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Comment Math Helvetici 55 (1980) 654-667 Birkhauser Verlag Basel

Vanishing of Whitehead groups for Seifert manifolds with infinité
fondamental group

Steven P Plotnick

1. Introduction

Seifert manifolds are a very well understood class of 3-manifolds, arismg
naturally m a vanety of situations - circle actions, algebraic vaneties, branched

covers, surgery on knots, plumbmg, etc We hâve

THEOREM Let M be an orientable irreducible Seifert manifold with infinité
fondamental group Then Wh(I7xM) 0 and ^(Zl^Mj) 0

This theorem, m the case that M îs sufficiently large, follows from deep results
of Waldhausen, who proved that Wh(171M) 0 and Ko(Z[niM]) 0 when M îs

an orientable, irreducible, sufficiently large 3-manifold [W] However, Seifert
manifolds provide a very well-known class of closed, orientable, asphencal,
non-sufficiently large 3-manifolds - those 3-manifolds M admitting effective circle
actions with 3 exceptional orbits, MIS1 S2, infinité fundamental group and

finite first homology group [EJ] In terms of Seifert invariants, thèse are the

manifolds M3 {b, (o,0,0, 0), (p, 00, (q, fr>), (r, 03)}, satisfymg -+-+-<1 and
P <\ r

bpqr + j31qr + j32pr + /33pq^:0 [O] In particular, this mcludes ail Bneskorn homology

sphères

2(p,q,r) {(z1,z2,z3)eC3C\S5 2Ï + z5 + z3 0, p, q, r pairwise copnme},

with the exception of 2(2, 3, 5) Until recently ([T], Section 4 10), thèse Seifert
manifolds were the only known examples of closed, orientable, asphencal, non-
sufïiciently large 3-mamfolds

The theorem in the case that -H—I—= 1 follows from récent work of Farrell
P (\ r

and Hsiang, [FH2], who hâve proved thèse vanishing results for torsion-free
extensions of poly-Z groups by finite groups (The euchdean triangle groups

654



Vanishing of Whitehead groups for Seifert manifolds 655

contain subgroups of finite index which are free abelian of rank two, so that the
3-manifolds hâve finite covers which are principal circle bundles over T2 Thus,
the proof of the theorem reduces to proving the following theorem

THEOREM Let M be the non-suffïciently large Seifert 3-manifold

{bAo,090,0),(p,Pi)Aq,p2)Ar,p3)} wiffi -+-+-<1 Then Wh(/I1M)-0 and
P q r

Ko(Z[/71Af]) 0

The proof will be via induction on the hyperelementary subgroups of some
finite homomorphic image of II,M This requires

(1) that we find an epimorphism LIÎM—^F, where F îs a non-hyperelementary
finite group, and

(2) that we can understand the covenng spaces of M determined by the sub¬

groups <p 1(G), where G îs a hyperelementary subgroup of F

Most of the groups needed in (1) are provided by Fox [F] To accomphsh (2), we
view M as an injective Seifert fiber space in the sensé of Conner-Raymond [CR]
This allows us to reduce our problem to one concerning the subgroups of finite
index in hyperbohc triangle groups In particular, when does a triangle group
contain another triangle group as a subgroup of finite index9 This has been
answered by Greenberg (see [G] or [K]) The crucial point îs that the angles of a

hyperbohc triangle détermine îts area
It îs a pleasure to thank Tom Farrell and Frank Raymond for helpful

conversations and encouragement

2. The strategy and an interesting spécial case

The technique of hyperelementary induction goes as follows Suppose we hâve

an epimorphism U ^> F, where F îs a finite group If G îs a subgroup of F, cp 1(G)

will be a subgroup of finite index in Jï, and there îs the transfer homomorphism
i* Wh(IÏ) -» Wh(cp 1G) Let xeWh(17) Induction tells us that x 0 if and only
if **(*) 0eWh((p 1G) for ail hyperelementary subgroups G of F A group G îs

hyperelementary if it can be wntten as 1—>Zk—>G—»P—»1, where P îs a

p-group, and we may assume (k, p) 1 Ail results stated for Wh(H) carry over to

K0(ZiI)
Very bnefly, induction îs proved by considenng Wh(/I) as a Frobemus module

over Swan's Frobemus functor G0(F), a Grothendieck construction apphed to the

category of fimtely generated, free abelian représentations of F, [SI, S2] G0(F) îs
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a ring with unit, where tensor product gives the ring structure, and the unit is Z,
regarded as a trivial ZF-module. We hâve Swan's resuit that the unit in G0(F) is a

sum of éléments i*(x), where the inclusion i:G—*F induces i*: GQ(G) —? G0(F)
by i*(N) N(S>xg ZF, and G ranges over the hyperelementary subgroups of F
([SI], Corollary 4.2). One now uses Frobenius reciprocity to conclude that
xeWh(/7) is trivial if it transfers to zéro in 1Wh(<p~1G) for ail hyperelementary
G ci F, as in [FH1], Theorem 3.1.

