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Uber schwache quadratische Zerlegungsgesetze

NORBERT KLINGEN

Das Zerlegungsverhalten von Primidealen in abelschen Zahlkorper-
erweiterungen L | k ist aufgrund des Zerlegungsgesetzes der Klassenkorpertheorie
bekannt: Bis auf endlich viele Ausnahmen ist der Restklassengrad eines Prim-
ideals p von k als Ordnung von p modulo der L zugeordneten Kongruenzgruppe
(nach einem geeigneten Erklarungsmodul) gegeben (‘‘starkes Zerlegungsgesetz”).
Insbesondere sind die Primideale von k, die in L Primteiler ersten Grades haben,
gerade die Primideale in dieser Kongruenzuntergruppe (‘“‘schwaches Zer-
legungsgesetz’’). Das schwache Zerlegungsgesetz impliziert das starke und charak-
terisiert bereits die abelsche Korpererweiterung. Wahrend allerdings durch das
starke Zerlegungsgesetz die Korpererweiterung L | k unter allen Erweiterungen
von k eindeutig bestimmt ist, legt das schwache Zerlegungsgesetz L nur unter
allen galoisschen Erweiterungen eindeutig fest.

Erstmalig hat V. Schulze [9] nicht-abelsche ZahlkOrper angegeben, die ein
schwaches abelsches Zerlegungsgesetz haben, d.h. in denen genau die Primzahlen
einen Primteiler ersten Grades haben, die in einer bestimmten Kongruenzideal-
gruppe liegen. Die Schulze’schen Beispiele sind quadratische Erweiterungen
abelscher Zahlkorper vom Grade 3, 5, 6 mit demselben schwachen Zer-
legungsgesetz wie diese abelschen Korper. Resultate von W. Jehne ([4], §9)
zeigen, daB3 dies sehr spezielle Fille einer allgemeinen Tatsache sind: Zu allen
abelschen Korpererweiterungen L |k, die keine 2-Erweiterungen sind, gibt es
unendlich viele quadratische Erweiterungen K von L mit demselben schwachen
Zerlegungsverhalten bzgl. k wie L. Fir 2-Erweiterungen kann es solche qua-
dratischen Erweiterungen nicht geben (Klingen [S], Satz 9). Hat die abelsche
2-Erweiterung L | k jedoch mindestens den Exponenten 8, so gibt es unendlich
viele kubisch-zyklische Erweiterungen K von L mit gleichem schwachem Zer-
legungsgesetz wie L (Jehne [4], Satz 3').

Diese Ergebnisse zeigen, daf3 im allgemeinen ein abelscher Zahlkorper in der
Gesamtheit aller Zahlkorper nicht durch sein schwaches Zerlegungsgesetz charak-
terisiert ist. Nach den oben erwahnten Ergebnissen ist dies allenfalls fiir abelsche
2-Erweiterungen vom Exponenten 2 oder 4 denkbar. Daf} dies fiir quadratische
Erweiterungskorper tatsichlich zutreffen konnte, lassen neben Resultaten von W.
Jehne ([4], §6) die nachfolgenden Ergebnisse vermuten.
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646 NORBERT KLINGEN

Sei K | k ein minimales Gegenbeispiel zu dieser Vermutung, d.h. eine nicht-
quadratische Erweiterung mit schwachem quadratischem Zerlegungsgesetz (siche
Def.). Dann ist dadurch eine nicht-abelsche einfache Gruppe bestimmt, der sog.
“simple type” von K |k (Jehne [4]). Es wird gezeigt, daB als simple type die
klassischen Gruppen PSL (2, p¥) (p beliebige Primzahl, veN) nicht auftreten
konnen; dies erweitert ein Resultat von Jehne. Dariiber hinaus wird gezeigt, daf3
auch keine der einfachen Gruppen einer Ordnung unter 10° “simple type” einer
Korpererweiterung K | k sein kann.

