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Comment. Math. Helvetici §5 (1980) 654-667 Birkhauser Verlag, Basel

Vanishing of Whitehead groups for Seifert manifolds with infinite
fundamental group

SteveN P. PLoTNICK

1. Introduction

Seifert manifolds are a very well understood class of 3-manifolds, arising
naturally in a variety of situations— circle actions, algebraic varieties, branched
covers, surgery on knots, plumbing, etc. We have:

THEOREM. Let M be an orientable irreducible Seifert manifold with infinite
fundamental group. Then Wh(II,M)=0 and K,Z[I1,M])=0.

This theorem, in the case that M is sufficiently large, follows from deep results
of Waldhausen, who proved that Wh(II,M)=0 and K,(Z[II,M])=0 when M is
an orientable, irreducible, sufficiently large 3-manifold [W]. However, Seifert
manifolds provide a very well-known class of closed, orientable, aspherical,
non-sufficiently large 3-manifolds — those 3-manifolds M admitting effective circle
actions with 3 exceptional orbits, M/S'=S? infinite fundamental group and
finite first homology group [EJ]. In terms of Seifert invariants, these are the
manifolds M?={b; (0, 0,0, 0); (p, B1), (g, Bo), (r, B3)}, satisfying §+%+%sl and
bpgr + B.qr + B,pr + Bspq# 0 [O]. In particular, this includes all Brieskorn homol-
ogy spheres.

3(p,q, r)={(z4, 25, 23)€C’NS*: 25+ 23+ 25 =0; p, g, r pairwise coprime},

with the exception of 3(2, 3, 5). Until recently ([T], Section 4.10), these Seifert
manifolds were the only known examples of closed, orientable, aspherical, non-
sufficiently large 3-manifolds.

The theorem in the case that E+~+—— =1 follows from recent work of Farrell
q r

and Hsiang, [FH2], who have proved these vanishing results for torsion-free
extensions of poly-Z groups by finite groups. (The euclidean triangle groups

654



Vanishing of Whitehead groups for Seifert manifolds 655

contain subgroups of finite index which are free abelian of rank two, so that the
3-manifolds have finite covers which are principal circle bundles over T2.) Thus,
the proof of the theorem reduces to proving the following theorem:

THEOREM. Let M be the non-sufficiently large Seifert 3-manifold

{b;(0,0,0,0); (p, B1), (g, Bo), (r, B3)} with §+—61;+~1—< 1. Then Wh(II,M)=0 and
K()(Z[HIM]) =0.

The proof will be via induction on the hyperelementary subgroups of some
finite homomorphic image of II,M. This requires

(1) that we find an epimorphism II,M LF, where F is a non-hyperelementary
finite group, and

(2) that we can understand the covering spaces of M determined by the sub-
groups ¢ '(G), where G is a hyperelementary subgroup of F.

Most of the groups needed in (1) are provided by Fox [F]. To accomplish (2), we
view M as an injective Seifert fiber space in the sense of Conner-Raymond [CR].
This allows us to reduce our problem to one concerning the subgroups of finite
index in hyperbolic triangle groups. In particular, when does a triangle group
contain another triangle group as a subgroup of finite index? This has been
answered by Greenberg (see [G] or [K]). The crucial point is that the angles of a
hyperbolic triangle determine its area.

It is a pleasure to thank Tom Farrell and Frank Raymond for helpful
conversations and encouragement.

2. The strategy and an interesting special case

The technique of hyperelementary induction goes as follows: Suppose we have
an epimorphism I1 25 F, where F is a finite group. If G is a subgroup of F, ¢ (G)
will be a subgroup of finite index in II, and there is the transfer homomorphism
i* : Wh(IT) = Wh(¢ 'G). Let x e Wh(IT). Induction tells us that x =0 if and only
if i*(x)=0e Wh(¢ 'G) for all hyperelementary subgroups G of F. A group G is
hyperelementary if it can be written as 1—->Z, - G—>P—1, where P is a
p-group, and we may assume (k, p) = 1. All results stated for Wh(IT) carry over to
Ko(Z).