If M {b; (o, 0, 0, 0); (p, px), (q, /32), (r, 03)}, with -+-+-< 1, then nxM has
P Q X

the following structure:

l->Z^lI1M^>Q(p, q, r)s<q1,q2,q3| 1 qtq2q3 q\ q? q3>-> 1,

where Z is the center of UxM and Q(p, q, r) is a hyperbolic triangle group [CR].
Let us now discuss a spécial case where Q(p, q, r) has an obvious finite

quotient. Assume that p 0 (mod2), q=0 (mod3), r 0 (mod 5), and
(p, q, r) 7^ (2, 3, 5). We hâve an obvious map <p of Q(p, q, r) onto Q(2, 3, 5)
Icosohedral group, given by

(lu <h> <\3 I 1 <h<Ï2% qï ^2 ^3) ^ <Pi, P2, Pal 1 P1P2P3 P2i PÎ PÎ)-

For convenience, we dénote M above by M(p, q, r). (The invariants b, j3ls 02, 03

will not be used.) The map <p defines a subgroup of /71M(p, q, r) of index 60,

namely ker (<p°tt):

O(2, 3, 5)

l-
[, r)-=-»• Q(p, q, r) »• 1

> ker(<p°7r) > ker<p > 1.

Since ker(<p°7r) contains the center of II\M, we may lift the S1 action on
M(p, q, r) to the covering space corresponding to ker (<p°tt), which we will call M^
([CR] Theorem 4.3). The icosohedral group acts as the group of covering
transformations, commuting with the S1 action. We can divide out by the circle,
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and view the action of Q(2, 3, 5) on the 2-manifold level. We hâve the following:

/O(2 3 5)

(S\M(p,q,r))
/s1

/O(2 3

We hâve the standard action of Q(2, 3, 5) on the 2-sphere. Every principal
orbit of M(p, q, r) is covered by 60 principal orbits in M^. The situation over
exceptional orbits is slightly more complicated, and is reflected in the action of
Q(2,3,5) on S2. Points of S2 that are fixed by an élément of Q(2,3,5)
correspond to orbits in M^ where the covering transformation is acting in the
orbit, as opposed to permuting orbits. Since p corresponds to éléments of order 2,

over peS2 will be 30 points, the midpoints of edges in the triangulation. Over q
will be 20 points, the centers of faces, and over r will be 12 points, the vertices of
the triangles. Notice that we are letting p, q, r represent both points of S2 and the
order of the isotropy subgroup of the corresponding orbit in M(p, q, r).

Now, over the Zp orbit in M(p, q, r) will be 30 orbits, each 2-fold covering the
orbit downstairs. Since we hâve lifted the S1 action, each of thèse orbits will hâve
stabilizer ^Zp/2. Similarly, there will be 20 orbits with Zq/3 stabilizer, and 12

orbits with Zr/5 stabilizer. Since (p, q, r) ^ (2, 3, 5), there will be ai least 12

exceptional orbits in M^.
To apply induction, we must consider hyperelementary subgroups of

Q(2, 3, 5). Thèse are well known to be either cyclic or dihedral. (The tetrahedral
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subgroup is not hyperelementary.) Actually, we need only consider dihedral
subgroups, since, for example, every Z5 in Q(2, 3, 5) is contained in a dihedral
subgroup D5. Thus, the map WM/IiMlp, q, r))-> V/h((<p°ir)~lZs) factors through
Wh(((po7r)-1D5). Notice that we are referring to Z2xZ2 as D2.

Suppose we take one of the dihedral subgroups, say G. We hâve:

1

z-

>z-

0(2,3,5)3 G

q, r) > Q(p, q, r)

J J

J

II1M(P

J

kercp 1,

where the middle row corresponds to a covering space between M(p, q, r) and

(S1,M<P,Q(2,3,5))

/G

(S\MG)

M(p, q, r)

/s1

/s1

/s1

IG
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We now show that MG is sufficiently large. By Waldhausen [W], then,
g) 0. Thus, we can apply induction in a rather trivial fashion: éléments

of Wh^M(p, q, r)) hâve no choice but to transfer to zéro in WhC/IjMo) 0. To
show Ma is sufficiently large, we need only count at least 4 exceptional orbits.