Zusammen mit der Tatsache, da3 auch die alternierenden Gruppen 2, kein
“simple type” sein konnen (Klingen [6], Satz 3), ergeben sich hieraus Konsequen-
zen fir den Korpergrad (K : k) eines Korpers K mit schwachem quadratischem
Zerlegungsgesetz. So folgt unter anderem: Ist K | k eine Zahlkdrpererweiterung
mit schwachem quadratischem Zerlegungsgesetz und (K:k)<72, so ist K|k
bereits eine quadratische Erweiterung.

Bezeichnungen: Es bezeichne im folgenden

k einen endlich-algebraischen Zahlkorper,

P, die Menge der Primideale von k,

m einen Zykel (Erklarungsmodul) von k,

im die Gruppe der zu m primen Ideale von k,

S.(m) den Strahl modulo m in J{™,

D(K | k) die Menge der Primideale von k, die im Erweiterungskorper K einen
Primteiler ersten Grades haben,

="' die Gleichheit (von Mengen) bis auf endlich viele Ausnahmen,

exp G den Exponenten und

1s den Einscharakter einer Gruppe G.

DEFINITION. Eine endliche Zahlkdrpererweiterung K | k hat ein schwaches
quadratisches Zerlegungsgesetz, wenn eine Kongruenzuntergruppe H<J™ zu
einem Zykel m von k existiert, so daB H in J\™ den Index 2 hat und genau die
Primideale von k enthilt, die in K einen Primteiler ersten Grades besitzen und m
nicht teilen.

Hat K|k ein schwaches quadratisches Zerlegungsgesetz, so ist die Ideal-
gruppe H mit den oben genannten Eigenschaften eindeutig bestimmt (im Sinne
der “Gleichheit” von Idealgruppen, Hasse [2]). Es gilt genauer:

Bemerkung 1. Hat K |k ein schwaches quadratisches Zerlegungsgesetz mit
Idealgruppe H, so enthidlt K genau einen uber k galoisschen Teilkorper L+ k;
dieser ist eine quadratische Erweiterung von k, und zwar der Klassenkorper zu H
tiber k. B
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Beweis. Der Klassenkorper L zu H ist eine quadratische Erweiterung von k
und es gilt nach dem Zerlegungsgesetz der KlassenkOrpertheorie

D(L |k)="{pe P, |pec H}.
Nach Voraussetzung ergibt sich daher

D(L | k)="D(K | k). (1)
Mit anderen Worten:

K und L sind tuiber k Kronecker-aquivalent (2)
(im Sinne von Jehne [4]).

Nach dem Satz von Bauer [1] folgt aus (1), daB L ein TeilkOrper von K ist.
Ist nun L'|k galoissch mit L' K, so hat LL’ wegen L < LL'< K dasselbe
schwache Zerlegungsgesetz wie L und K:

D(L | k)="D(LL' | k)="D(K | k) 3)

Da L und LL' aber galoissche Erweiterungen von k sind, miissen sie nach dem
schon erwahnten Satz von Bauer iibereinstimmen. Es gilt daher L'< L, also L'=k
oder L'=L.

Damit ist Bemerkung 1 bewiesen, und die eingangs erwahnte Vermutung
besagt nun:

Es ist K gleich dem quadratischen Zahlkorper L, der zur Kongruenzunter-
gruppe H gehort.

Fiir die folgenden Untersuchungen sei nun K | k ein minimales Gegenbeispiel
zu dieser Vermutung, es gelte also

(V) K| k ist eine minimale, nicht quadratische Erweiterung mit schwachem quad-
ratischem Zerlegungsgesetz und L der quadratische Teilkorper (siche Bem. 1).

Dann gilt
K | L ist eine echte Erweiterung ohne Zwischenkorper. (4)

Es gilt sogar schiarfer

Bemerkung 2. Unter der Voraussetzung (V) ist L der einzige echte
Zwischenkorper der Erweiterung K | k.
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Beweis. Sei ke L'c K, also L< LL'< K. Nach (4) folgt L=LL’ oder K=
LL'. L=LL' bedeutet L =k oder L'=L. Ist nun LL'=K und wire L'+ K, so
wire K | L' eine quadratische Erweiterung, K besie also einen nicht-trivialen
k - Automorphismus im Widerspruch zu Klingen [5], Satz 7.

