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Quadratic forms over rings of dimension 1

(Dedicated to Professor K. G. Ramanathan on his sixtieth birthday)

PArRiMALA RAaMAN and R. SRIDHARAN

Introduction

The object of this paper is to study quadratic spaces over commutative
noetherian domains™* of dimension 1 in which 2 is invertible. We prove (Theorem 3.1)
that over such a ring, if further, the set of singular prime ideals is finite, then any
quadratic space which contains a hyperbolic plane locally at all the prime ideals
contains a hyperbolic space of rank 2. The main tool for the proof of this theorem
is a result (Theorem 2.1) which seems to be of independent interest, which states
that over a semi-local ring of dimension 1 (in which 2 is invertible), if a quadratic
space contains locally a hyperbolic plane, then it contains a hyperbolic plane. As
an application, we classify (Proposition 4.5) quadratic spaces over k[t %], k a
field of characteristic # 2, up to anisotropic spaces and deduce that if k is a
quadratically closed field, any quadratic space of rank =3 over k[t% t’] is
extended from k. We show however (Corollary 4.8) that over R[¢?, t?] there exist
anisotropic quadratic forms of rank =3 and discriminant 1 which are not
extended from R. This follows from the result (Proposition 4.7) that the non free
projective module over R[X, Y] constructed in ([9], Proposition 1) remains non
free over H[X, Y]/(X®—Y?). (This gives incidentally a non free, stably free
projective module over a non commutative ring of dimension 1).

Throughout the paper, unless otherwise explicitly stated, R denotes a com-
mutative, noetherian ring with identity in which 2 is invertible. We sometimes
denote by g the quadratic space (R", q).

We have pleasure in thanking Dr. Amit Roy and Dr. Balwant Singh for the
various helpful discussions we had with them while this work was in progress.

§ 1. Some assorted lemmas

We collect in this section some lemmas which are needed in our later sections.
Some of the lemmas are probably well known, but we have included their proofs
for the sake of completeness.

* For the falsity of the theorem for nondomains, see, H. Bass “Modules which support nonsingular
forms,” J. Algebra 13 (1969).
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LEMMA 1.1. Let R denote a commutative ring, which is complete with respect
to an ideal I and in which 2 is invertible. If (P, q) is a quadratic space over R such

that (P, q)®g R/I contains a hyperbolic plane, then (P, q) contains a hyperbolic
plane.

Proof. Let v, we PQgxR/I be such that q(t)=q(w)=0 and q(v, w)=1. Let
v, we P be lifts of 0, w. Then (Rv+ Rw, q| Rv+ Rw) is a quadratic R-space of
rank 2 and discriminant —1+ w, uw € I. The element 1— w is a square in R since R
is I-adic complete. Hence (Rv+ Rw, q| Rv+ Rw) is a hyperbolic plane.

LEMMA 1.2. Let R be a commutative artinian ring. If (R", q) is a quadratic
space which locally contains a hyperbolic plane, then it contains a hyperbolic plane.

Proof. Let IN,, 1 <i=<r be the maximal ideals of R. We have an isometry

q®gR/rad R> [] q®xR/M, (%)

I1=<si<r

Since, by assumption, q® Ry, contains a hyperbolic plane, it follows that each
component of the R.H.S. of (%) contains a hyperbolic plane and hence

q®x R/rad R contains a hyperbolic plane. Lemma 1.2 now follows from Lemma
1.1.

LEMMA 1.3. Let R < S be commutative semi-local rings and let € be an ideal
of S which is contained in R. Let A be an Azumaya algebra over R such that
AQrS and A R/€ are both isomorphic to matrix algebras. Then A is isomorphic
to a matrix algebra.

