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Smooth solutions of the heat and wave equations

By STEPHEN SMALE

Section 1

The motivation for this work was to try to give proofs for the existence of C*
solutions of the heat and wave equations on bounded domains by Fourier
methods. I wanted to show that the Fourier series (i.e., eigenfunction expansion)
of solutions would converge not just in L?, but smoothly to smooth solutions. In
contrast to more abstract methods, eigenfunction methods bring the existence
theory closer to the practice of physics, and also to ordinary differential equations
and numerical methods as well.

In fact I found that by the addition of an extra term generated by the
boundary of the domain, one could obtain this smooth convergence. For this
proof one needs no significant estimates beyond those needed for the elliptic
theory. And in general, our proof below gives sharp results by simple conceptual
arguments.

The difficulty with Fourier expansions can be seen in the problem: (du/dt)—
(®u/ax?)=f satisfying wu(0, x)=v(x), u(t,0)=u(t,1)=0. Here the data
f:R*x[0,1]—> R and v:[0,1]— R are given, and u:R*x[0,1]— R is to be
found. If f(t, x)=Y,.-+ a,.(t) sin nmx is a Fourier expansion which converges in
C?[0, 1], then f"(t,0)= f"(t, 1) = 0. This is a special condition on f.

We state now our problem in general for the heat equation. Let (2 be a closed
bounded set of R with smooth (i.e., C*) boundary a2 and let R* =[0, ). Let

= —4, A the usual Laplacian, or more generally any self-adjoint real elliptic
(smooth) operator on C™(£2) with no eigenvalue equal to 0 (see Section 2).
Suppose the following C~ data are given: f:R* X — R, initial condition
Up: {2 — R and Dirichlet boundary data g: R* x 2 — R with g(0, x) =0. We seek
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2 STEPHEN SMALE

a solution, a C” function u: R* X 2 — R such that

S9—‘£+Lu=f on R*'x(Q),
Jt
u(0, x) =uy(x), all xe and (1)

u(t,x)=g(t,x) all xeadd

We may incorporate the data into f. More precisely let v=u—u,—g and
h=f—(dg/dt)— Lg— Lu,. The main problem becomes: Find C"v:R*" X — R
such that (dv/dt)+ Lv = h, v(0,x)=0, xe€ 2 and v(t, x) =0, x € d(2. Thus we may
take u,=0, g=0 in (1) and ask:

Given f: R* X — R, C”, when is there a

)
C” function u:R*x — R such that a—?+ Lu=f (2)

on R* X0, u(t,x)=0if t=0 or xedo?

For the answer define a sequence of polynomials in 2 variables by:

k
P(L,T)=), (-1L*"'T" for k=0,1,2,....
~

Thus
Py=1, P,=L-T, P,=L*-LT+T? etc.

Main theorem

A necessary and sufficient condition for the solution of (2) is that
P.(L, T)flicon =0, all k where T=(8/3t). Similarly, for the wave equation. A
NASC for the existence of a C” function u: R X 2 — R satisfying (3°u/dt>) + Lu =
f on R X  with u(0, x) = (3/ot)u(0, x) =0 all x and u(t, x) =0, all x €{2 is that

P.(L, T)f|,_,=0 and PJ(L, T)f | _,=0 foral k=0,1,...

xX€d xX€J

where T =(6%/9t%). Here f' denotes (3f/ot).
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The condition of f in this theorem is a kind of compatibility condition which
can be translated to non-trivial initial data via the previously defined function h.
While the necessity of the condition comes out of the proof, one can test directly
for the necessity as follows. Suppose u is a solution, given f as in the first part of
the main theorem. Then P, (L, TY(L + T)u = P, (L, T)f so

(L*"'+ T*" Yu = P (L, T)f. (3)

But by the boundary conditions, if x €342, then T*"'u(t, x) =0 all t. Similarly if
t=0, L*"'u(t, x) =0 all x. Thus if both t =0 and x € 4(2, the left hand side of (3)
vanishes and so does P, (L, T)f. The same argument works for the second part
noting first that (T+ L)u’= f'. Thus only the sufficiency has to be proved.

One can reasonably ask: to what extent is our main theorem a new result in
partial differential equations (apart from the methodology introduced here)? 1
have not seen it explicitly in the literature and the mathematicians in partial
differential equations I've talked to were unaware of it. However, it overlaps and
is close to, e.g., the work of Solonnikov in [5] and Rauch-Massey [9]. On the
other hand Solonnikov doesn’t discuss the wave equation and has a different
generalization of the classic heat equation so that his compatibility conditions
don’t come out so neatly; they are only given by a recurrence relation.