Very briefly, induction is proved by considering Wh(II) as a Frobenius module
over Swan’s Frobenius functor G,(F), a Grothendieck construction applied to the
category of finitely generated, free abelian representations of F, [S1, S2]. Gy(F) is
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a ring with unit, where tensor product gives the ring structure, and the unit is Z,
regarded as a trivial ZF-module. We have Swan’s result that the unit in Gy(F) is a
sum of elements iy (x), where the inclusion i: G — F induces iy: Gyo(G) — Gy(F)
by ix(N)=N®,;ZF, and G ranges over the hyperelementary subgroups of F
([S1], Corollary 4.2). One now uses Frobenius reciprocity to conclude that
x € Wh(II) is trivial if it transfers to zero in Wh(¢ 'G) for all hyperelementary
G cF, as in [FH1], Theorem 3.1.

1 1 1
It M={b;(0,0,0,0); (p, B1), (g, B), (r, B3)}, with ~+-+-<1, then II,M has
the following structure: P 4

1“"Z_>H1M_’Q(P,q’r) <Q1:CI2,Q3I1 41929:=95=93=4q5) — 1,

where Z is the center of II;M and Q(p, g, r) is a hyperbolic triangle group [CR].

Let us now discuss a special case where Q(p, q, r) has an obvious finite
quotient. Assume that p=0 (mod2), q=0 (mod3), r=0 (mod5), and
(p,q,7r)#(2,3,5). We have an obvious map ¢ of Q(p,q,r) onto Q(2,3,5)=
Icosohedral group, given by

(1, G2 G5 | 1 = 41025 = 45 = G2 = q5) — (p1, P2, P3| 1= p1paps = P2 = p3 = p3).
qi > D

For convenience, we denote M above by M(p, q, r). (The invariants b, 3,, B, B3
will not be used.) The map ¢ defines a subgroup of II,M(p, q, r) of index 60,
namely ker (pom): .

Q(2,3,5)

I

1"——)Z——_>H1M(p9q’ r)_f'_)Q(p’q’ r)-_—_—)l

J )

1—>Z— ker(gpem) —> kere — 1.

Since ker (p°m) contains the center of IT;M, we may lift the S' action on
M(p, g, r) to the covering space corresponding to ker (¢ o), which we will call M,
(ICR] Theorem 4.3). The icosohedral group acts as the group of covering
transformations, commuting with the S' action. We can divide out by the circle,
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and view the action of Q(2, 3, 5) on the 2-manifold level. We have the following:

/X5
(S, M, Q(2,3,5) ———
X

2.3,5
sl ) 1Q(2,3,5)

(S, M(p,q,r)) — : )

We have the standard action of Q(2, 3,5) on the 2-sphere. Every principal
orbit of M(p, g, r) is covered by 60 principal orbits in M,. The situation over
exceptional orbits is slightly more complicated, and is reflected in the action of
Q(2,3,5) on S* Points of S? that are fixed by an element of Q(2,3,5)
correspond to orbits in M, where the covering transformation is acting in the
orbit, as opposed to permuting orbits. Since p corresponds to elements of order 2,
over p € S* will be 30 points, the midpoints of edges in the triangulation. Over q
will be 20 points, the centers of faces, and over r will be 12 points, the vertices of
the triangles. Notice that we are letting p, g, r represent both points of S* and the
order of the isotropy subgroup of the corresponding orbit in M(p, q, r).

Now, over the Z, orbit in M(p, g, r) will be 30 orbits, each 2-fold covering the
orbit downstairs. Since we have lifted the S' action, each of these orbits will have
stabilizer =2, ,. Similarly, there will be 20 orbits with Z,; stabilizer, and 12
orbits with Z,s stabilizer. Since (p,q,r)#(2,3,5), there will be at least 12
exceptional orbits in M,.

To apply induction, we must consider hyperelementary subgroups of
Q(2, 3, 5). These are well known to be either cyclic or dihedral. (The tetrahedral
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subgroup is not hyperelementary.) Actually, we need only consider dihedral
subgroups, since, for example, every Zs in' Q(2, 3, S) is contained in a dihedral
subgroup Ds. Thus, the map Wh(IT;M(p, q, r)) = Wh((¢ > 7)~'Zs) factors through
Wh((¢°m) 'Ds). Notice that we are referring to Z, xXZ, as D,.

Suppose we take one of the dihedral subgroups, say G. We have:

1
1

Q(2,3,5> G
)

¢

1 —Z—> II,M(p, g, ) —> Q(p, g, —> 1

).

