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Ùber schwache quadratische Zerlegungsgesetze

Norbert Klingen

Das Zerlegungsverhalten von Primidealen in abelschen Zahlkôrper-
erweiterungen L \ k ist aufgrund des Zerlegungsgesetzes der Klassenkôrpertheorie
bekannt: Bis auf endlich viele Ausnahmen ist der Restklassengrad eines Prim-
ideals p von fc als Ordnung von p modulo der L zugeordneten Kongruenzgruppe
(nach einem geeigneten Erklârungsmodul) gegeben ("starkes Zerlegungsgesetz").
Insbesondere sind die Primideale von fc, die in L Primteiler ersten Grades haben,
gerade die Primideale in dieser Kongruenzuntergruppe ("schwaches
Zerlegungsgesetz"). Das schwache Zerlegungsgesetz impliziert das starke und charak-
terisiert bereits die abelsche Kôrpererweiterung. Wàhrend allerdings durch das

starke Zerlegungsgesetz die Kôrpererweiterung L | k unter allen Erweiterungen
von k eindeutig bestimmt ist, legt das schwache Zerlegungsgesetz L nur unter
allen galoisschen Erweiterungen eindeutig fest.

Erstmalig hat V. Schulze [9] nicht-abelsche Zahlkôrper angegeben, die ein
schwaches abelsches Zerlegungsgesetz haben, d.h. in denen genau die Primzahlen
einen Primteiler ersten Grades haben, die in einer bestimmten Kongruenzideal-
gruppe liegen. Die Schulze'schen Beispiele sind quadratische Erweiterungen
abelscher Zahlkôrper vom Grade 3, 5, 6 mit demselben schwachen

Zerlegungsgesetz wie dièse abelschen Kôrper. Resultate von W. Jehne ([4], §9)

zeigen, daB dies sehr spezielle Fâlle einer allgemeinen Tatsache sind: Zu allen
abelschen Kôrpererweiterungen L | fc, die keine 2-Erweiterungen sind, gibt es

unendlich viele quadratische Erweiterungen K von L mit demselben schwachen

Zerlegungsverhalten bzgl. k wie L. Fur 2-Erweiterungen kann es solche qua-
dratischen Erweiterungen nicht geben (Klingen [5], Satz 9). Hat die abelsche

2-Erweiterung L | k jedoch mindestens den Exponenten 8, so gibt es unendlich
viele kubisch-zyklische Erweiterungen K von L mit gleichem schwachem

Zerlegungsgesetz wie L (Jehne [4], Satz 3').
Dièse Ergebnisse zeigen, daB im allgemeinen ein abelscher Zahlkôrper in der

Gesamtheit aller Zahlkôrper nicht durch sein schwaches Zerlegungsgesetz charak-
terisiert ist. Nach den oben erwàhnten Ergebnissen ist dies allenfalls fur abelsche

2-Erweiterungen vom Exponenten 2 oder 4 denkbar. DaB dies fur quadratische
Erweiterungskôrper tatsàchlich zutreffen kônnte, lassen neben Resultaten von W.
Jehne ([4], §6) die nachfolgenden Ergebnisse vermuten.
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646 NORBERT KLINGEN

Sei K | fc ein minimales Gegenbeispiel zu dieser Vermutung, d.h. eine nicht-
quadratische Erweiterung mit schwachem quadratischem Zerlegungsgesetz (siehe

Def.). Dann ist dadurch eine nicht-abelsche einfache Gruppe bestimmt, der sog.

"simple type" von K \ fc (Jehne [4]). Es wird gezeigt, daG als simple type die
klassischen Gruppen PSL (2, pv)(p beliebige Primzahl, veN) nicht auftreten
kônnen; dies erweitert ein Résultat von Jehne. Darùber hinaus wird gezeigt, da6
auch keine der einfachen Gruppen einer Ordnung unter 106 "simple type" einer
Kôrpererweiterung K \ k sein kann.