Rauch-Massey treat only the hyperbolic case, first order hyperbolic systems
explicitly, and again these conditions are given by a recurrence relation. Also they
suppose t=0 in contrast to our treatment (in the hyperbolic case) where R X 2
has no corners. They state that their methods can be applied to hyperbolic
equations of higher order than one.

In texts where heat and wave equations on bounded domains are treated, e.g.,
Friedman [2], [3], Lions [8], Treves [10], the results presented are not so sharp
and the proofs seem more complicated. Treves does use eigenfunction expansions,
but only to obtain weaker solutions.

Also some of the PDE literature is not very clear as to what are natural initial
value problems for the heat and wave equation on bounded domains. For
example, in the well-known paper of Lax and Milgram [7], p. 182, it is stated: ““if
the initial function U, is sufficiently differentiable, u(t) approaches u, as t tends to
zero not only in the L, sense but pointwise.” But later, p. 184, “... if u, is
sufficiently smooth, i.e., belongs to the domain of A™...” The domain of A™ is
basically one of our H. And u, can be even Ce and not in Hj.

Section 2 is devoted to the elliptic theory and section 3 gives the proof of the

main theorem. Extensions and generalizations of the main theorem are discussed
In section 4.
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Finally I wish to acknowledge brief but useful discussions with Vic Guillemin,
Dick Palais and Bob Seeley among others.

Section 2

Our methods depend heavily on the Sobolev spaces H*(2)=H°®, s=
0,1,2,... With < R" as in section 1, recall that H® consists of all real valued
functions on {2 with (generalized) derivatives up through order s in L*(2). A
complete norm on H® is given by

e X

O<|a|<s

where a is a multi-index, a =(ay, ..., a,), @; is a non-negative integer, Y.a; = |a|,
and D u=(3%/9x,) """ (8%-/9x,). The norm is induced by a inner product and
H® coincides with L?(£2).

The Sobolev imbedding theorem asserts that H*** < C*(Q2) if k > n/2 (where
n =dim £2) and the inclusion is continuous for all s =0. Here C*(£2) is the Banach
space of C* functions on (2, natural norm. See e.g. [3] or [10] for this and other
background on Sobolev spaces. The Rellich theorem states that the inclusion
H* — H*"! is compact.

Let H; be the closure of C; in H' where Cj is the subset of C*(2) of
functions which are zero on a4{2.

Let J: H™ — H' be the natural inclusion and H™ N Hy = J '(H}). Since Hj is
a closed linear subspace of H', and J a continuous linear map, H" N Hj is a
closed linear subspace of H™. This space H™ N Hj is the set of all functions in H™
which are essentially zero on d{2. It is a natural space for the Dirichlet boundary
conditions for second order elliptic operators that we will consider, with m
independent of the order of the operator or the dimension of (2.

These elliptic operators are linear maps L : C7(2) — C~({2) of the form

(Lu)(x)= ), a,(x)Du(x)

O<|a|=k

where a is a multi-index, k is the order and a,:{2— R are C™ functions (all
functions are real valued here). We will assume k=2, for our notation. Our
standing hypotheses on L are

L is elliptic. (1)



Smooth solutions of the heat and wave equations 5

For each xe€ {2 the polynomial } -, a,(x)é*#0 all £e R", if £#0, where
Er=¢&7... &

L is self-adjoint. (2)

Ie., (Lu,v)=(u,Lv) for all u,veC; where (u, v) denotes the L* inner
product.

L:Ci— C7(0) is injective. (no “eigenvalue” is zero) (3)

Condition (3) just make things go more simply. If L satisfies (1) and (2) it can
be “translated” to satisfy (3).

As we remarked above, we use second order notation for L throughout. This
comes into the boundary conditions in particular. But the proofs go over im-
mediately to arbitrary order. Thus we suppose L is second order and so

’y & du
+ L
o k}; bk(x)axk c(x)u(x)

(Lu)(x)= Y, a;(x)

1<ij=n 0x

where (a;(x)) is a negative definite matrix for each x, negative definite rather than
positive definite by our convention.

The map L:Cy — C*(Q2) extends naturally to L: H* "Hy— H™ 2,
Fundamental theorem of elliptic theory

Foreachm=2,3,...L:H"NHy— H™ 2 is an isomorphism. That is, L has a
bounded linear (2-sided) inverse G:H™ > — H™ N Hj.