1—Z— IIM; — ¢ (G) —1

J u

1—Z— IIIM, — ker¢ —1,

where the middle row corresponds to a covering space between M(p, q, r) and
M %

@

(S', M, Q(2,3,5)) ——— 6

(S', M) s 6
N—

M(p7 49, r) "_;;,_‘_“
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We now show that Mg is sufficiently large. By Waldhausen [W], then,
Wh(II,Mg;) = 0. Thus, we can apply induction in a rather trivial fashion: elements
of Wh(II;M(p, q, r)) have no choice but to transfer to zero in Wh(II;Ms;)=0. To
show Mg is sufficiently large, we need only count at least 4 exceptional orbits.

For example, suppose G = Ds. (All dihedral subgroups of Q(2, 3, 5) of order
10 are conjugate, so it is enough to consider one of them.) Then G is generated
by a S-fold rotation and a 2-fold one, preserving a pentagon inscribed in the
icosohedron, perpendicular to the axis of the 5-fold rotation.

The action of G partitions the set of vertices into 2 orbits, one containing 10
points and one containing 2. The circle orbits in M_, therefore, are collapsed to 2
orbits in Mg. One of these orbits now 5-fold covers the Z, orbit in M(p, g, r),
while one of them singly covers the Z, orbit. Notice that Mg is a 6-fold irregular
cover of M(p, q, r).

Similarly, the 30 Z,, orbits are collapsed by G to 4 orbits. Two of these
doubly cover the Z, orbit, while two of them singly cover. Finally, the 20 Z,
orbits are collapsed to 2 orbits, each triply covering the Z, orbit in M(p, q, r).

Now count. The one orbit which singly covers the Z, orbit gives an exceptional
orbit with stabilizer Z,. The two orbits which singly cover the Z, orbit give rise to
two more exceptional orbits. If r/5>1, we have one Z, 5 orbit. If p/2>1, we have
two Z,,, orbits. If g/3>1, we have two Z,; orbits. In other words, we always have
at least 4 exceptional orbits. Hence, M is sufficiently large.

The situation with the other dihedral groups is similar. If G = D,, G collapses
the 30 Z,,, orbits to 6 orbits which doubly cover and 3 orbits which singly cover,
thus giving at least 3 Z, orbits in Mg. If p/2>1, we have an additional 6 Z,,
orbits. If qg/3>1, we get 5 Z; orbits, and if r/5>1 we get 3 Z,5 orbits. Finally,
G =D, yields 1 Z,, orbit and 2 Z, orbits, and either 4 Z_, orbits, 3 Z; orbits, or
2 Z, orbits. This completes the proof that Wh(II,M(p, q, r)) =0 in this special
case.

On the one hand, it is very nice to be able to determine so much of the
structure of these covering spaces. We have produced explicit actions of the
icosohedral group on Seifert manifolds. With a little more work we could recover
the remaining Seifert invariants of these spaces. In fact, enthusiasts of the binary
icosohedral group will be pleased to know that in a similar fashion one may
construct free actions of SL(2,5) on Seifert manifolds other than S>. This is
slightly more involved, since we must find a map directly from II,M(p, g, r) onto
SL(2,5)=1I1,3(2, 3, 5), bypassing Q(p, g, r). A method for doing this (for certain
M(p, q, r)) may be found in [P, Theorem II.3.5 and Lemma I1.3.2]. For instance,
there is a free action of SL(2,5) on

{~7;(0,0,0,0);(7,4),(7,4),...,(7,4)} with quotient 3(2, 3, 35)!

12
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On the other hand, this method is unlikely to go much further in proving
vanishing results, except in other special cases. There are always surjections of
Q(p, q, r) onto finite groups with torsion free kernels, so that the corresponding
cover will be an S' bundle over a surface, but these finite groups will not be as
well understood as Q(2, 3, 5), and analysis of intermediate covers will be difficult.
To prove the theorem, then, we should not study finite groups acting on surfaces,
but infinite groups acting on the hyperbolic plane. Our problem will be translated
into a question concerning triangle groups. These groups have been extensively
studied, and we will use known results to complete the proof.

3. Proof of the theorem

To use induction, we need a surjection Q(p,q,r)— F, where F is a non-
hyperelementary finite group. This is provided by the following lemma, the proof
of which we defer to section 4.

