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Comment. Math. Helvetici 55 (1980) 593-621 Birkhâuser Verlag, Basel

Pompeiu's problem on symmetric spaces

Carlos A. Berenstein and Lawrence Zalcman*

This paper, the promised sequel to [2], continues our study [30], [1], [2] of the
Pompeiu problem and related matters. In it, we extend results established for
spaces of constant curvature in [2] to the agreeably gênerai context of two-point
homogeneous spaces and, in particular, to arbitrary (globally) symmetric spaces of
rank one. Briefly, this is accomplished by reducing the question to a problem of
spectral analysis, which can then be settled using the classical theory for R1.

Problems of Pompeiu type are, in fact, closely related to questions of spectral
analysis and spectral synthesis for mean-periodic functions. The failure of spectral
synthesis for Rn (n>l) [15] raises the question of describing those situations in
which spectral synthesis does hold and, more generally, of finding the "correct"
generalization of the one-variable theory. Various versions of the Pompeiu
property comprise one class of such positive results. They also suggest that an

appropriate generalization may be obtained by replacing R by symmetric spaces
or semisimple Lie groups or (real) rank one.

The plan of the paper is as follows. Sections 1 and 2 provide brief introductions

to the Pompeiu problem and question of spectral synthesis, respectively. In
Sections 3 and 4, we show that for X G/K, G a separable unimodular Lie group
and K a compact subgroup, the Pompeiu property may be reformulated as a

question concerning the coincidence of two spaces of distributions on G. Section 5

complètes the réduction to a problem of spectral analysis in the case in which X is

a (noncompact) symmetric space. Section 6 contains a detailed discussion of
concrète examples in the situation where X has rank one, with an emphasis on
making the rather generally formulated results of previous sections as explicit as

possible; in addition to the theorems of Pompeiu type, analogues of Delsarte's
two radius theorem for the spaces in question are obtained. Section 7 continues
the discussion, focusing on analogues of Pizzetti's formula [31, p. 342]; and
Section 8 deals with the case of compact spaces, not treated above. In Section 9,

we show how the results of Sections 3 and 4 can be applied to treat the Pompeiu

*The authors were partially supportée by NSF grant MCS 78-00811.
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594 CARLOS A BERENSTEIN AND LAWRENCE ZALCMAN

problem on Rn. The paper concludes (Section 10) with a brief comment on the
gênerai setting of our results and a suggestion for future research.

In writing this paper, we hâve tried to take account of the fact that relatively
few analysts interested in problems of Pompeiu type hâve any extensive back-
ground in the theory of Lie groups. Accordingly, we hâve attempted to render
références in the text as explicit as possible and, in Sections 3 and 4 at least, to
suppress only those calculations which are genuinely routine. Our notation is

standard, based on [27] and [17], to which the reader should refer for undefîned
terms.

1.

For purposes of orientation, it will be convenient to formulate the Pompeiu
problem in a form somewhat more gênerai than usually considered. Accordingly,
let X be a locally compact Hausdorff space and il a positive Baire measure on X
A collection C {A} of compact subsets A ci X is said to hâve the Pompeiu
property with respect to (X, (i) if the condition

AeC

implies that / vanishes identically whenever f e C(X).
The situation of greatest interest occurs when X is a Riemannian manifold

admitting a transitive group G of isometries. In this case, it is natural to take jll to
be volume measure on X and the collection C to be invariant under the action of
G. Typically, one chooses a finite collection 9> of subsets of X and puts C

{gA:Ae@>,geG}. In this case, we say that the family 0* has the Pompeiu
property with respect to G. By the Pompeiu problem we understand the somewhat

vague quest for explicit conditions insuring that a family & possess the

Pompeiu property.
The examples presented below give an indication of the spirit which animâtes

the study of the Pompeiu problem.
1. Let X Rn and let G be the group of ail translations. Fix rl9 r2>0 and let

^ {Dx, D2}, where D, is a closed bail of radius rr Then 0> has the Pompeiu

property if and only if rjr2 is not a quotient of zeroes of the Bessel function

Jndz) [30, P- 247]-
2. Let X R2 and let G be the group of ail rigid motions of the plane. Let D

be a noncircular ellipse. Then & {D} has the Pompeiu property [4, p. 143].
3. Take X and G as in the previous example, and let D be a compact convex
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set with nonempty interior which fails to hâve a unique line of support at some
boundary point. Then 0> {D} has the Pompeiu property. In particular, ail convex
polygons hâve the Pompeiu property [4, p. 150]. Hère, as in the previous
example, one can replace G by the smaller group of translations at the expense of
enlarging 0> to the (infinité) set of ail rotations of D.