For example, suppose G D5. (Ail dihedral subgroups of Q(2, 3, 5) of order
10 are conjugate, so it is enough to consider one of them.) Then G is generated
by a 5-fold rotation and a 2-fold one, preserving a pentagon inscribed in the
icosohedron, perpendicular to the axis of the 5-fold rotation.

The action of G partitions the set of vertices into 2 orbits, one containing 10

points and one containing 2. The circle orbits in Mv, therefore, are collapsed to 2

orbits in MG. One of thèse orbits now 5-fold covers the Zr orbit in M(p, q, r),
while one of them singly covers the Zr orbit. Notice that MG is a 6-fold irregular
cover of M(p, q, r).

Similarly, the 30 Zp/2 orbits are collapsed by G to 4 orbits. Two of thèse

doubly cover the Zp orbit, while two of them singly cover. Finally, the 20 Zq/3

orbits are collapsed to 2 orbits, each triply covering the Zq orbit in M(p, q, r).
Now count. The one orbit which singly covers the Zr orbit gives an exceptional

orbit with stabilizer Zr. The two orbits which singly cover the Zp orbit give rise to
two more exceptional orbits. If r/5> 1, we hâve one Zr/5 orbit. If p/2> 1, we hâve

two Zp/2 orbits. If q/3 > 1, we hâve two Zq/3 orbits. In other words, we always hâve

at least 4 exceptional orbits. Hence, MG is sufficiently large.
The situation with the other dihedral groups is similar. If G D2, G collapses

the 30 Zp/2 orbits to 6 orbits which doubly cover and 3 orbits which singly cover,
thus giving at least 3 Zp orbits in MG. If p/2>l, we hâve an additional 6 Zp/2

orbits. If q/3>l, we get 5 Zq/3 orbits, and if r/5>l we get 3 Zr/5 orbits. Finally,
G D3 yields 1 Zq orbit and 2 Zp orbits, and either 4 Zp/2 orbits, 3 Zq/3 orbits, or
2 Zr/5 orbits. This complètes the proof that Wh^M(p, q, r)) 0 in this spécial
case.

On the one hand, it is very nice to be able to détermine so much of the
structure of thèse covering spaces. We hâve produced explicit actions of the
icosohedral group on Seifert manifolds. With a little more work we could recover
the remaining Seifert invariants of thèse spaces. In fact, enthusiasts of the binary
icosohedral group will be pleased to know that in a similar fashion one may
construct free actions of SL(2, 5) on Seifert manifolds other than S3. This is

slightly more involved, since we must find a map directly from TIxM{p, q, r) onto
SL(2, 5) FIlX(2, 3, 5), bypassing Q(p, q, r). A method for doing this (for certain

M(p, q, r)) may be found in [P, Theorem II.3.5 and Lemma II.3.2]. For instance,
there is a free action of SL(2, 5) on

{-7; (o, 0, 0, 0);t(7,4),(7,4),...,(7,4)}y with quotient 2(2, 3, 35)!
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On the other hand, this method is unlikely to go much further in proving
vanishing results, except in other spécial cases. There are always surjections of
Q(p, q, r) onto finite groups with torsion free kernels, so that the corresponding
cover will be an S1 bundle over a surface, but thèse finite groups will not be as

well understood as Q(2, 3, 5), and analysis of intermediate covers will be difficult.
To prove the theorem, then, we should not study finite groups acting on surfaces,
but infinité groups acting on the hyperbolic plane. Our problem will be translated
into a question concerning triangle groups. Thèse groups hâve been extensively
studied, and we will use known results to complète the proof.

3. Proof of the theorem

To use induction, we need a surjection Q(p, q, r) -» F, where F is a non-
hyperelementary finite group. This is provided by the following lemma, the proof
of which we defer to section 4.

LEMMA. The hyperbolic triangle group Q(p,q,r), — H f--<l, admits a

surjection onto a non-hyperelementary finite group F.