This could be considered as a regularity theorem, including boundary regular-
ity. For a proof see e.g. [3].

The maps, L, G and inclusions J described above make sense with various
domains; sometimes will use them without specifying this domain if the context
makes it clear.

A second theorem from the elliptic theory is that providing L with eigenfunc-
tions.

Eigenfunction theorem

Suppose given an elliptic self-adjoint operation L:Cy— C” as above. Then
there exist a non-decreasing sequence of real numbers Ay, A,, . . . called eigenvalues,
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with A, — © as i — ®, and a sequence of elements ¢, of Cy called eigenfunctions so
that Lo; = \;¢d,. Furthermore the ¢; constitute a Hilbert basis for L*(2) = H°.

We sketch how the proof of the eigenfunction theorem follows from the
Fundamental theorem. Consider

H:NH)—% >N H}
HO

Then G,= GJ is compact using Rellich and self-adjoint relative to a Hilbert
structure on H*N H; induced from that on H° via L. Apply the spectral theorem
for compact self-adjoint operators (the simplest spectral theorem, see e.g. [6]) to
G, to obtain real w,;, ¥; € H>* N H} with Gy, = w;,. Take A; = 1/, indexed so that
the A; are non-decreasing, and ¢; = \;i. The y; are a Hilbert basis for H>*N H,
and Ly; = Ay; = ¢; a basis for H°. Finally, the repeated use of the Fundamental
theorem applied to L¢; = A;¢; implies that ¢, € H™ N H;, every m and thus ¢, € C”
by the Sobolev theorem.

Define Hy, m=0, 1, ... as the closure of the subspace of H™ spanned by the
eigenfunctions ¢;. For example it follows from the above that Hy = H°, H} = Hj,
H3; = H’NH, and that Hy <« H™ N H, for m = 1. But Hy is a proper subspace of
H>NH] since Hy is a proper subspace of H' and L:H>*NHy,— H' is an
isomorphism. In fact H; = L™'(Hy). Since in general HY is not all of H™ N H;,
the simple expansion by eigenfunctions is not sufficient to give smooth solutions
for the heat and wave equation.

It follows from the eigenfunction theorem that (the restriction) L : Hy — Hy 2
is an isomorphism with inverse G:Hy >— Hg, m=2. Actually one may define
Hy without the use of eigenfunctions by

H}""?=G™(H)=L ™(H}), H{"*"'=G™(Hy), m=0.
Consider the composition
Go,:H™"NHy— H™ NH,,

J G
H"NHy—> H™" *—> H™"NH]
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PROPOSITION. The image of G§ is contained in Hy for s=[m—1/2], the
largest integer in (m —1/2). This is false for s <[m—1/2].

The proposition is a kind of spectral theorem for the operator G,: H™ N Hy —
H™ N H,. It implies for example if m>2, there is no Hilbert structure on
H™NH; so that G, is self-adjoint. On the other hand modulo HY, G, is
nilpotent, and on HY, G, has the spectral theory defined by Gy, = (1/A;)¢..

The proof of the proposition can perhaps best be seen by studying the
following diagram for m even (m odd goes similarly):

H® « ...
U
H* <~ H°NH}« ...

U / U

H«——H‘NH,—— F «-

u/u U

Han(l)zHi(—L—- H; (—:— H:?: €« oo

Here F=L"'(H*NH}) with L:H°*NH)—>H* etc. Now G,:H*NHy—
H*NH; is of form G,=GJ=L"'J]. So im(G,)< Hg. Similarly G,: H*NH}—
H®NH] is given by G,=GJGJ =G?*J? and im(G}) < im(G*H%) or Hg. Con-
tinue in the same way to finish the proof.

Section 3

The goal of this section is to prove the main theorem of section 1. We do that
first for the case that the data can be expanded in a Fourier series. More precisely:

PROPOSITION. Suppose t —>w,, t=0 is a C* curve in Hf and 6 € H}. Let
satisfy m —21=2, 1> 0. Then there is a unique C' curve t — v, in Hy "' such that
J(0v,/at) + Lo, = J,Jw, with vy = Jo.

Here J,: Hy *'— HZ >V and J: Hy — Hg ~* are all inclusion maps. One
may relax the C” condition on t — w, as the proof shows.
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COROLLARY. Under the same hypotheses, there exists a unique C' curve
t— v, in HF " such that vo=J6 and (I+ G,T)v, = Jw,

Here I: Hy *'— H} %' is the identity and T =9/dt. For the corollary simply
apply G to the equation of the proposition.