Es sei im folgenden K die galoissche Hiille von K | L. Diese K

ist dann sogar iiber k galoissch (Jehne [4], Th. 5).

(B) Mit U, H, G seien die entsprechenden Galoisgruppen von K K
iber K, L, k bezeichnet. Weiter sei N der eindeutig be- <

stimmte minimale Normalteiler von H; dieser ist nicht-

n

: L
abelsch einfach, der sog. ‘“simple type” von K|k (Jehne 2 <|
[4D. k

Q—x— <~

Es ist bekannt, daBl als simple type nicht auftreten U, (Klingen [6]) und
PSL (2, p¥) (p#+2 Primzahl, veN, Jehne [4]). Das letztgenannte Resultat wird
hier mit einfachen charaktertheoretischen Mitteln bewiesen und erweitert zu

SATZ 1. Der “simple type” N einer Korpererweiterung K | k mit schwachem
quadratischem Zerlegungsgesetz kann
(a) keine der klassischen Gruppen PSL (2, p*) (p beliebige Primzahl, veN)
sein, und
(b) keine Ordnung <10° haben.

Beweis. Sei n=(K:L) und P:H— &, die Permutationsdarstellung von H
bzgl. U, also die natiirliche Darstellung als Galoisgruppe einer erzeugenden
Gleichung fiir K | L.

Die Darstellung P ist nach den gemachten Voraussetzungen treu und primitiv.
Da die Korper K und L k-Kroneckeraquivalent sind, folgt aus der gruppen-
theoretischen Beschreibung dieser Aquivalenz (siehe etwa Jehne [4], §1)

H=\J H = U= UU U", (5)

peG peG reH TeH

wobei U’ := U” mit o € G\H gesetzt sei. Wegen der Primitivitit von P sind P | N
und P'|N (PP=P°=P(o -0 ") transitive Permutationsdarstellungen von N
desselben Grades n, also

N=U (UNN)uU U (UNN)- (6)

TeN TeN

Wegen exp U =exp H ist der Grad (K:L)=n ein Teiler von #H/exp H. Da N
als einziger minimaler Normalteiler von H auch Normalteiler in G ist, sind UNN
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und U'N N isomorph, also gilt auch exp (UNN)=exp N und n teilt #N/exp N.
Fiir N =PSL (2, p*) bedeutet dies, daB n ein Teiler von 2p*~! ist. Nach dem “Satz
von Galois” (Huppert [3], Th. 8,28) ist dies nur fiir p* =9, n =6 moglich, aber
PSL (2,9) ist als alternierende Gruppe U kein simple type. Im Falle p=2
bendtigt man den “Satz von Galois” nicht, weil dann K|k eine 2-
Potenzerweiterung ware, die zu L g K Kronecker-aquivalent wire, im Wider-
spruch zu Klingen [5], Satz 9.

Zum Beweis von (b) betrachtet man die Charaktere 6, 8’ der transitiven
Permutationsdarstellungen P |N, P'| N von N vom Grade n. Diese sind unter
Aut (N) konjugiert und es gilt fiir jedes pe N: 6(p) >0 oder 0'(p) >0 (sieche (6)).
Hieraus ergibt sich insbesondere 6% 0’. Damit besitzt N mit ¢y =0—1,, ¢' =
0'—1, zwei verschiedene, rationalwertige Charaktere, die den FEinscharakter
nicht enthalten, unter der Automorphismengruppe Aut (N) von N konjugiert sind
und die Eigenschaft ¢(p) =0 oder ¢/'(p) =0 fiir alle p € N haben. Da rationalwertige
Charaktere Funktionen der Abteilungen sind, bedeutet ¢(p) # ¢'(p) = Y(opa ™),
daB die Konjugationsklassen von p und opo~' nicht zur gleichen Abteilung
gehoren, wohl aber unter Aut(N) konjugiert sind (also z.B. gleiche Ordnung
und Maichtigkeit haben). In den einfachen Gruppen N verschieden von
PSL (2, p*) und U, mit # N =< 10° gibt es solche Konjugationsklassen hochstens in
den Gruppen PSL (3, 4), M,,, U (3, 5), Sp (4, 4) (McKay [7]). Fir diese Gruppen
N betragen die Quotienten #N/exp N beziehungsweise 2*-3, 23-3%, 2-3-52 und
26.3-5. Da der Grad von ¢ durch 1+y(1)=n|#N/exp N beschrinkt ist,
schlieBt man sofort, da3 PSL (3,4), M;, und U (3, 5) keinen rationalwertigen
Charakter ¢ mit (¢, 15,) =0 und diesem Grad besitzen. Fiir N =Sp (4, 4) gibt es
zwar verschiedene rationalwertige Charaktere ¢ mit (¢, 1) =0 und gleichem
Grad n | 960, diese erfiillen aber nicht die tibrigen Bedingungen (p) =0 oder
¢'(p)=0 fur alle pe N. Damit ist Satz 1 bewiesen.