Proof. If, for any commutative ring, Az(—) denotes the category of Azumaya
algebras over the ring, we have ([2], Theorem 5.3, p 481) the following exact
sequence

K, Az (S)®K, Az(R/€)— K, Az (S/C)— K, Az (R)
— K, Az (S)PK, Az (R/€)— K, Az (S/C)
In view of ([3], Proposition 6.8, p 120), we have, for any commutative ring B,
K, Az(B)>Q/ZQU(B)PQ/ZRSK,(B). In particular, if B is semi-local, we

have SK,(B)=0 ([2], Cor. 9.2, p 267) and hence K, Az (B) = Q/Z& U(B). Hence
we have an exact sequence

Q/ZQ U(S)DQ/ZQ U(R/C)— Q/ZQ U(S/€) — Ko AZ(R) — ...
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On the other hand, we have ([2], Theorem 5.3, p 481) the exact sequence
US)DU(R/C)— U(S/C)—Pic (R)=(1),

so that U(S)OU(R/C)— U(S/C) is a surjection and hence K, Az(S)®D
K, Az (R/€)— K, Az (S/C) is surjective and 0—K,Az(R)—K,Az(S)D
K, Az (R/®) is exact. If rank A =r?, then, the element A —M,(R) of K, Az (R)
becomes trivial in K, Az (S)® K, Az (R/€) and hence is trivial in K, Az (R).
Hence A ®xM,(R) > M., (R). Since R is semi local, we may cancel M,(R) ([13],
Proposition 3.2) to get A— M,(R).

COROLLARY 1.4. Let R be a commutative semi-local domain of dimension
1. Then, any Azumaya algebra over R which is locally isomorphic to a matrix
algebra is isomorphic to a matrix algebra.

Proof. Let R denote the integral closure of R in its quotient field K. Since
dim R =1, by Krull-Akizuki Theorem, R is noetherian and hence semi-local. The
canonical map Br (R)— Br (K) is injective ([1],7.2) and since R is semi local,
A®gzR is isomorphic to a matrix algebra. Hence, there exists an integral
extension S of R which is an R-module of finite type such that A®gS is
isomorphic to a matrix algebra. If € denotes the (non zero) conductor of R in S,
R/€ is artinian and A ®gxR/C is locally a matrix algebra. Thus, AQzR/C is a
matrix algebra modulo rad R/€ and hence is a matrix algebra. We now apply
Lemma 1.3 to complete the proof.

Remark. M. Ojanguren, in his paper entitled ‘A non-trivial locally trivial
algebra’ (J. Algebra 29, 510-512) gives an example of a domain R of dimension 2
and an Azumaya R-algebra which is locally a matrix algebra, but not a matrix
algebra. This example can be semi-localised to show that the above corollary does
not generalise to higher dimensions.

LEMMA 1.5. Let R be a commutative ring of dimension 1 for which Pic R isn
divisible for some integer n=1. Then, any Azumaya algebra of rank n* over R
which is trivial in Br (R) is isomorphic to M, (R). In fact, more explicitly, if Q is a
projective R-module of rank n, then Endg Q— M, (R).

Proof. Let A =Endgi Q, Q being a projective R-module of rank n. Since R

is of dimension 1, we can write Q = P@R""' with P e Pic R. By our assumption,
there exists P, € Pic R such that ®"P, = P. We have

R"®gP;= (@ "P))®R"'>POR",
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so that

M, (R)=Endg R"= Endg R"®% Endg P,
S Endg (R"®P,)>Endg (POR™™Y

§ 2. Quadratic forms over semi-local rings of dimension 1

THEOREM 2.1. Let R be a noetherian semi-local domain of dimension 1 in
which 2 is invertible. If a quadratic form over R contains locally a hyperbolic plane,
then it contains a hyperbolic plane.

Proof. Let R denote the integral closure of R in its quotient field K. By
Krull-Akizuki theorem, R is noetherian and hence Dedekind. Since R is semi-
local, R is semi-local and hence is a principal ideal domain.

Let g be a quadratic form over R which contains locally a hyperbolic plane.
Then, q®g K contains a hyperbolic plane and it follows that q®g R contains a
hyperbolic plane, since R is a principal ideal domain.