4. Let X R2 and let G be the group of ail translations. Fix ax, a2, a3>0 and
let 0> {Qi, Q2, Q3}, where Q, is a square of side a, having sides parallel to the
coordinate axes. Then 0* has the Pompeiu property if and only if the ratios aja2,
a2ja3, and a3ja1 are ail irrational [1, p. 253].

5. Let X=S(n, -a2), the (unique, up to isometric équivalence) complète,
simply-connected n -dimensional Riemannian manifold of constant négative cur-
vature -a2. Let G be the group of isometries of X and let & {Bly B2}, where B]
is a géodésie bail in X of radius rr Then 0> has the Pompeiu property if and only if
the équations

P~nJ2(œshar1) 0 ] 1, 2

hâve no common solution zeC. Hère P~n/2(x) is the associated Legendre
function of the first kind [2, p. 125].

6. Let X=Sn(l/a), the n-sphère of radius 1/a with the metric structure it
inherits as a subset of Rn+1. Let G be the group of ail rotations of X and let B be

an n-dimensional spherical cap of (géodésie) radius r. Then & {B} has the

Pompeiu property if and only if r is not a zéro of any of the functions

C(^+1)/2(cosar) m 1, 2, 3,....

Hère C£+1)/2(x) is a Gegenbauer polynomial [28], [25] (where différent notations
are used), and [2, p. 128].

In subséquent sections we shall show how most of the above results can be

recaptured in a uniform fashion.

2.

Let % %(Rn) dénote the loeally convex space of ail infinitely differentiable
functions on Rn with the topology of uniform convergence on compacta. A
translation invariant subspace Jl<^% is said to admit spectral analysis if M
contains an exponential, i.e. if there exists zeCn such that f(x)
ct(x 2)(x 2 XlZl + • +xMzn, xeRn) belongs to M. If the exponential polyno-
mials belonging to M are dense in M, we say that M admits spectral synthesis.
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(Recall that an exponential polynomial is a finite sum of terms of the form
p(x)el(x z), where x €Rn, z eCn, and p is a polynomial.) In case every translation
invariant subspace admits spectral analysis (synthesis), we say that spectral
analysis (synthesis) holds in g.

In a celebrated paper [26], Laurent Schwartz proved that spectral synthesis
(and, a fortiori, spectral analysis) holds in ^(R). Thus, for any collection 0> of
distributions of compact support on R the System of convolution équations in

(2.1)

has only the trivial solution / 0 if and only if there are no solutions of the form
f(x) et(x z). Equivalently, the équations (2.1) hâve no common solution /^0 if
and only if the Fourier transforms fx(z) (jUL, el(x z))(zeC) hâve no common
zeroes.

To make the connection with the Pompeiu problem, let us suppose that G
consists of ail translations on Rn. For fe%(Rn), the condition

is precisely the assertion that

(/?&)(*) 0 Ae0>, (2.2)

where Xa dénotes the characteristic function of the set A and h(x) h(~x).
Clearly, if (2.2) is to force / to vanish identically, the Fourier transforms

(XaY(z) (zeCn) must hâve no common zeroes; otherwise an appropriate
exponential satisfies (2.2). (It is at this point that the spécial arithmetic conditions on
the radii of balls, sides of squares, etc. become relevant; they insure that the
associated Fourier transforms hâve no common zeroes.) Proving the sufficiency of
this condition dépends in gênerai on certain symmetry conditions on the family 0>

which allow réduction to the situation on the line. Schwartz's theorem can then be
invoked to show that / 0. The case of gênerai (not necessarily smooth) / follows
from a standard approximation argument. This gênerai line of reasoning (with
variations) underlies most previous work in this area, and we shall follow it hère.

However, since the spaces we shall be considering are not, in gênerai, Euclidean,
considérable préparation is required before we can effect the réduction to
Schwartz's theorem. We turn to this task now.
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3.

