenlinien haben.

HILFSSATZ 3. M wird von mindestens einem C^{∞} —Bogen konstanter Krümmung berandet.

Beweis. Nach Voraussetzung besteht ∂M aus endlich vielen C^{∞} —Bögen c_1, \ldots, c_l , die doppelpunktfrei oder geschlossen sind und höchstens Randpunkte gemeinsam haben. Die l_i Knotenlinien von ψ_i verbinden nun jeweils zwei Randpunkte von M. Die Anzahl m_i der verschiedenen Randpunkte von M, die von Knotenlinien von ψ_i getroffen werden, strebt dann mit j gegen Unendlich; wäre nämlich etwa $m_i \leq m$, so müßten in wenigstens einem Punkt von ∂M mindestens $[2l_i]/m$ verschiedene Knotenlinien zusammentreffen, was $m_i \geq [2l_i]/m+1$ zur Folge hat und wegen Hilfssatz 1 zum Widerspruch führt. Wir können also annehmen, daß die Anzahl n_i der verschiedenen Punkte von c_1 , die von Knotenlinien von ψ_i getroffen werden, unbegrenzt wächst. Wird c_1 mit Bogenlänge parametrisiert, $c_1:[0,L] \rightarrow \mathbb{R}^2$, so treffen die Knotenlinien von ψ_i nach Hilfssatz 2 genau die Punkte $c_1[i(L/n_i)]$, $0 \leq i \leq n_i$. Bezeichnet dann κ die Krümmung von c_1 , so finden

wir weiter mit Hilfssatz 2

$$\max_{t,t'\in[0,L]} |\kappa(t) - \kappa(t')| = \max_{t,t'\in[0,L/n_j]} |\kappa(t) - \kappa(t')|$$

$$\leq \frac{L}{n_i} \max_{t\in[0,L]} |\kappa'(t)|,$$

woraus die Behauptung folgt.

Nach Hilfssatz 3 hat also etwa die Randkurve c_1 von M konstante Krümmung, d.h. c_1 ist ein Kreisbogen oder ein Geradenstück.

HILFSSATZ 4. Ist c_1 ein Kreisbogen, so ist M ein Kreis, ein Kreissektor, ein Kreisring oder ein Kreisringsektor.

Beweis. Wir beginnen mit der Bemerkung, daß nach Hilfssatz 2 alle inneren Knotenlinien einer Eigenfunktion ψ_i c_1 senkrecht treffen. In Polarkoordinaten sei c_1 gegeben durch

$$\{(R,\varphi) \mid 0 \leq \varphi \leq \alpha\}$$

für ein R > 0 und $0 < \alpha \le 2\pi$. Wir nehmen zunächst an, daß M linkerhand von c_1 liegt. Setzen wir $S := \{(r, \varphi) \mid 0 < r < R, 0 < \varphi < \alpha\}$, so ist also $S \cap M \neq \emptyset$. Ist dann $S \subset M$, so wählen wir eine Eigenfunktion ψ_j aus mit $n_j \ge 4$ (s. Beweis von Hilfssatz 3). Wir setzen dann

$$S' := \left\{ (r, \varphi) \mid 0 < r < R, \frac{\alpha}{n_i} < \varphi < \frac{2\alpha}{n_i} \right\}$$

und bemerken, daß S' ein Knotengebiet von ψ_j ist. Anderenfalls enthielte nämlich S' zwei Knotengebiete, von denen eins von einem Kreisbogen berandet wird, während das andere ein Polygon ist; dies widerspricht Hilfssatz 2. Damit folgt aber—ebenfalls aus Hilfssatz 2—, daß M ein Kreis oder ein Kreissektor ist.