The main part of the proposition is contained in the following lemma.

LEMMA 1 (of Fourier type). Under the hypotheses of the proposition, there is
a unique C' curve v, in Hg 7 such that vy= 1,0 and

0
Jlé_tvt+LU':JlW', (1)

m-—2

where J,: Hy — Hy “ is the inclusion.

Postponing momentarily the proof of the lemma, we see how the proposition
is a consequence via a simple induction. Say v, is a C* curve in Hy ~** satisfying
(1), J, the appropriate inclusion. Apply J,: Hy **— Hgz >*"? to both sides to
obtain that v, is ¢**' in Hf %*72,

For the proof of the Lemma, first examine just what convergence in Hg
means. Say m =2k (we only use these results for m even; and for m odd, the
proofs are similar). Then since L*: Hy — Hyg is an isomorphism, i, c;¢; con-
verges in HY if and only if Y cAFd, converges in Hy=L? or equivalently
L e <ee.

Now expand the data of the lemma in a Fourier series, i.e., we may write
D=7 ,cd and w, =Y, a;(t)¢; in HE. Hence the ¢; are constants and the a;(t)
are real valued functions of t. In fact, a;(t) is C” since it is the projection of a C~
function. For u, =)~ b;(t)¢,, the equation of the lemma is

Y, bl + 2, Abi(Dd =2, ai (),
or for each i,
b:(t) + Aibi(t) = ai(t), bi(o) =G

The unique solution is (see practically any book on ordinary differential equa-
tions)

b,(t) = e"‘-'”ot a,(s)e** ds+ ci].
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We claim that the curve u, defined above in terms of the b,(t) converges in Hy
and satisfies the properties in the lemma.

Since for each t=0,e =<1 except for a finite number of i, and } ¢,
converges in Hy, it follows that ). ce ¢, also converges in H for each t. The
continuity in ¢ of this sum is an easy check which we leave to the reader.

Next we show that ) d;(t)¢; converges to a continuous function of t in Hy
where m =2k and

t

d.(1)= j a,(s)e™¢"" ds.

0

First estimate by Cauchy’s inequality,

t

‘di(t)P:J |ai(S)|2 dS[ ezxt(s—:) ds
0

0
= Jt la;(s)? ds—l-[l —e M
o 2
Thus

Y ld0PA*< ¥ | las)PAZ ds<K

A =172 =172

where

K = max |L"*w,|}p0

O=ss=<t

Thus ), d,(t)¢; converges in Hy and so does u, =Y b;(t)¢;. The continuity in ¢
is proved similarly. The rest of the proof of lemma 1 follows from the definition of
b,(t) obtaining u, C' in t in HZ 2.

Now consider the general problem of section 1. Thus C*f:R* X2 —- R is
given and the problem is to find C™u:R*Xx — R satisfying zero boundary

conditions such that
Tu+Lu=f on R"xQ (2)
where T=9/at. Let f,(x)=f(t, x); then it is easily seen that the map R* — H*

given by t—f is a C” curve in H* any k. Let J: H*">NHy— H* be the
inclusion and consider the following version of (2).

Tu+Lu,=f, u, acurve in H*?NH; u,=0. ‘ (3)
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Let m=k+2 and apply G: H* — H™ N H; to both sides of (3) to obtain

I+ TGyu, = g, u,e H™ N H;, uy=0 (4)

where the datum g, = Gf, is now a curve in H™ N Hj,.
This form suggests trying to invert I+ TG, or to look at:

u,=[I-(GoyT)+(GoT)*>~ - - - +(=1)°*(G, T)*1g + v, (5a)
(I+TGy)v, = (-G, Ty g, =w, (5b)

For s large enough w, € Hy by the proposition of section 1. We may apply the
above Corollary to solve (5b) for v, and with an appropriate boundary condition
at t =0, put this in (5a) to obtain our desired solution u,.

Motivated by the above, we proceed more formally.