Let G be a separable unimodular Lie group with Haar measure dg, K a

compact subgroup of G with normalized Haar measure dk (jK dk 1), and
X GJK the homogeneous space of right cosets gK with natural projection
77 : G —? X. Dénote by dx the measure on X defined by

f f(x)dx=\ (/oir)(g)dg f€S(X). (3.1)

Hère, as for any second-countable smooth manifold M, 3)(M) is the space of ail
C°° functions on M of compact support with the usual topology; its dual Q!{M) is
the space of (Schwartz) distributions on M. similarly, %(M) is the space of ail C°°

functions on M with dual ^'(M), the space of distributions of compact support.
Functions of compact support on G can be convolved according to the rule

(/*<p)(g)= f figh-'Mh) dh, (3.2)

and this extends as usual to distributions. Observe that, since G is unimodular,
one has also

(/*<p)(g)=jG fihMh-^dh. (3.3)

Introducing the distribution

ôK:/~ f f(k)dk (3.4)

on G, we can associate to each function fe%(G) a function f^ e%(X) defined by

/7ro7r /*ôK; (3.5)

cf. [19, p. 453]. Hence, each Te@'(X) lifts to a distribution f on G given by

T(f)=T(fJ fe@(G). (3.6)

If a function <p on X is regarded as a distribution, then
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thus functions (and so, distributions) on X can be identified with functions
(distributions) on G which are right-invariant under K, i.e., which satisfy <p(gk)

<p(g) for ail keK.
The lifting also induces a notion of convolution in â>'(X) by

T[*T2=f1*f2 (3.8)

if one of the distributions TJ has compact support. This convolution is associative
and satisfies T*8 8*T=T, where 8 is the distribution on X given by <S,/>

f(ir(e)), e the identity in G. While this convolution can be used to treat aspects of
the problems to be studied hère, we prefer to carry out our preliminary analysis
on the group G itself.

An élément geG acts diffeomorphically on X via

r(g)(x) gxK x xK; (3.9)

we write r(g)(x) r(g)x g • x when no confusion is possible. Following standard
conventions, we write fr f°r~19 where fe%(X) and r is an arbitrary
diffeomorphism of X. For TeS)'(X) we define

TT(/) T(r1) T(/oT), (3.10)

which agrées with the définition for functions when r leaves dx invariant, as is the
case for r T(g). If A is a compact subset of X, intégration over A defines a

distribution of compact support

(/)= f f(x)dx /e*(X). (3.11)

It is clear that TA acts on continuous (or even locally integrable) functions on X,
and an easy calculation shows that, with the obvious notation,

T^(g)=Tg.A geG. (3.12)

Suppose now that a family 0> of compact subsets of X is given. The Pompeiu
problem for 9> is the problem of deciding whether the family 0> has the Pompeiu
property, i.e. whether ail solutions fe C(X) to

g.A(/) 0 Ae^geG (3.13)

must vanish identically. This can be reformulated as a question concerning a

System of convolution équations on the group G.
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To see this, observe first that for an arbitrary compactum BcXwe hâve

tB(<p)=[ <p(g)dg <pe%(G\ (3.14)
Je

where B tt~1(B). Indeed, denoting characteristic functions by x, we hâve

tsdpY^TsdpJ13^ f <pM)dx=\ <pM)XB(x)dx

^J (<p^°7T)(g)(xB°^)(g)dg J (<P*8K)(g)xê(g)dg

dk) \

f (f <p(g)dg)dfe= f ([ <p(g)dg)dk= f <p(g)dg
JK \JBk > / ^K VJj3 / Jb

as required.
Suppose now that /g^(X) and write, as usual, (p(h) <p(h~l). Then we hâve

î*XA(g) \g Kgh~x)XAih) dh £ Rgh)xA(h) dh

f f(gh)dh= [

f f(h)dh

the last equality holding by (3.14). But fg A(/)=Tg A((/)J=Tg A(/) by (3.6)
and (3.7). It follows that

Tg A(/) /*fc(g). (3.15)g

It is worth observing that this formula cannot in gênerai be expressed in the form
/*TC for some set CçX unless a certain symmetry is assumed for A. We also

note that (3.15) defines a function of ge G and not of g(mod K) in X.
Equation (3.15) shows that, at least for smooth functions, (3.13) may be

interpreted as a System of convolution équations

(3.16)
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on G. In the next section we shall reduce the study of this System to a problem of
spectral analysis.

4.