Zusammen mit der Tatsache, daB auch die alternierenden Gruppen 3ln kein
"simple type" sein kônnen (Klingen [6], Satz 3), ergeben sich hieraus Konsequen-
zen fur den Kôrpergrad (K : k) eines Kôrpers K mit schwachem quadratischem
Zerlegungsgesetz. So folgt unter anderem: Ist K \ k eine Zahlkôrpererweiterung
mit schwachem quadratischem Zerlegungsgesetz und (K:k)<12, so ist K\k
bereits eine quadratische Erweiterung.

Bezeichnungen: Es bezeichne im folgenden

k einen endlich-algebraischen Zahlkôrper,
Pk die Menge der Primideale von fc,

m einen Zykel (Erklârungsmodul) von fc,

î^fc0 die Gruppe der zu m primen Idéale von fc,

Sk(m) den Strahl modulo m in $(km),

D(K | fc) die Menge der Primideale von fc, die im Erweiterungskôrper K einen
Primteiler ersten Grades haben,

' die Gleichheit (von Mengen) bis auf endlich viele Ausnahmen,

exp G den Exponenten und
1G den Einscharakter einer Gruppe G.

DEFINITION. Eine endliche Zahlkôrpererweiterung K | k hat ein schwaches

quadratisches Zerlegungsgesetz, wenn eine Kongruenzuntergruppe Hc^m) zu
einem Zykel m von k existiert, so daB H in $km) den Index 2 hat und genau die
Primideale von k enthâlt, die in K einen Primteiler ersten Grades besitzen und m

nicht teilen.
Hat K | fc ein schwaches quadratisches Zerlegungsgesetz, so ist die Ideal-

gruppe H mit den oben genannten Eigenschaften eindeutig bestimmt (im Sinne
der "Gleichheit" von Idealgruppen, Hasse [2]). Es gilt genauer:

Bemerkung 1. Hat K \ k ein schwaches quadratisches Zerlegungsgesetz mit
Idealgruppe H, so enthàlt K genau einen ùber fc galoisschen Teilkôrper L =f= fc ;

dieser ist eine quadratische Erweiterung von fc, und zwar der Klassenkôrper zu H
ùber fc.
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Beweis. Der Klassenkôrper L zu H ist eine quadratische Erweiterung von fc

und es gilt nach dem Zerlegungsgesetz der Klassenkôrpertheorie

D(L\k)='{pePk\peH}.

Nach Voraussetzung ergibt sich daher

D(L\k)='D(K\k). (1)

Mit anderen Worten:

K und L sind ùber fc Kronecker-àquivalent (2)
(im Sinne von Jehne [4]).

Nach dem Satz von Bauer [1] folgt aus (1), da8 L ein Teilkôrper von K ist.
Ist nun L'\ fc galoissch mit L'çK, so hat LU wegen L^LL'^K dasselbe

schwache Zerlegungsgesetz wie L und K:

D(L | fc) ='D(LU | fc) =fD(K | fc) (3)

Da L und LLr aber galoissche Erweiterungen von fc sind, mùssen sie nach dem
schon erwàhnten Satz von Bauer ùbereinstimmen. Es gilt daher L'c L, also V k
oder V L.

Damit ist Bemerkung 1 bewiesen, und die eingangs erwâhnte Vermutung
besagt nun:

Es ist K gleich dem quadratischen Zahlkôrper L, der zur Kongruenzunter-
gruppe H gehôrt.

Fur die folgenden Untersuchungen sei nun K \ fc ein minimales Gegenbeispiel
zu dieser Vermutung, es gelte also

(V) K | fc ist eine minimale, nicht quadratische Erweiterung mit schwachem quad-
ratischem Zerlegungsgesetz und L der quadratische Teilkôrper (siehe Bem. 1).

Dann gilt

K \L ist eine echte Erweiterung ohne Zwischenkôrper. (4)

Es gilt sogar schârfer

Bemerkung 2. Unter der Voraussetzung (V) ist L der einzige echte

Zwischenkôrper der Erweiterung K \ fc.
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Beweis. Sei fcçL'çK, also L^LU^K. Nach (4) folgt L LU oder K
LU. L LU bedeutet L k oder U L. Ist nun LU K und wâre U =|= K, so

wâre K | U eine quadratische Erweiterung, X besàBe also einen nicht-trivialen
fc-Automorphismus im Widerspruch zu Klingen [5], Satz 7.