1 1 1
LEMMA. The hyperbolic triangle group Q(p,q,r), -+—+;< 1, admits a
surjection onto a non-hyperelementary finite group F. p 4

Assuming the lemma, we now prove the theorem. Let M(p, q, r) be a non-

. ) : .1 11 , )
sufficiently large Seifert manifold with —+—+—<1. Using the lemma, and letting
p q r

G be a hyperelementary subgroup of F, we get a diagram of groups as in section
2. We now lift the circle action up to the cover corresponding to the center of
II,M(p, q, r), where it splits as (S', S’ x H), [CR, Theorem 7.3]. Here H is the
hyperbolic plane, on which Q(p, g, r) acts as a hyperbolic triangle group:

(S',S'xH, Q(p, q, 1) /s - H

; ¢ U(G)
le (G)

- :ﬂ o ,do /Q(p,a,

/S! o

/Qp, a1 M G

M(p’ 9 r) s - é
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We see that ¢ '(G) is a discrete subgroup of PSL(2, R) acting on H, and also a
subgroup of Q(p, q, r) of index equal to [F:G].

The point is that M will almost always be sufficiently large. If M; were not
sufficiently large, ¢ '(G) would itself be a triangle group. So we are led to ask:
When can a triangle group contain another triangle group as a proper subgroup of
finite index?

Suppose Q(p, q, r) contains Q(a, b, ¢) with index N. It is well known (see, for
instance, [M]) that the area of a fundamental domain for Q(p, g, r) is equal to

1 11
217(1*————;), twice the area of a triangle with angles 7—7, 7—7 Z-T Since all

P q p q’r
torsion in Q(p, q, r) is conjugate to powers of the generators q,, 9., 43, we see that
each a, b, ¢ must divide one of p, g, r. Furthermore, we have the equality

(1-L 1 D) n(1-dotohy
a b c p q r

This automatically rules out most possibilities, e.g., when p, q, and r are all at least
6. These facts also imply the crucial point: that Q(p, g, r) can contain only finitely
many triangle groups.

In fact, Greenberg [G] has determined all inclusion relations between triangle
groups. His result, slightly rephrased, is:

THEOREM 3B [G]: The following inclusions, and those that follow from them,
are all inclusion relations between elliptic triangle groups.

(1) Q(m,m,n) = Q2, m,2n) index 2
2) Q2,n,2n)=Q(?2,3,2n) index 3
(3) Q(3,n,3n)<=Q(2,3,3n) index 4
4) Q4,4,5)<0Q(2,4,5) index 6
5) Q7,7,7Y=Q2,3,7) index 24.

We might add that Knapp ([K], Theorem 2.3 and Figure 4) has given a nice
interpretation of (1), (2), and (3) in terms of assembling triangles associated to the
larger triangle group to form a basic triangle in a tesselation associated to the
subgroup. Also, it is not hard to find a triangle with angles —7— 7 7 T made up from
24 triangles in the standard tesselation associated to Q(2, 3, 7). This does not
seem possible for case (4).
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If Q(p, g, r) contains no triangle group, then Mg will be sufficiently large, since
either Mg/S" is a surface of positive genus, or else M;/S' is S? but there are at
least 4 exceptional orbits. Thus, elements of Wh(II,M(p, q, r)) are forced to
transfer to 0e Wh(II,Mg;) =0, for all subgroups G, and we have proved the
theorem in these cases. The only property of F that we are using is that it is not
hyperelementary.

If Q(p,q,r) contains a triangle group Q(a, b, c), we must first show that
Wh(II,M(a, b, c)) = 0. Perhaps the easiest way to do this is to notice that inclusion
between triangle groups give a transitive ordering, and that no triangle group
contains a proper subgroup isomorphic to itself, by area considerations. Thus,
given Q(p, q, r), we may look at the finite set S of all triangle groups properly
contained in Q(p, q, r). Minimal elements of S contain no triangle groups, so the
previous paragraph applies. By induction on the number of triangle groups
contained in a member of S, we see that the necessary Whitehead groups vanish,
and the theorem is proved.

Notice that we were fortunate in our choice of Q(p,q,r)— Q(2,3,5) in
section 2. For instance, using (1) and (2) above, we see that Q(15,15,15) is
contained in Q(2, 3, 30) with index 6, and [Q(2, 3, 5): Ds]= 6, but in our example
the group which arose was Q(2, 2, 6, 30).

1 1 1
Finally, this method fails for the cases E+—+-;= 1. The probl.m is that the
q

angles of a Euclidean triangle do not determine its area. Indeed, Q(2, 3, 6)
contains subgroups isomorphic to itself of index 3'4’, for all i, j, not to mention
subgroups isomorphic to Q(3, 3, 3) of arbitrarily large index. Similar remarks
apply to Q(2, 2, 4). However, as we have mentioned, these cases are included in
the large class of manifolds handled by Farrell and Hsiang.