Keeping the notation of the previous section, let Y be the set of ail right-
invariant functions in %(G) for which

<P*Xâ 0 (4.1)

for ail Ae&. In the terminology of [10], Y is a left-variety, i.e. a closed subspace
of g(G) such that ?(G)*fcy, (Actually, equality holds, since 8ee%'(G).)
Solving the Pompeiu problem consists in finding conditions under which Y {0}.

Let K be the set of ail équivalence classes of (continuous, flnite-dimensional)
irreducible unitary représentations of the compact group K [29]. For aeK, we
dénote by d(a) its degree and by a^ its character. Thus each représentation in a
maps keK to a d(<x)xd(cr) unitary matrix having trace a^fc). Set

keK. (4.2)

Intégration against ^(k) dk defines a distribution on G which is supported on
K; making the usual identification, we call this distribution $„. In particular, if 1

dénotes the trivial représentation, £j coïncides with the distribution ÔK defined in
(3.4). For future référence we record the following lemma.

LEMMA 1. Let a, p e K. Then

Proof. Since the distributions £r and £p are supported on K, it suffices to
calculate their convolution (as éléments of ^'(G)) on K. Thus

d(a) d(p) [ aAkok)ap(k) dk

d(a) d(p) f tr (a(ko)a(k)) tr p(k) dk. (4.3)
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Now recall the Schur orthogonality relations [29]. Denoting (unitary) représentatives

for a and p again by a, p (so that a(k) ||cr&J(fe)||9 i, j 1, 2,..., d(a) and

similarly for p(fc)), we hâve

crIJ(k)ft.m(k)dk 0 Uhkm;<rfp (4.4)

and

1

(4.5)

[0 otherwise.

Now

trcr(koMk)=IIcrjI(fcoK(k)

so that if cr^p.
r

Cr *£P(ko)= d{&) d(p) X &}i(k0) (Tij(k) tr p(k) dk 0

by (4.4). Similarly, by (4.3), (4.5), and (4.2)

^—-, I

d(<r) > aii(fc0) <7(.(fc) tr cr(fc) dk

d(cr) I o-^fco) d(a) tr a(k0) d(a)a(r(fc0)

as required.
Since the £r are compactly supported, the convolutions /*4r exist for any / in

^(G) or, indeed, in Q)'(G). In fact, we can décompose an arbitrary distribution /
into a séries

/= I f*L (4.6)

which converges in the topology of whichever of the spaces %(G), 2è(G), %'(G), or
3f(G) f belongs to [16, p. 13].

Now let ^o(G) be the closed subspace of 8?(G) consisting of ail functions which
are bi-invariant with respect to K; fe%(G) belongs to %0(G) if and only if
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f(k1gk2) f(g) for ail kl9 k2eK. The dual space of %0(G) is naturally identified
with the space %'0(G) of bi-invariant distributions in ^'(G).

Let °U be the closure in %'0(G) of the linear space spanned by ail distributions
of the form

S &*&*!>& (4.7)

where A g &, a e K, and T e ^(G). (Each such distribution belongs to %'0(G) since

Xa is left-invariant and £1 is right-invariant.) It is clear from (4.1) that Y^°U ={0}.
Since 8ee&0(G)9 it follows that if °U =%'0(G) then Y {0}. The converse holds as

well.

PROPOSITION. V {0} i/ and oniy i/ <tt =£{,(G).

Proo/. Define an operator r(g) (g € S) on smooth functions S by

r(g)S(h) S(hg) heG (4.8)

and extend its action to distributions in the obvious fashion. Then r(g2)°r(gi) —

r(g~1)S

& we hâve
r(g1g2) and r(g~1)S S*8g, where ôg is the Dirac distribution at g. If S

which is again of the same gênerai form. It follows that

(4.9)

for ail geG.
Now if % f %o(G) there exists a nonzero function <p € %0(G) such that

<p*S 0 Sg%. (4.10)

Indeed, since %^^(G) we can fin(l» by duality, a nonzero function ifje%0(G)
which satisfies

ail Se^U. (4.11)
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Let <p (jf. Then we hâve, using intégral notation,

(<P*S)(g)= f <p(h)S(h-1g)dh=\ *(h)S(hg)dh
Jg Jg

J (J «Khfc)S(/tfcg)dh)dfc J (j *(hk)S(hkg) dk) dg

J
Hh){[ S(hkg)dk\dg

since ijj is right invariant. Since

J S(hkg)dk ^ r(g)S(hk) dk | rigWhk'^dk

(r(g)s*«1)(h),

we obtain

(<P*S)(g)

which vanishes by (4.9) and (4.11).
To complète the proof we shall show that <p e Y, i.e. that <p is right-invariant

and satisfies (4.1). Right invariance is immédiate since <p i£ and ^ is left-
invariant. To establish (4.1), it is sufficient by (4.6) to prove that

è, 0 (4.12)

for ail Ae^, aeK. For this, we need a companion formula to (4.6). Let

*¦«*(/) £.*/*& «,Pe£ (4.13)

Then

/= Z "«.*(/) (4-14)

where the convergence is again in the topology of the space of functions or
distributions to which / belongs [16, p. 14].