Let (&, ..., .)€ R™ be a unimodular isotropy of q in R" and let Sy, =1,
v,eR. ¥ S=R[py, ...,y Vq,...,¥,.), S is finitely generated as an R-module,
hence noetherian semi-local and q®gzS contains a hyperbolic plane. Let
q®xS— q, 1 h, where h denotes a hyperbolic plane over S.

Let € denote the conductor of R in S. Since S is finitely generated as an
R-module, € #0 and we have the following cartesian square

R— S

|

R/E— S/€

Since R/€ is Artinian, Lemma 1.2 implies that q®xR/€ 5 q, 1 h where h
is a hyperbolic plane over R/€. Since moreover q®xS—=>q,Lh, we have
41 QrS/I€ S q, R S/€. In view of ([2], Theorem 5.1, p 479) there exists a
quadratic form q' over R such that ¢'®xS=>q;, ¢’ QrR/€>q,. Let discq=
—A disc q' with A € U(R). Since q and q’ differ by a hyperbolic plane over S and
R/€, A is a square in both S and R/C. Let q' =(v,, .. ., v,) be a diagonalization of
q' over R. Then {(Avy, v,, ..., v,) becomes isometric to q, over S and g, over R/C.
Replacing q' by (Avy, v, ..., v,) We may assume to start with that discq=
—disc q’' =disc q' - disc h.

Denoting, for any commutative ring B, K;O(B), i =0, 1, the K;-groups of the



638 PARIMALA RAMAN AND R. SRIDHARAN

category Q of quadratic spaces over B, we have the exact sequence ([2], Theorem
5.3, p481)

K,0(S/€) > K,O(R) > K,0(S)® K, O(R/E) — K, 0(S/C)

The forms q and q' L h map into the same element in K,O(S)® K,O(R/C) under
1 and hence the class of q—q' L h in K,O(R) is in the image of ¢.

Since S/€ is semi local, the canonical map O,(S/€)— K,O(S/Q) is surjective
([14], Theorem 3.1, p317). Let a € O,(S/€) be such that the class of q—q'Lh
in K ,O(R) is the image of the class [a] of a under ¢. By definition, ¢[a]=
q,— h L h, where q, is a quadratic R-space of rank 4 which becomes hyperbolic
over S and R/€. We therefore have q—q'Lh=q,—h 1h in K,O(R) so that

qLhlh1lH>q,Lq'Lh1H

for some hyperbolic space H over R. Since R is semi-local, we have ([12],
Theorem 8.1), g Lh—q, Lq’'. Since disc q = —disc ¢/, it follows that disc g, =1.
Since q, is a rank 4 quadratic space of discriminant 1, it follows from ([8],
Theorem 4.6) that such a space is given by the reduced norm of Hom, (P, Q),
where A is an Azumaya algebra of rank 4 over R and P and Q projective
A-modules of rank 1. Since by our choice g, is hyperbolic over S and R/, it
follows that A®xS and A @z R/C are both Braner equivalent to ([8], Theorem
4.6) and hence isomorphic ([13], Proposition 3.2) to the 2 X2 matrix algebras over
S and R/C respectively. Lemma 1.3 now shows that A= M,(R), P and Q are
therefore free and hence q, is hyperbolic i.e. q;— h L h. We therefore have
qLlh=>q'Lh1lh and by ([12], Theorem 8.1), q=>q' L h, i.e. q contains a hyper-
bolic plane.

§ 3. Quadratic forms over rings of dimension 1

THEOREM 3.1. Let R be a noetherian domain of dimension 1 in which 2 is
invertible. Suppose that the singular set Sing (R) of Spec (R) is finite and non
empty. If (P, q) is a quadratic R-space such that (P, q)®@g R, contains a hyperbolic
plane for p €Sing (R), then (P, q) contains a hyperbolic space of rank 2.