Ist hingegen $S \not= M$, so gibt es $p = (r_0, \varphi_0) \in S \cap \partial M$. Wir können annehmen, daß $\{(r, \varphi) \mid r_0 < r < R, \varphi = \varphi_0\} \subset M$. Eine Umgebung von p in ∂M sei gegeben durch $\{(r(t), \varphi(t)) \mid |t| < \varepsilon\}$ mit $r(0) = r_0$, $\varphi(0) = \varphi_0$. Nach Wahl von r_0 ist die Funktion $t \mapsto \varphi(t)$ in keiner Umgebung von 0 konstant. Weiter folgt aus der Maximalität von r_0 , daß für hinreichend kleines $\delta < \varepsilon$ $\{(r, \varphi(t)) \mid r(t) < r < R, -\delta \le t \le 0\} \subset M$ oder aber $\{(r, \varphi(t)) \mid r(t) < r < R, 0 \le t \le \delta\} \subset M$. Damit haben wir aber wieder ein Randstück von M gefunden, das von unendlich vielen inneren Knotenlinien

getroffen wird. Die Schlußweise des Beweises von Hilfssatz 3 liefert dann, daß dieses Randstück ebenfalls konstante Krümmung hat. Wäre es ein Geradenstück, so ergäbe sich mit Hilfssatz 2 sofort die Existenz einer Eigenfunktion mit zwei nicht kongruenten Knotengebieten. Also haben wir einen Kreisbogen, der dann nach der Anfangsbemerkung zu c_1 konzentrisch sein muß. Also gibt es eine Eigenfunktion ψ_i , die einen Kreisringsektor als Knotengebiet besitzt; nach Hilfssatz 2 ist dann M selbst ein Kreisring oder ein Kreisringsektor.

Es verbleibt der Fall, daß M rechts von c_1 liegt. Ein ganz analoges Vorgehen liefert dann, daß M ein Kreisring oder ein Kreisringsektor ist.

HILFSSATZ 5. Ist c_1 ein Geradenstück, so muß M eine Membran von der im Satz unter e) genannten Art sein.

Beweis. Wir können annehmen, daß c_1 gegeben ist durch $\{(x,0) \in \mathbb{R}^2 \mid 0 \le x \le L\}$ und daß M oberhalb von c_1 liegt. Wir wissen dann, daß die Punkte

$$p_j^1 := \left(\left[\frac{n_j}{2} \right] \frac{L}{n_j}, 0 \right)$$

und

$$p_j^2 := \left(\left(\left[\frac{n_j}{2} \right] + 1 \right) \frac{L}{n_j}, 0 \right)$$

von inneren Knotenlinien der Eigenfunktion ψ_i getroffen werden, aber kein Punkt von c_1 zwischen p_j^1 und p_j^2 . Es bezeichne m_i^l die Anzahl der Knoten von ψ_j , die p_j^l treffen, l=1,2. Wir untersuchen zunächst den Fall, daß $m_j^1=m_j^2=1$ für unendlich viele j. Nach Hilfssatz 2 ist es klar, daß für diese j alle inneren Knotenlinien von ψ_j c_1 senkrecht treffen. Nun finden wir mit derselben Überlegung wie im zweiten Teil des Beweises von Hilfssatz 4 ein oberhalb von c_1 gelegenes Randstück von M mit konstanter Krümmung. Eine weitere Anwendung von Hilfssatz 2 zeigt, daß dies Randstück ein zu c_1 paralleles Geradenstück sein muß und daß es eine Eigenfunktion ψ_j gibt, die ein Rechteck als Knotengebiet besitzt. Damit entsteht M aus diesem Rechteck durch sukzessive Spiegelungen.

Im anderen Fall können, wir annehmen, daß $m_i^1 > 1$ für unendlich viele j. Um diese Situation behandeln zu können, machen wir von der Tatsache Gebrauch, daß die inneren Knotenlinien von ψ_i sich in Punkten von M unter gleichen Winkeln schneiden und daß dies auch in den inneren Punkten von c_1 gilt, wenn