Es sei im folgenden K die galoissche Huile von K | L. Dièse
ist dann sogar iiber k galoissch (Jehne [4], Th. 5).

(B) Mit U, H, G seien die entsprechenden Galoisgruppen von K ^ \j
ûber K, L, k bezeichnet. Weiter sei N der eindeutig be- n(
stimmte minimale Normalteiler von H; dieser ist nicht-
abelsch einfach, der sog. "simple type" von K \ k (Jehne 2 l

[4]).

Es ist bekannt, daB als simple type nicht auftreten 9ïn (Klingen [6]) und
PSL(2, pv) (p4=2 Primzahl, i/eN, Jehne [4]). Das letztgenannte Résultat wird
hier mit einfachen charaktertheoretischen Mitteln bewiesen und erweitert zu

SATZ 1. Der "simple type" N einer Kôrpererweiterung K \ k mit schwachem

quadratischem Zerlegungsgesetz kann
(a) keine der klassischen Gruppen PSL(2, pv) (p beliebige Primzahl, veN)

sein, und
(b) keine Ordnung <106 haben.

Beweis. Sei n (K:L) und P:H-*%n die Permutationsdarstellung von H
bzgl. V, also die naturliche Darstellung als Galoisgruppe einer erzeugenden
Gleichung fur K \ L.

Die Darstellung P ist nach den gemachten Voraussetzungen treu und primitiv.
Da die Kôrper K und L k-Kroneckerâquivalent sind, folgt aus der gruppen-
theoretischen Beschreibung dieser Aquivalenz (siehe etwa Jehne [4], §1)

peG peG tgH reH

wobei [/' : U<r mit a e G\H gesetzt sei. Wegen der Primitivitàt von P sind P | N
und P' \N (Pr P<T P(cr • • • cr'1)) transitive Permutationsdarstellungen von N
desselben Grades n, also

N= U (UDN)rU U (VONT. (6)
TeN t€N

Wegen exp U expH ist der Grad (K:L) n ein Teiler von #H/expH. Da N
als einziger minimaler Normalteiler von H auch Normalteiler in G ist, sind Uf)N
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und U'DN isomorph, also gilt auch exp (UHN) exp N und n teilt #N/expN
Fur N PSL (2, pv) bedeutet dies, da8 n ein Teiler von 2pv * ist Nach dem "Satz
von Galois" (Huppert [3], Th 8,28) ist dies nur fur pv 9, n 6 moghch, aber
PSL (2,9) ist als alternierende Gruppe 9t6 kem simple type Im Falle p 2

benotigt man den "Satz von Galois" nicht, weil dann K \ k eine 2-

Potenzerweiterung ware, die zu L c K Kronecker-aquivalent ware, im Wider-
spruch zu Khngen [5], Satz 9

Zum Beweis von (b) betrachtet man die Charaktere 0, 6' der transitiven
Permutationsdarstellungen P | N, P'\N von N vom Grade n Dièse sind unter
Aut (N) konjugiert und es gilt fur jedes peN 6(p)>0 oder d'(p)>0 (siehe (6))
Hieraus ergibt sich msbesondere 6^6' Damit besitzt N mit ijj 6 - lN, ifr'=
0'-lN zwei verschiedene, rationalwertige Charaktere, die den Emscharakter
nicht enthalten, unter der Automorphismengruppe Aut (N) von N konjugiert sind
und die Eigenschaft i/Kp) ^ 0 oder i/>'(p) ^ 0 fur aile peN haben Da rationalwertige
Charaktere Funktionen der Abteilungen sind, bedeutet i/Kp) î $\p) ^(crpa x),