Aus Satz 1 folgert man durch Untersuchung primitiver Permutationsgruppen
den folgenden

SATZ 2. Ist K| k eine Zahlkorpererweiterung mit schwachem quadratischem
Zerlegungsgesetz und (K :k)<72, so ist K | k quadratisch.

Beweis. Unter den Voraussetzungen (V) und mit den Bezeichnungen (B) ist H
eine primitive Permutationsgruppe vom Grade n =3(K:k), deren minimaler
Normalteiler N keine alternierende Gruppe U, ist und den in Satz 1 genannten
Einschrinkungen unterliegt. Aufgrund der Kenntnis aller primitiven Per-
mutationsgruppen vom Grade =20 (Sims [10]) ergibt sich hieraus unmittelbar:
(K:k)>40. Mit einer umfassenden Ubersicht iiber alle primitiven Per-
mutationsgruppen 1aBt sich diese Schranke leicht vergrof3ern. Man kann aber auch
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zunachst die moglichen Grade n stark einschranken:

LEMMA. .V Unter den Voraussetzungen (V) und mit den Bezeichnungen (B)
gilt fiir n=(K:L)=3(K:k), p ein Primteiler von n:

n=mp’'>p<2m
n=mp >p<m.

Beweis. Sei n=mp” und H, eine p-Sylowgruppe in H, t die Zahl der
H,-Bahnen in der Permutationsdarstellung P von G bzgl. U vom Grade
(G:U)=2mp*. Da die H,-Bahnen mindestens die Maichtigkeit p” haben
(Wielandt [11], 3.4), ist t =2m. Andererseits gilt nach (5)

H,=U U U?
i=1peH,
mit U; Fixgruppe in H, eines Elementes der i-ten Bahn (i=1,...,1). In der

p-Gruppe H, erzeugt U; einen echten Normalteiler Q, also folgt

#H,

#H, <t-—2
p

d.h.
p<t=2m.

Sei nun n=mp und p=m, d.h. p>’=n. Wegen exp U=expH und (H:U)=n
gilt p?|#H und U enthilt ein Element o mit ord o =p. Es ist dann P(o) eine
Permutation vom Grad d <n =< p?. Nach einem Satz von Praeger [9] folgt daraus
H2A, oder n=p? Beides ist aber unmoglich; letzteres nach dem bereits
bewiesenen Teil des Lemmas, das erstere, da A, kein “simple type” ist.

Von den Graden n <36 verbleiben also nur 24 und 30. Durch Diskussion der
Zyklentypen von Elementen von Primzahlordnung in H folgert man mit Resulta-
ten von Jordan, Manning und Weiss (vgl. Wielandt [11], §813, 17), daB H 2-fach
transitiv, U also eine Permutationsgruppe von Primzahlgrad 23 bzw. 29 ist. Ist U
auflOsbar, so folgt #H < 10°® im Widerspruch zu Satz 1. Im nichtauflosbaren Fall
verbleibt nur n=24, U=M,,, also H=M,, (Neumann [8]). Aber diese

! Ich danke dem Referenten fiir dieses Lemma, das die urspriinglichen Resultate verbessert.
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Mathieugruppe besitzt keinen dufBleren Automorphismus im Widerspruch zum
Beweis von Satz 1(b).
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