For aeK dénote by à the contragredient représentation, given (in terms of
représentatives) by â(k) (at)~~1(k) a(k). Then âeK and

1). Write ff«.a 'ïra,p(S), K,e= ir^'). It is easy to see that ffo Si.i,
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LEMMA 2. (a) iraS°ira#
(b) ^.3n^,s 0 if (a,
(c) ira^(TY në,&(f), Te

Proof. Part (a) is immédiate from Lemma 1, and (b) follows from (a). To prove
(c), it is enough to show that it holds pointwise for functions. We hâve

f

f
JKxK

\
JKxK

\
JKxK

as required. Finally, to verify (d) observe that for feïï, Te%r we hâve

T(g)(\

\ T(g)( [ 4(fc.)fe (k)f(klgk) dk dk) dg

f

\
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Any Te^g)' has an extension T to ail of g; and for fe% we hâve

The correspondence T—> ir^Cr) is linear, one-to-one, and onto and thus
provides the required identification of (%aS)' and «^3.

Returning to the proof of (4.12), let <& <p *Xâ *4r f°r some choice of A
o-eK. Since <p is left-invariant, £1 * <p <p so that

whence $€£1>o. and 7r<x3(^) 0, (a, |3) f (1, a). Taking Te£\ we hâve by part
(c) of Lemma 2

But

by (4.7) and (4.10). Thus

for ail Tg^'. Since *€^lor is killed by each distribution in %'1%& (^lt<r)', we must
hâve <P 0. That complètes the proof.

Remarks 1. If a right-invariant distribution feQf(G) satisfies /*Xâ 0 then
for any <peQ)(G) we hâve <p*feY. Thus the condition °U =W0(G) is also neces-

sary and sufficient that each solution feQ)'(X) to (3.13) vanish. This shows that
the hypothesis of smoothness in (3.13) may be relaxed to continuity or even local

integrability.
2. More generally, if the family {TA : A e&\ is replaced by an arbitrary family

of distributions in %'(X) the analogue of Proposition 1 holds (with obvious
modifications in the définition of GU).

The réduction of the Pompeiu problem accomplished above raises the question

of finding concrète conditions which détermine whether or not °U
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When X Rn, an appropriate necessary condition is provided by the nonexistence
of common zeroes for a certain family of holomorphic functions (which arise as

Fourier transforms of distributions associated with the family 0>). Whether such a

condition is sufficient for the Pompeiu property to hold for a family 0> of subsets

of Rn remains an open question. Of course, the choice G Rn, K {0} yields
%Q(G) <g'(Rn)\ and, as mentioned above, there is a counterexample to spectral
analysis in Rn (n^2). However, that counterexample does not involve distributions

of the form Xa-
In gênerai, progress beyond Proposition 1 requires extra assumptions on X;

otherwise, %'0(G) may even fail to be commutative. Accordingly, we shall assume
henceforth that (G, K) is a symmetric pair such that X is a Riemannian globally
symmetric space.

5.

Suppose now that G is a connected non-compact semi-simple Lie group with
finite center, and let K be a maximal compact subgroup of G. Then X GJK is a

globally symmetric space of non-compact type, and each such symmetric space
can be realized in this fashion.

For /g^0(G), i.e. for feQ)(G) and K-biinvariant, we hâve a spherical Fourier
transform

(5.1)

Hère 91 is a real vector space of dimension /, the rank of X (and the real rank of
G) and the <px are the spherical functions of G [17, p. 398]. Denoting Lebesgue
measure divided by (lir)112 by dk, we hâve the inversion formula [20, p. 35]

[ (^)()pA(g)|()| (5.2)

where c(À)"1 is a certain analytic function on %* and w is the order of the Weyl
group W, a certain finite group (generated by reflections) of automorphisms of the

complexified space 91*.