Proof. Let S = R~ cspec r) P- Then S™'R is semi-local and by our assumption
(P, q)®x S 'R contains locally a hyperbolic plane. Hence by Theorem 2.1,
(P, 9)®x S™'R contains a hyperbolic plane. Let v € P be a unimodular isotropy in
(P,q)®gS'R. Let K denote the quotient field of R. Then, for any p €
Spec (R)—Sing (R), R, being a discrete valuation ring, since P,/Kv N P, is torsion
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free, it is projective. On the other hand, if pe Sing (R), (KvNP),=((S"'R) - v),
is a direct summand of P,, since v is unimodular in P®zS™'R. Thus (P/KvNP),
is projective for any p € Spec (R) and hence P/Kv N P is projective. Thus, Kv N P
is a totally isotropic direct summand of P of rank 1 which can be completed to a
hyperbolic space of rank 2 ([4], 4.10.1).

COROLLARY 3.2. Let R be an affine domain of dimension 1 over a field k of
characteristic #2. Then, every quadratic R-space which locally contains a hyper-
bolic plane contains a hyperbolic space. In particular, the canonical map W(R)—
[Tocspecr, W(R,) is injective, W(—) denoting the Wittring.

§ 4. Quadratic spaces over k[t°, t’]

Let k be any field of characteristic #2. The conductor of the subring k[t2, t*] of
the polynomial ring k[t] in k[t] is the ideal (¢?, t*) and we have the Cartesian
square

k[t?, '] —— k[t]

| |

k = k[t?, Y%, ) —>k[t)/(1?)

We begin by recording some results which we require. In what follows we shall
write R =k[t?, t*].

LEMMA 4.1. Pic(R)>k.

Proof. We have, in view of ([2], Theorem 5.3, p 481), an exact sequence

1> U(R)— U(k)x U(k[t]) 5 U(k[t]/(t?) = Pic (R) — Pic (k[t]) X Pic (k) =1
We therefore have the exact sequence

1= k*— k*x k*— U(k[t]/(1?) — Pic (R)— 1

An element A+ utek[t]/(t?) is a unit if and only if A € k™ and then the map
A+ ut— (A, A7 'w) gives an isomorphism U(k[t]/(t*)) — k™ x k. Hence the coker-
nel of m is isomorphic to k and Pic (R) = k.

LEMMA 4.2. The inclusion k — k[t?, t*] induces an isomorphism of the 2-
torsion subgrup of Br (k) onto the 2-torsion subgroup of Br (k[t?, t*]).
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Proof. We have ([6], Theorem 2.2) a commutative diagram of exact sequences

1 =Pic (k[t]/(t*)) = Br (R)— Br (k[t])®Br (k) — Br (k[t]/(1*)) — 1
o

1-Br(k)—=Br(k)®Br(k) —Br(k)—1

where the vertical maps are induced by inclusions. The map ¢ is an iIsomorphism
in view of ([13], Cor. 2.5). On the other hand in view of ([1], 7.6) ¢ induces an
isomorphism of the 2-torsion subgroup of Br (k)®Br (k) on to the 2-torsion
subgroup of Br (k[t])®Br (k). The lemma is now immediate.

LEMMA 43. K,O(k[t]/(t}))= Z]2Z X k*|k**
Proof. The inclusion k—i>k[t]/(t2) and the supplementation ¢:k[t]/(t*)—k

defined by e(a+bt)=a induce maps K,O(k)— K,O0(k[1]/(?)-> K,0(k) with
ei = identity so that K,O(k) is a direct summand of K,O(k[t]/(t?)). Since k[t]/(t?)
is local, the projection O,(k[t]/(t?))— K,O(k[t]/(t?)) is surjective ([4], Th. 3.5).
We have

O,(k[t]/(t?) = {(); g)e GL,(k[t)/(*) [ A8+ pr=1, Au=v8= 0]
B {(S )ﬁl)’ ()\(1‘ ();)