Assuming the lemma, we now prove the theorem. Let M(p, q, r) be a non-

sufficiently large Seifert manifold with — H—I—<1. Using the lemma, and letting
p q r

G be a hyperelementary subgroup of F, we get a diagram of groups as in section
2. We now lift the circle action up to the cover corresponding to the center of
IlxM(p,q, r), where it splits as {S\S1^H), [CR, Theorem 7.3]. Hère H is the

hyperbolic plane, on which Q(p, q, r) acts as a hyperbolic triangle group:

(S\SlxH,Q(p,q,r)) /s1 H

/O(p, q, r)
/S1

/O(p, q, r)

M(p, q, r)
/s1
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We see that <p~x{G) is a discrète subgroup of PSL(2, R) acting on H, and also a

subgroup of Q(p, q, r) of index equal to [F: G].
The point is that MG will almost always be sufficiently large. If MG were not

sufficiently large, <p~x{G) would itself be a triangle group. So we are led to ask:

When can a triangle group contain another triangle group as a proper subgroup of
finite index?

Suppose O(p, q, r) contains Q(a, b, c) with index N. It is well known (see, for
instance, [M]) that the area of a fundamental domain for Q(p, q, r) is equal to

2rr\ 1 I, twice the area of a triangle with angles —,—,—. Since ail
\ p q ri p q r

torsion in Q(p, q, r) is conjugate to powers of the generators q1? q2, q3, we see that
each a, b, c must divide one of p, q, r. Furthermore, we hâve the equality

V a b cl \ p q r /

This automatically rules out most possibilités, e.g., when p, q, and r are ail at least
6. Thèse facts also imply the crucial point: that Q(p, q, r) can contain only finitely
many triangle groups.

In fact, Greenberg [G] has determined ail inclusion relations between triangle
groups. His resuit, slightly rephrased, is:

THEOREM 3B [G]: The following inclusions, and those that follow from them,

are ail inclusion relations between elliptic triangle groups.

(1) Q(m, m, n) c Q(2, m, 2n) index 2

(2) Q(2, n, 2n) c Q(2, 3, 2n) index 3

(3) Q(3, n, 3n) ci Q(2, 3, 3n) index 4

(4) Q(4, 4, 5) c Q(2, 4, 5) index 6

(5) Q(7, 7, 7) c Q(2, 3, 7) index 24.

We might add that Knapp ([K], Theorem 2.3 and Figure 4) has given a nice

interprétation of (1), (2), and (3) in terms of assembling triangles associated to the

larger triangle group to form a basic triangle in a tesselation associated to the

subgroup. Also, it is not hard to flnd a triangle with angles —, —, — made up from

24 triangles in the standard tesselation associated to Q(2, 3, 7). This does not
seem possible for case (4).
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If Q(p, q, r) contains no triangle group, then MG will be sufficiently large, since
either Ma/S1 is a surface of positive genus, or else MGISX is S2 but there are at
least 4 exceptional orbits. Thus, éléments of Wh(IIlM(p, q, r)) are forced to
transfer to Oe Wh(/I1MG) 0, for ail subgroups G, and we hâve proved the
theorem in thèse cases. The only property of F that we are using is that it is not
hyperelementary.

If Q(p, q, r) contains a triangle group Q(ay b, c), we must first show that
WhCffjMCa, b, c)) 0. Perhaps the easiest way to do this is to notice that inclusion
between triangle groups give a transitive ordering, and that no triangle group
contains a proper subgroup isomorphic to itself, by area considérations. Thus,
given Q(p, q, r), we may look at the finite set S of ail triangle groups properly
contained in Q(p, q, r). Minimal éléments of S contain no triangle groups, so the

previous paragraph applies. By induction on the number of triangle groups
contained in a member of S, we see that the necessary Whitehead groups vanish,
and the theorem is proved.

Notice that we were fortunate in our choice of Q(p, q, r) —» Q(2, 3, 5) in
section 2. For instance, using (1) and (2) above, we see that Q(15, 15, 15) is

contained in Q(2, 3, 30) with index 6, and [O(2, 3, 5): D5] 6, but in our example
the group which arose was Q(2, 2, 6, 30).

Finally, this method fails for the cases — H \--=l. The prohLm is that the
P q r

angles of a Euclidean triangle do not détermine its area. Indeed, Q(2, 3,6)
contains subgroups isomorphic to itself of index 3l4J, for ail i, j, not to mention
subgroups isomorphic to O(3, 3, 3) of arbitrarily large index. Similar remarks
apply to Q(2, 2, 4). However, as we hâve mentioned, thèse cases are included in
the large class of manifolds handled by Farrell and Hsiang.