The functions <px are defined for Àe9tc, and (^f)(À) extends to an entire
function on 91?. Regarded as functions of À, the <px are invariant under the action
of W; thus &f is also W-invariant. In fact, one has an analogue of the Paley-
Wiener theorem: the spherical Fourier transform establishes a bijection of S)0(G)
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onto the space of W-invariant entire functions on SlJ of exponential type which
are rapidly decreasing on SI* [20, p. 37]. This bijection extends to a vector-space
isomorphism between %rQ and the space 2F{%'0) of W-invariant entire functions on
SI* of exponential type which are slowly increasing on SI* [8].

Now the sphencal Fourier transform of / is the composition of the classical
Fourier transform on the Euclidean space SI* with the Abel transform Ff of f (see

[17, p. 429]). Since Ff*g Ff*Fg [17, p. 454], one has

g)(À) (Ff,gr (A) (Ff *Fgr (A)

(Ffr(A)(Fgr(A)

so the correspondence between gj and £F(<£o) is an algebra isomorphism as well.
Finally, we observe that the isomorphism is topological. This is surely well-known,
but we hâve been unable to find a simple proof in the literature; for completeness,
we sketch the proof.

The space ^(Rn) carries the topology that makes it isomorphic to %'(Rn). For

any constant A >0 the set 38A of ail entire functions in Cn satisfying

|/(z)| < A(l + |z|)A exp A |Im z\ (5.3)

is a bounded subset of %'(Rn), furthermore, this topology is characterized by the
fact that every bounded set is a subset of some 38A [9, Lemma 5.18]. The space
3F(%o) is a closed complemented subspace of $'(Rn) and we consider it with the
relative topology. The open mapping theorem shows that ail we hâve to prove is

that the map 3F : %'q —» ^(^o) is continuous. since %'o is bornological [27] the

problem reduces to showing that for any given bounded set 38 in %'o we hâve

^(âB)c 38A for some A >0. If Dl9..., Dt are the generators of the algebra of
biinvariant differential operators in G (î rank of X), then there is a compact
subset C and constants AX,N such that Te 98 implies

for any fe%0(G). Since [17, p. 431]

for some W-invariant polynomials pl9 we hâve that (5.3) holds for ail the functions
^T(A)=T((px(g~1)), TgS8, for a sufficiently large constant A. Hence the

isomorphism VQ 9*%$ is topological.
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It is now clear that a necessary condition for °U WQ is that the variety Z(°U) of
common zeroes of the entire fonctions SFS from (4.7) must be empty. When l 1,

this condition is also sufficient. In that case, W contains a single nontrivial
transformation, which may be taken to be multiplication by -1; thus, ^(^o)
consists precisely of the even fonctions of exponential type on C which are slowly
increasing on R. applying Schwartz's theorem [26] together with a simple averag-
ing process complètes the proof of the sufficiency.

6.

Calculating the spherical Fourier transforms of the distributions in (4.7) is

most agreeable in precisely those cases of the greatest géométrie interest (in which
0> consists of sphères, balls, or other spherically symmetric distributions). As in
earlier work, it turns out that knowledge of the intégrais of a function over ail
balls of two distinct radii is, in gênerai, sufficient to détermine the function
uniquely.

Suppose then that X GJK is a non-compact rank one symmetric space and

let 0> consist of a pair of géodésie balls Bl9 B2 centered at 7r(e) 0eX having
radii r; (/ 1, 2). To verify that the transforms of the distributions in (4.7) hâve no

common zeroes, it clearly suffices to show that the transforms 9*Xb, hâve no
common zeroes À eC. The spherical fonctions on G are the lifts to G of fonctions
<p(x) on X which dépend only on the distance t between x and 0. Making the
natural identifications and writing <px indifferently for fonctions on G, X, or R+,

we hâve

f
->B

£ <px(x) dx j <px(t)A(t) dt, (6.1)

where A(t) is the area of the sphère of radius t in X.
Further calculation dépends on the explicit form of <pk(t) and A(t). Thèse are

given [18], [12] by

jRi(lX_p)(cosh 2kî), (6.2)
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where p a + j3 4-1 and

and by

Hère, F(a,b;c;z) dénotes the usual hypergeometric function; n is the real
dimension of X; a n/2- 1 and /3 are real parameters depending on X; and k is

a real parameter (the appearance of which as an argument of <p we suppress)
whose dependence on the metric of X is given by m —4k2, where m is the
maximum sectional curvature of X. Ordinarily, we may take k 1.