4. Proof of the lemma

In [F], Fox produced surjections of Q(a, b, ¢) onto finite permutation groups F
for all values of a, b, ¢, with the added property that the kernel is torsion free.
(We are changing p, q, r to a, b, ¢ to conform to the notation in [F].) Given the
simple presentation of Q(a, b, c), and the fact that every torsion element is
conjugate to a power of some q;, Fox’s proof reduces to finding one permutation,
A, of order a, another permutation, B, of order b, such that their product AB has
order c. In most cases it will turn out that the finite group generated by A and B
in Fox’s construction is non-hyperelementary. Notice that we have obvious
epimorphisms Q(a, b, c)— Q(a’, b, c’) when a’|a, b’ | b, ¢'| c. This will allow us
to assume that a, b, and ¢ are prime powers. Also, we may assume a<b=c.
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There are two main cases:

(A) There are at least two different primes occurring in prime decompositions of
a, b, c. By the above remarks, we may assume that a, b, ¢ are prime, not all
equal (except when 2 occurs, since we rule out dihedral groups. In this case,
we can assume the numbers are either 2, odd, odd, or 2, 4, odd.)

(1) a, b, ¢ are odd:

(@) a<b=c. This is the first part of Fox’s case IIl. Let A=
(uy* - u,), B=(uy - u, " -u,). Then AB=(uus: " Uy oUUy,,"""
UpUsUy * * * Ug_q), another b-cycle. Thus, there is a well-defined homo-
morphism Q(a, b, ¢) 5 ¥, given by q,— A, q,— B, q3— (AB)™'. Suppose
that the image of ¢, say F, is hyperelementary. We have

Q(a, b, ¢)

where P is a p-group and (k, p) = 1. Since ¢(q,) has order a in F, wo(q,) # 1
implies that a =p. Similarly, 7me(q,) # 1 implies b =p. Since Q(a, b, c) is
generated by any two of q,, q», g3, either F is cyclic (which we will see is not
the case) or mp(q,) =1, me(q) #1, me(gs)# 1, so that A€Z,, a normal
abelian subgroup of F. Thus BAB '€ Z, and [A, BAB ']=1. But we easily
see that BAB 'A = (u,us- - *), while ABAB '=(u,u, - -). Thus, F could
not have been hyperelementary. The proofs in the other cases will be quite
similar to this.

(b) a=b<c. This is again case III of [F]. Following Fox, let m =

[C—l]. Then m=1 and m(b+1)+1<=c=(m+1)(b+1)-1.

b+1
@)mbp+)+1=c=m(a+b-2)+1. We can find s,,...,s,, odd, satisfying
l=s,=a-2 and Ys;=m(a+b—1)+1—c. Let D1+« s Pmsts
Uty ooy Ug g 1se-s  UT oo UB o 4y Viyeee,Vg,e.n,  OF, ..., 00,
Wi ooy W g 15+ -5 WIS oo, Wit _y, be ¢ distinct symbols. Then

m . . .

H (P - - g 0305 - - - 0})
and

B=]] (wivh---viwh (- whwip.,)



664 STEVEN P. PLOTNICK

have order a and b respectively, with AB a cycle of order ¢ (clever fellow,
that Fox!). By the same reasoning we have already used, if the group
generated by A and B is hyperelementary, AB lies in the cyclic normal
subgroup Z,. But so does BA = A"'ABA, and we compute

ABBA =(pu3 -+ +)
BAAB = (p,vi - - -).
(i) m(a+b—-2)+2=c=(m+1)(b+1)—1. Again, following Fox, write ¢ —

m(a+b—-2)-2=tla—1)+s, 1=s<a—-1, and we can write t—1=
qb—2)+r, 0=r<b-2. Let

m
B :(U§ T vslwé—s—l T W%pz) ’ H (VYWh—2 " * * WiDis1)

i=2
A :(plu} te ua —~8— 1vl ]) l_[ (ptul ia——Zvil) ) A’,

where

m

A'=@uapl- 0D 1 (Al--ALy)- A7 An,

i=m—q+1

and A}=(wip}, - - - pj), Where we are using c distinct symbols. Then AB is a
single ¢ cycle. Again, we must show [AB, BA]# 1:

(pava- ) $=35
Compute ABBA =(p,u3---), BAAB=<(p,wp_, ") s=3
(paui- ) s=1.