daB die Konjugationsklassen von p und crpcr
1 nicht zur gleichen Abteilung

gehoren, wohl aber unter Aut (N) konjugiert sind (also z B gleiche Ordnung
und Machtigkeit haben) In den emfachen Gruppen N verschieden von
PSL (2, pv) und 9tn mit # N< 106 gibt es solche Konjugationsklassen hochstens m
den Gruppen PSL (3,4), M12, U (3, 5), Sp (4, 4) (McKay [7]) Fur dièse Gruppen
N betragen die Quotienten #N/expN beziehungsweise 24 3, 23 32, 2 3 52 und
26 3 5 Da der Grad von i// durch 1 + ^(1)= n |#N/expN beschrankt ist,
schlieBt man sofort, daB PSL (3,4), M12 und U (3, 5) kemen rationalwertigen
Charakter ty mit (i/>, 1N) 0 und diesem Grad besitzen Fur N Sp (4, 4) gibt es

zwar verschiedene rationalwertige Charaktere if/ mit (ijj, 1N) 0 und gleichem
Grad n | 960, dièse erfullen aber nicht die ubngen Bedingungen i/>(p)>0 oder

i/f'(p)>0 fur aile peN Damit ist Satz 1 bewiesen
Aus Satz 1 folgert man durch Untersuchung pnmitiver Permutationsgruppen

den folgenden

SATZ 2 Ist K | k eine Zahlkorpererweiterung mit schwachem quadratischem
Zerlegungsgesetz und (K k)<72, so ist K\k quadratisch

Beweis Unter den Voraussetzungen (V) und mit den Bezeichnungen (B) ist H
eine primitive Permutationsgruppe vom Grade n \{K fc), deren minimaler
Normalteiler N keme alternierende Gruppe %m ist und den in Satz 1 genannten,

Emschrankungen unterhegt Aufgrund der Kenntms aller pnmitiven
Permutationsgruppen vom Grade <20 (Sims [10]) ergibt sich hieraus unmittelbar
(K fc)>40 Mit einer umfassenden Ubersicht uber aile pnmitiven
Permutationsgruppen laBt sich dièse Schranke leicht vergroBern Man kann aber auch
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zunâchst die môglichen Grade n stark einschrànken:

LEMMA.(1) Unter den Voraussetzungen (V) und mit den Bezeichnungen (B)
gilt fur n (K:L) \{K : fc), p ein Primteiler von n :

n mpv =^> p <2m
n mp ^> p<m.

Beweis. Sei n mpv und Hp eine p-Sylowgruppe in H, t die Zahl der

Hp-Bahnen in der Permutationsdarstellung P von G bzgl. U vom Grade

(G:U) 2mpv. Da die Hp-Bahnen mindestens die Màchtigkeit pv haben

(Wielandt [11], 3.4), ist t<2m. Andererseits gilt nach (5)

hp=ù u i/r

mit l/, Fixgruppe in Hp eines Elementes der i-ten Bahn (i 1,..., 0- In der

p-Gruppe Hp erzeugt Ux einen echten Normalteiler Ql5 also folgt

d.h.

p<r<2m.

Sei nun n mp und p ^ m, d.h. p2 ^ n. Wegen exp U exp H und (H : U) n
gilt p2 | #H und U enthâlt ein Elément a mit ord a p. Es ist dann P(a) eine
Permutation vom Grad d<n^p2. Nach einem Satz von Praeger [9] folgt daraus

H^Sln oder n p2. Beides ist aber unmôglich; letzteres nach dem bereits
bewiesenen Teil des Lemmas, das erstere, da §ln kein "simple type" ist.

Von den Graden n <36 verbleiben also nur 24 und 30. Durch Diskussion der
Zyklentypen von Elementen von Primzahlordnung in H folgert man mit Resulta-
ten von Jordan, Manning und Weiss (vgl. Wielandt [11], §§13, 17), dafi H 2-fach
transitiv, U also eine Permutationsgruppe von Primzahlgrad 23 bzw. 29 ist. Ist U
auflôsbar, so folgt #H<106 im Widerspruch zu Satz 1. Im nichtauflôsbaren Fall
verbleibt nur n 24, U M23, also H M24 (Neumann [8]). Aber dièse

1 Ich danke dem Referenten fur dièses Lemma, das die ursprûnglichen Resultate verbessert.
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Mathieugruppe besitzt keinen auBeren Automorphismus îm Widerspruch zum
Beweis von Satz l(b)
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