A0 0 A
Hence any element of K,O(k[t]/(t?)) is the class of (0 )\~1) or (/\,_1 0),
A € U(k[t]/(t?)). Since

PO N N

2

xe UL |

A
it follows that (

0 ..
0 )\’2) represents the trivial element of K,O(k[t]/(t?)) and

0 1 A0
K,O(k[t]/(t?)) is generated by ( 1 0) and <O )\_1)’ A running through rep-

resentatives of square classes of U(k[t]/(t?)). Since U(k[t]/(t?)) | (U(k[t]/(t?)))> =
k*/k*? it follows that K,O(k)— K,O(k[t]/(t?)) is surjective and hence an
isomorphism.

LEMMA 4.4. The inclusion k— R induces an isomorphism K,O(k)=>
K,O(R).
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Proof. In view of ([2], Th. 5.3, p481), we have an exact sequence
K, O(k[t)®K,0(k) > K, O(k[t]/(1>)
— Ko O(R)— K, O(k[t)® K,O(k) — K,O(k[t]/(t?)) =0

Since U(k[t]/(t?))/U(k[t]/(t*))*= k*/k*? in view of Lemma 4.3, the map
K;0O(k)— K,O(k[t]/(t?)) induced by the inclusion k — k[t]/(t?) is surjective and
hence n is surjective. We therefore have a commutative diagram of exact
sequences

O — K,O(R) = K, O(k[t) D K,O(k) = K, O(k[t]/(¢*) — 0

GT <PT ‘I’T
O — K,O(k) — Ky O(k)®K,O(k) — K,O(k)—0

the vertical maps being induced by the inclusions. From ([5], Theorem 1.1) it
follows that ¢ is an isomorphism. Also, since k[t]/(t?) is local and
Uk[t)/(e*)/UKk[t]/(t*))* > k*/k*>  is an isomorphism. Hence 6 is an
isomorphism.

PROPOSITION 4.5. Let k be any field of characteristic #2. Then, any
quadratic space over R = k[t?, t*] is isometric to q, L H(P) or q, L H(R"), where q,
is anisotropic and P a projective R-module of rank <1.

Proof. Since by Lemma 4.4, K,O(k)— K,O(R), any quadratic R-space ¢ is
stably extended from a quadratic space q, over k. Since q®gk[t] is extended
from q, and q is isotropic, it follows that q, is isotropic and hence contains a
hyperbolic plane. Hence q&® R, contains a hyperbolic plane for each prime ideal p
of R. By Theorem 3.1, it follows that q contains a hyperbolic space H(P), where
P is a projective R-module of rank 1. Hence we may write any quadratic space q
over R as q,1 H(Q), where q, is anisotropic and Q a projective R-module. If
rank Q>1, then Q = P@ R" with P a projective R-module of rank 1. We claim
that H(Q)= H(R"'"). In fact, it suffices to show that H(P@ R) > H(R?).

In fact, more generally, if R is any commutative noetherian ring of dimension
1 for which Pic R is 2 divisible, then, for any P € Pic (R), H(P® R) = H(R?). For,
if P=0®zQ, with QePicR, PHR-0DPQ and HQDOQ)=
(QiDQYB(QTDQ3), h) where Q,=>Q, Q,—>Q. We have Q;®
Q%> (0,8, Q%@ R> R? is a totally isotropic direct summand of H(Q® Q).
This completes the proof of Proposition 4.5.

COROLLARY 4.6. Let k be a quadratically closed field of characteristic # 2.
Then, any quadratic space of rank =3 over R = k[t*, t*] is extended from k.
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Proof. The underlying module of any discriminant module over R is free since
Pic (R)—=k has no elements of order 2. Hence the underlying module of any
quadratic space over R is free. Every quadratic space q over R of rank =2 is
isotropic, since it is stably extended from k by Lemma 4.4 and k is quadratically
closed. Hence if rank q =4, it follows from Proposition 4.5 that it is isometric to
(1) LH(R™) or H(R™") and is hence extended from k. Let now q be a quadratic
space of rank 3 over R. Then, since disc q =1, (k being quadratically closed), it
follows from ([8], Th. 4.9) that q is isometric to the orthogonal complement of 1
in (A, Nrd) where A is an Azumaya algebra of rank 4 over R. From Lemma 4.2 it
follows that A is Brauer equivalent to M,(R) and Lemma 1.5 shows that
A= M,(R). Hence q is extended.