Set m =2k =41, 1 some positive integer. The data f define a curve t— f, in
H™ 2. Let g =Gf, be the corresponding curve in H™ N Hy, C” in t. Define
Y. =[I—=(G,T)+ - - - +(— G, T)* ?]g,, which is a C” curve in H" N H{ for 0=t <

wo

LEMMA 2. y,e Hy

Proof. Denote by C,(f) the condition of the theorem P, (L, T)f| o€ Cp,
q=0,1,...,. We will show that if C,(f) for g<k -2, then Y/2¢ (- TG,)'g, |0 €
HY. Let J: H — H'"? be the inclusion for various j and suppose f, is the curve in
H™? defined by the inclusion C”— H™ 2. Define R, =Y, (= TJ)L*f, =
and note R, =(—TI)7f, |,=0+LRq_1. This latter could be used as an inductive
definition of R, starting with R_;=0. R, lies a priori in H™ *9*Y but C,(f)
implies that R, lies in H™ 2“"Y N Hj. Now suppose C,(f) is true for q<k—2.
Then R,_,€ H*NHy= Hg, so G*"'R,_,€ H. By the inductive definition of R,
above, the L used in the definition of R,_, have domain some H’NH, so
GL = identity. Thus G*"'R,_,=Y%"2 (- TG,)'g, |,—0 € HE.

The curve w,=(—G,T)* g, lies in HY by the proposition of section 2. Let
J:H™NH; and J:HY — H§ denote the inclusion. Apply the Corollary of the
proposition in this section to obtain v, in Hi of class C' in t such that
(I+ G,T)v, = Jw, vy= — Jy,. Now define u, in H* N Hy by u, = Jy, +v,; so u, is C*
in t, ug=Jy,+v,=0 and (I+ G,T)u, =Jg, in H* N Hy.

If different [, say [, l,, above are chosen, the corresponding u defined by the
above process agree in H* N Hy where k =21, | =min (l,, I,) using the uniqueness
in the Corollary. Thus we obtain a u, which lies in each H* N Hy. Thus by the
Sobolev theorem, u, is C~ and we have proved the first half of the main theorem.
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For the second part, the above proof, with a couple of modifications which we
state, is applicable.

The first modification is in lemma 1 and its consequences. One obtains a
different ordinary differential equation, namely

b'i(t)+ A;bi(t) = a,(1), i=1,2,...
with b(0)=¢c, bl(0)=4d,

where u, =) b;(t)¢,, is to be found and Y ¢, = uy, Y dib; = ub, ¥ a;(t)d;, =f, are
prescribed. This differential equation has as its unique solution, if A; >0

PP
b.(1) = by cos (YA, + d P VAL j a,(s)
A h

sin (t—2)\/)\,-, Al 1
A
The finite number of equations with A; <0 are handled as easily. Now one
proceeds as before, with similar estimates to get convergence of ) b;(t)¢; = u,.
The other modification relates to Lemma 2; but here just apply that construc-
tion of f and f' as well.

Section 4

This section is a series of remarks on extensions and relations to other
problems of the above.

Section 3 of this paper could be considered as a theory of separation of
variables for boundary value problems in PDE. It works well for problems which
are the product of understood problems. Thus the evolution problems above are
the product of space and time problems. We give more examples to illustrate this
point.

Consider Au=f on the rectangle 2=, %, where ,=[0, a], 02, =[0, b].
Given C*f: 0 — R, find a C~ solution u:{2— R such that u=0 on 9. Write
(t, x) e, xQ, and Au = (3*u/dt*)+(3*u/dx*)= Tu— Lu and proceed as before to
obtain NASC on f for the existence of a solution u. The Fourier lemma and
proposition at the beginning of section 3 must be replaced by a simple spectral
analysis of T (similar to that of L).

A second example is the wave equation on the same domain, (T+ L)u=f on
) with Dirichlet boundary conditions u=0 on 4£2(!). This problem has been
considered By Fritz John [4], V. Arnold [1] and others. Now the above analysis
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applies. Besides the compatibility condition on f, one needs in general that the
ratio a/b be not rational (or not even close to rational?).

Finally we list some ways in which the main theorem might be extended.

(A) If condition (3) on the elliptic operator is dropped, i.e., some eigenvalues
are allowed to be zero, the methods extend easily to yield similar results.

(B) If L is not self-adjoint, one could no doubt replace the Fourier lemma of
section 3 by a different existence proof, the rest being the same as before.

(C) The extension to complex coefficients or systems should not require
substantial changes.

(D) The operator T in the theorem of section 1 could be replaced by any
ordinary linear differential operator with leading coefficient 1. Then the results
would have to be modified at the boundary condition t = 0. Schrodinger’s equa-
tion on bounded spatial domains thus can be included.

(E) Q could be a compact manifold with boundary

(F) Perhaps one could obtain C solutions to Navier-Stokes on compact
2= R", {2 smooth, for small time via eigenfunction expansions this way.

(G) In the main theorem of section 1, L is time independent. I am not sure
how the extension of this result to the case of time dependent L should go.
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