4. Proof of the lemma

In [F], Fox produced surjections of Q(a, b, c) onto finite permutation groups F
for ail values of a, b, c, with the added property that the kernel is torsion free.
(We are changing p, q, r to a, b, c to conform to the notation in [F].) Given the
simple présentation of Q(a, b, c), and the fact that every torsion élément is

conjugate to a power of some ql9 Fox's proof reduces to finding one permutation,
A, of order a, another permutation, B, of order b, such that their product AB has

order c. In most cases it will turn out that the finite group generated by A and B
in Fox's construction is non-hyperelementary. Notice that we hâve obvious
epimorphisms Q(a, b, c) —» Q(a\ b', c') when a! \ a, b' \ fc, c' | c. This will allow us

to assume that a, fc, and c are prime powers. Also, we may assume a<b<c.
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There are two main cases:

(A) There are at least two différent primes occurring in prime décompositions of
a, b, c. By the above remarks, we may assume that a, b, c are prime, not ail
equal (except when 2 occurs, since we rule out dihedral groups. In this case,
we can assume the numbers are either 2, odd, odd, or 2, 4, odd.)
(1) a, b, c are odd:

(a) a<b c. This is the flrst part of Fox's case III. Let A
(ul • • • ua), B (ul — -ua — - ub). Then AB (uxu3 • • • ua^2uaua+1 • • •

uhu2u4 - - • ua^j), another b-cycle. Thus, there is a well-defined homo-
morphism Q(a, b, c)-^^h given by q^A, q2*-*B, q3 •-> (AB)"1. Suppose
that the image of <p, say F, is hyperelementary. We hâve

O(a, b, c)

where F is a p-group and (fc, p) 1. Since <p(qx) has order a in F, 7r<p(qx) f 1

implies that a p. Similarly, Tr<p(q2)j"l implies b p. Since Q(a,b,c) is

generated by any two of qu q2, q3, either F is cyclic (which we will see is not
the case) or ir<p(q1) l, 7r<p(q2)^:l, 7r<p(q3)^l, so that AeZk, a normal
abelian subgroup of F. Thus BAB1 eZk and [A, BAB-1]= 1. But we easily
see that BAB1A (uxu3 • • • while ABABA (uxu2 • • • Thus, F could
not hâve been hyperelementary. The proofs in the other cases will be quite
similar to this.

(b) a<b<c. This is again case III of [F]. Following Fox, let m

Then m > 1 and

(i) m(b + 1) + 1 < c ^ m(a + b - 2) +1. We can find sl5..., sm, odd, satisfying

l<st<a-2 and X ^ m(a + b-1)4-1 -c. Let pl5..., pm+i,
uî,..., uU,-i, • • •, "ï1, • • •, ""-sm-i, ul, • • •, ^s\,.. -, v?,...,vZ,
w{,..., wj_srl,..., w7, • •., w^l_Sm_1, be c distinct symbols. Then

m

A fi (PiWli^^ • • • ula-^xv\vl2 - - • vls)

and
m

B fi (V\V2 ' ' ' K^bs,-!



664 STEVEN P PLOTNICK

have order a and b respectively, with AB a cycle of order c (clever fellow,
that Fox!). By the same reasoning we have already used, if the group
generated by A and B is hyperelementary, AB lies in the cyclic normal
subgroup Zk. But so does BA =A1ABA, and we compute

ABBA (p2u| • • •

(ii) m(a 4- b — 2)+ 2<c<(ra4-l)(b4- 1)-1. Again, following Fox, write c

m(a 4- b — 2) — 2= t(a — 1)4- s, l^s<a — 1, and we can write t —1

q(b-2) + r, 0<r<b-2. Let

B (v\ • • • u>jU-i * *

A (p^l • • • Wa-s-l^î ^s
i=2

where

A' (pm^p°2 • • • p2) • II (A\ • • • AU) • Ar

and A] (wjp;2 ' * * plja)> where we are using c distinct syrnbols. Then AB is a

single c cycle. Again, we must show [AB, BA]^ 1:

(p2Wb-4 * ' * s 3

(p2llî---) 5 1.