2) a=2:
(a) b<c, both odd. This case II of [F]. Write c—a+1=gb+r, 0=r<
b, q=1. Let

A= H bt - [T (i) - (uiwy)
i=1

—_ i i 1 1 2 2
B——Igl(u‘l---u},), where uy,...,uUp, UL, ..., Up,. ..,

ui, ..., ug, vy,..., 0, w, are ¢ distinct symbols.
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Then AB is a single c-cycle. Since all three primes are distinct, the group F
generated by A and B can be of the form 1—-Z, - F— P — 1 only if it is
actually cyclic, hence abelian. But AB =(w,ug---) and BA =(w,uf---).
(b) b=c, both odd, case I of [F]. Let A =(u,v,)(w;w,) and B =
(uywy -+ - w._y), so that AB=(u,w, - w._,vy). If AeZ,, sois BAB™'. But
A(BAB ") = (u,v,w,w;w,), whereas (BAB ')A = (u;w,wsw,v,) if c=5. If
¢ =3, Q(2, 3, 3) is the (non-hyperelementary) tetrahedral group of order 12.
(¢) bc=0 (mod 2).
(1) Q(2,3,4). This is the octahedral group, isomorphic to &,, of order 24.
The only possibility is 1 - Z; — ¥, — order 8 — 1, but 3-cycles in &, do not
generate normal subgroups.
(i) Q2,4,5), case 1 of [F]. Let A =(u,v,), B=(u,w,w,w;), so AB=
(uywyw,owsv,). If A, B generate a hyperelementary group, AB and BA must
lie in the cyclic, normal subgroup. But ABBA = (v, w,)(w;w3)(u,), BAAB =
(uywo)(v)(wywy).
(i) Q(2,4,c¢), c=7, odd, case 1l of [F]. Write c—1=4q+r,0=r<4, q=1.
Let

q—1 r
A =TT i - TT (ufv) - (ugw,)
i=1 1=1
and

B =

.

(U - - - ul),

Il

so that AB is a c-cycle. Again, we must show that [AB, BA]# 1. Compute
that BAAB fixes w,, whereas ABBA does not. This completes the proof of
the lemma in case (A).

The numbers a, b, ¢ are powers of the same prime, say p. Fox’s permutations
work in most of these cases, but not when a =b =c = p, in which case the
group produced is just Z, XZ,. Instead, we will use different permutations.
(1) p odd, #3. It will suffice to consider the case Q(p,p,p). Let B=
(12---pp+1---2p) and A=Q23p+145---p)(1p+2 p+3---
(2p—1)2p). Then B and A have order p, and AB=(135---(p—2)
p(p+2)---2p-3) 2p—-1) 2(p+1) (p+3)---(2p—-2)2p46---(p—1)),
also order p.

(a) p=3k+2. AB*=(1 p+1 p+4 --- 2p—147 --- p—1 p+2
p+5---2pp+3p+6---2p—2)(258---p369--:p—2), the product of a
(p+k+1)-cycle and a (2k + 1)-cycle. The argument is completed by observ-
ing that (B*A)(AB*)=(16"--), whereas (AB*)(B*A)=(1p+7---).
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(b) p=3k+1. AB*=(1 p+1 p+4---2p p+3 p+6---2p—1
47---p36---p—1p+2p+5---2p—-2)(258---p—2), the product of a
(p+2k+1)-cycle and a k-cycle. Again, we compute that (BZA)(AB?) =
(16---), whereas (AB*)(B*A)=(1p+7---).

(2) p =3. The above permutations do not yield an obvious solution. Since we
do not need the case Q(3, 3, 3) in our theorem, we will content ourselves
with covering all other cases, i.e., shbwing that Q(3, 3, 9) surjects onto a non-
hyperelementary finite group. In this case, we use case III of [F]. We
let A=(123)456), B=(374)(689), so that AB=(123756894).
Now observe that x=BA’B’A=(1)(8564372)9), order 7, y=
B '(BA’B?A)B = A°B?AB also has order 7, but xy=(24---), whereas
yx=(28---).

(3) p=2. Consider Q(2,4,8). Using 12 symbols, let A =(45)(89)(111),
B=(1234)(5678)9101112), with AB=(123567910)(411128). The
element y=(AB?AB*AB?)?=(2712)398)(4105) has order 3, and
B 'yB=(2127)(398)(1611). If the group generated by A and B is
hyperelementary, these elements of order 3 must lie in a cyclic subgroup. The
elements y and B™'yB do commute, but the cannot be different powers of
the same permutation — this fact is self-evident after a few moments reflection
about cycle structures in &,,. This completes the proof of the lemma.
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