man c_1 als Knotenlinie mitzählt (der erste Teil der Behauptung ist z.B. in [3] bewiesen; der zweite Teil wird auf den ersten zurückgeführt durch Fortsetzung der Eigenfunktion mittels Spiegelung an c_1). Wir betrachten nun das Dreieck mit der Strecke von p_j^1 nach p_j^2 als Basis und den Winkeln π/m_j^1+1 bzw. π/m_j^2+1 bei p_j^1 bzw. p_j^2 . Für genügend großes j ist die Spitze dieses Dreiecks ein Schnittpunkt von Knotenlinien der Eigenfunktion ψ_j . Also gibt es $k \in \mathbb{N}$, $k \ge 2$, so daß

$$\frac{\pi}{m_i^1 + 1} + \frac{\pi}{m_i^2 + 1} + \frac{\pi}{k} = \pi$$
 oder

$$k = \frac{(m_j^1 + 1)(m_j^2 + 1)}{m_j^1 m_j^2 - 1}.$$

Da dieser Ausdruck <2 ist für $m_j^2 > 5$, rechnet man nun einfach die möglichen Werte für m_j^1 , m_j^2 und k aus. Es ergibt sich, daß das Dreieck nur gleichseitig, rechtwinklig-gleichschenklig oder rechtwinklig mit den restlichen Winkeln $\pi/3$ und $\pi/6$ sein kann. Wir wollen noch zeigen, daß das Dreieck auch ein Knotengebiet von ψ_j ist für großes j. Dann ist sicher das Innere des Dreiecks enthalten in M; wäre es kein Knotengebiet, so würde jede innere Knotenlinie von ψ_j die von p_j^1 und p_j^2 ausgehenden Seiten treffen, sofern sie das offene Dreieck trifft. Nun folgt aber leicht durch Induktion, daß ψ_j zwei nicht kongruente Knotengebiete hätte, nämlich ein Dreieck und ein Polygon mit mindestens vier Seiten. Da eine Membran, die durch sukzessive Spiegelungen aus einem gleichseitigen Dreieck entsteht, auch durch sukzessive Spiegelung aus einem Dreieck mit den Winkeln $\pi/2$, $\pi/3$ und $\pi/6$ entsteht, ist der Beweis wegen Hilfssatz 2 vollständig.

Wir haben damit gezeigt, daß höchstens die im Satz genannten Membranen die Eigenschaft (K) haben. Daher bleibt noch zu zeigen, daß dies auch wirklich der Fall ist. Für Kreis, Kreissektor, Kreisring und Kreisringsektor rechnet man die Eigenschaft (K) unmittelbar nach. Die Membranen der unter e) genannten Art sind alle enthalten in Parkettierungen der Ebene bestehend aus kongruenten Rechtecken oder kongruenten Dreiecken mit den Winkeln $\pi/2$, $\pi/4$, $\pi/4$ bzw. $\pi/2$, $\pi/3$, $\pi/6$. Diese Parkettierungen lassen sich unbegrenzt verfeinern, indem man die Grundfigur in 4 bzw. 2 bzw. 4 kongruente Teile zerlegt, die der Grundfigur ähnlich sind. Zu jeder Verfeinerung betrachtet man die erste Eigenfunktion des Dirichletproblems für Δ in einer festen Grundfigur; diese Funktion besitzt eine reellanalytische Fortsetzung auf ganz \mathbb{R}^2 , deren Nullstellen genau die Ränder der Parkettierung sind. Also liefert ihre Einschränkung auf M eine Eigenfunktion des Dirichletproblems für Δ in M, deren sämtliche innere Knotenlinien Geradenstücke sind. Der Beweis des Satzes ist damit beendet.

LITERATUR

- [1] R. COURANT, D. HILBERT: Methoden der mathematischen Physik I. 2. Auflage. Berlin: Springer 1930
- [2] J. BRÜNING, D. GROMES: Über die Länge der Knotenlinien schwingender Membranen. Math. Z. 124 (1972), 79-82
- [3] J. Brüning: Über Knoten von Eigenfunktionen des Laplace-Beltrami-Operators. Math. Z. 158 (1978), 15-21

Dr. J. Brüning
Fachbereich Mathematik
der Philipps-Universität
Lahnberge
3550 Marburg
Bundesrepublik Deutschland

Eingegangen den 15. Februar 1979