(2) a 2:

(a) b<c, both odd. This case II of [F]. Write c-a + l qb4-r, 0<r<
b, q>l. Let

A 11 ("ÎM"1) • fi (w,1^) • (w2w2)
1=1 J=l

B II (ni • • wlb), where u\,..., ul, uj,..., ug,...,
t=i

u?,..., ug, d1? ur, vv2 are c distinct symbols.
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Then AB is a single c-cycle. Since ail three primes are distinct, the group F
generated by A and B can be of the form 1—>Zk—»F—»P—>1 only if it is

actually cyclic, hence abelian. But AB (w2u% • • • and BA (w2w? • • •

(b) b c, both odd, case I of [F]. Let A=(ulv1)(w1w2) and B
(ulw1 • • • wc_!), so that AB (u1w2- • • w^i^). If AeZk, so is BAB~\ But
A(BAB~A) (w1d1w2w3vv1), whereas (BAB~l)A (u1w1w3w2v1) if c^5. If
c 3, Q(2, 3, 3) is the (non-hyperelementary) tetrahedral group of order 12.

(c) bc =0 (mod2).
(i) Q(2, 3, 4). This is the octahedral group, isomorphic to 5^4, of order 24.
The only possibility is 1 —> Z3 —» 6^4 —> order 8 —» 1, but 3-cycles in 5^4 do not
generate normal subgroups.
(ii) Q(2,4,5), case I of [F]. Let A=(m1u1), B (m1w1w2w3), so AB
(M1w1w2w3t;1). If A, B generate a hyperelementary group, AB and BA must
lie in the cyclic, normal subgroup. But ABBA ==(uiW2)(w1w3)(m1), BAAB

(iii) O(2, 4, c), c>7, odd, case II of [F]. Write c-l 4q + r, 0<r<4, q>l.
Let

-1 r

1=1 J=l

and

B ft (w 1
• • • "4),

so that AB is a c-cycle. Again, we must show that [AB, BA]^ 1. Compute
that BAAB fixes vv2, whereas ABBA does not. This complètes the proof of
the lemma in case (A).

(B) The numbers a, fc, c are powers of the same prime, say p. Fox's permutations
work in most of thèse cases, but not when a b — c p, in which case the

group produced is just ZpxZp. Instead, we will use différent permutations.
(1) p odd, 7^3. It will suffice to consider the case Q(p,p,p). Let B

(12---p)(p + l-"2p) and A (2 3 p + 1 45 • • • p)(l p + 2 p + 3--«
(2p-l)2p). Then B and A hâve order p, and AB (1 3 5 • • • (p-2)
p(p + 2)---(2p-3) (2p-l)) (2(p + l) (p + 3)---(2p-2) 2p 46 • • • (p-1)),
also order p.

(a) p 3fc+2. AB2 (1 p + 1 p + 4 ••• 2p-l 4 7 ••• p-1 p + 2

p + 5---2pp + 3p + 6-- -2p-2)(25 8- • -p 369- • • p-2), the product of a

(p + k + l)-cycle and a (2fc + l)-cycle. The argument is completed by observ-

ing that (B2A)(AB2) (1 6 • • • whereas (AB2)(B2A) (1 p + 7 • • •
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(b) p-3fc + l. AB2 (l p + 1 p + 4---2p p + 3 p + 6---2p-l
47- •• p 36--p-lp + 2p + 5-- -2p-2)(25 8- • • p-2), the product of a

(p + 2fc + l)-cycle and a fc-cycle. Again, we compute that (B2A)(AB2)
(1 6 • • • whereas (AB2)(B2A) (1 p + 7 • • •

(2) p 3. The above permutations do not yield an obvious solution. Since we
do not need the case Q(3, 3, 3) in our theorem, we will content ourselves
with covering ail other cases, i.e., showing that Q(3, 3, 9) surjects onto a non-
hyperelementary finite group. In this case, we use case III of [F]. We
let A (12 3)(4 5 6), B (3 7 4)(6 8 9), so that AB (1 2 3 7 5 6 8 9 4).
Now observe that x BA2B2A =(1)(8 5 6 4 3 7 2)(9), order 7, y

B~\BA2B2A)B^A2B2AB also has order 7, but xy (24---), whereas

yjc (28---).
(3) p 2. Consider Q(2,4,8). Using 12 symbols, let A =(4 5)(8 9)(11 1),

B (1 2 3 4)(5 6 7 8)(9 10 11 12), with AB (1235679 10)(4 11 12 8). The
élément y (AB2AB3AB3)2 (2 7 12)(3 9 8)(4 10 5) has order 3, and

B-1y^ (212 7)(3 9 8)(16 11). If the group generated by A and B is

hyperelementary, thèse éléments of order 3 must lie in a cyclic subgroup. The
éléments y and B~1yB do commute, but the cannot be différent powers of
the same permutation - this fact is self-evident after a few moments reflection
about cycle structures in S^12. This complètes the proof of the lemma.
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