We conclude by showing that there exist non extended (anisotropic) quadratic
spaces of all ranks =3 over R[t?, t*], where R denotes the field of real numbers.

The exact sequence of H[ X, Y]-modules

0—P—H[X, YP>HIX, Y]—0 (%)

defined by 1n(1,0)=X+1i, n(0,1)=Y +j gives a projective H[ X, Y]-module P
of rank 1 which is not free ([9], Proposition 1). The reduced norm on Endgx vy P
or P give anisotropic quadratic spaces of rank 3 and 4 respectively and of
discriminant 1 over R[X, Y] which are not extended from R([8], Th. 4.6 and 4.9).

PROPOSITION 4.7. The module P=PQ®uxvH[X, Y)/(X*~Y?) remains
non-free over H X, Y]/(X?—Y?).

Proof. The projection of P on the first factor of H[ X, YT is a left ideal of
H[ X, Y] isomorphic to P. It is generated by ([11], p 143) 1+iX+jY—kXY and
1+ Y2 If we identify H[X, Y]/(X?>— Y?) with the subring H[¢?, t*] of H[t] by
X—12, Y13, we see that P is isomorphic to the left ideal a of H[t? 3]
generated by 1+it>+jt>—kt® and 1+ t°. We prove that this ideal is not principal
which shows that P is not free. Suppose that a is principal. Then it must be
generated by an element whose degree is 2 or 3 since H[¢?, ’] contains no linear
polynomials.

Case 1. Letabe generated by 1+ a,t*+ a,t® with a, # 0. Then 1+it*+jt>—
kt*=(1+b,t>)(1+ a,t*+ a,t’) gives a,+b, =i, a,=j, bya;=0, b,a,=—k which
together imply a, =0, b, =i so that we find k =ij = — k, a contradiction.

Case 2. Let a be generated by 1+a;t?>, a;#0. Then 1+it*>+jt*—kt’=
(14 b,t>+ b,t?)(1+ a,t?) gives a, =i. The equation

1+t =1+ c t?+c 2+ cat) (1 +it?)
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leads to ¢, =—i, ¢,=0, c;i+c3=0, c3i =1, so that c;=—1=—i, a contradiction
once again. This proves the Proposition.

COROLLARY 4.8. There exist (anisotropic) non extended quadratic forms of
rank =3 and discriminant 1 over R[t?, t*].

Proof. The reduced norm on Endgy,: s P gives a quadratic form of rank 4 and
discriminant 1 over R[f?, t*]. Since P is not free in view of Proposition 4.7, the
orthogonal complement of 1 in Endg, P gives a non extended quadratic form
of rank 3 ([8], Th. 4.9). Similarly the norm form on P gives a quadratic form of
rank 4 and discriminant 1 over R[t?, t3] which is not extended. Non extended
forms of rank =5 can be constructed out of these as in ([8], Proposition 7.3).

Remark 1. Explicit non extended quadratic forms over R[t?, t*] of ranks 4
and 3 can be written down by substituting X =t*>, Y=t in the non extended
matrices over R[X, Y] constructed in [10] and [7]. By the method of [10], it can
also be proved that there exist an infinity of mutually inequivalent quadratic
spaces of rank 4 and discriminant 1 over R[>, ¢*].

Remark 2. The ring H[¢?, t*] is an example of a (non commutative) ring of
dimension 1 over which we have the non-free but stably free projective module P.
In fact POH[?, *1=H[?, 3.
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