The functions <px satisfy

a _i_/2_i\2\ 2 (\ ((L A\

where

A
d2

|
A'^ a

1 dt2 A(t) dt

is the "radial part" of the Laplace-Beltrami operator A on X.
The simply connected rank one symmetric spaces of non-compact type are the

real, complex, and quaternionic hyperbolic spaces Hn(R), Hn(C), and Hn(H) and
the Cayley hyperbolic plane H16(Cay) [17]. Realizations of thèse spaces as GJK
and the corresponding values of the parameters a, p, and n are exhibited in the

following table; cf. [17, p. 354], [21, p. 239]

X

H"(R)

Hn(C)

Hn(H)

H16(Cay)

G/K

SO0(n, l)/SO(n)

SU(n/2, D/SCU^xUj)

Sp(n/4,l)/Sp(Fî/4)xSp(l)

F4(-20)/SO(9)

a

n
2~
n
2~

--1
7

2~

0

1

3

n

2, 3, 4,....

4, 6, 8,....

8,12,16,....
16
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A direct calculation (cf. [11, 2.8 (27); 2.1.4 (23)]) yields

r <„,
I ^P X

io

Tj.n/2 /<iinh k-r\n
-A2S +2 (ot + 1, B + l)/~\ //l /C\

F(n/2+l)\ k

Accordingly, we hâve the following

THEOREM 1. Let Xbe a noncompact symmetric space of rank one. Suppose
and

\ u
•te

{x)dx 0 (6.7)

for each géodésie bail in X having radius rx or r2. Then u 0 so long as the

équations

<PirUfi+1)(rJ) 0 j l,2 (6.8)

hâve no common solution ÀeC,

For X=Hn(R), this resuit was obtained in [2, p. 122]; note that

(sinh

where P^(z) is an associated Legendre function; cf. [13, p. 248], [11, 3.2(7)].
When (6.8) does hâve a common solution ÀoeC, it is relatively easy to exhibit

a nonzero function in C(X) which satisfies (6.7). Indeed, take /(*) <p^'3)(0>
where as before t dist (x, 0). Spherical functions on G satisfy (and, indeed, are
characterized by) the identity

J <p(gkh)dk <p(g)<p(h) g,heG; (6.10)

cf. [17, p. 399]. Taking <p in (6.10) as the lift to G of <pltt'3)(x) <p("'3)(t), we may
interpret the left-hand side of (6.10) as the mean value of <Px*'e) over the sphère
in X centered at x 7r(g) having radius s dist (7r(g), Tr(h)); cf. [17, p. 434].
Thus, denoting the bail of (géodésie) radius r centred at x eX by Br(x), we hâve,
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by (6.10), (6.6) and (6.8),

f" cpt3)(x)<pt
J 0

vZKy) y fpt()pt()() ds
Br(x)

_
tt^2 /sinh Kr\n

~r(n/2+l) \#c /
x (cosh *r)2*+VCP)(x)<P(£+1'*+1)(r) 0

for ail x € X, whenever r r1 or r2.

The case of spherical means is implicit in the discussion given above and

requires no further calculation. Let u e C(X) and dénote by U(x, r) the mean
value of u taken over the géodésie sphère in X of radius r centered at x. Then we
hâve

THEOREM 2. Let X be a noncompact symmetric space of rank one. Suppose

ueC(X) and that there exist rl9 r2>0 such that

0 / l,2 (6.11)

for ail xeX. Then u=0 so long as the équations

<P^e)(ri) 0 / 1,2 (6.12)

hâve no common solution À eC.

Should the System (6.12) hâve a solution Ao, then /(x) <p(x"'3)(0 is a nonzero
smooth function on X whose mean value over each sphère of radius r1 and r2 is

zéro; cf. (6.10) et seq.

Theorems 1 and 2 hâve analogues in which the hypothèses that intégrais of u

over balls or sphères vanish is replaced by the assumption that u satisfies a

mean-value condition and the conclusion is changed correspondingly to assert that
u is harmonie, i.e., Au 0. Thèse results extend the celebrated two radius
theorem of Delsarte [6], [7] (cf. [30], [2]) to noncompact symmetric spaces of rank

one. (That harmonie functions on such spaces possess the mean-value property is,

of course, well-known [23], and in any case, follows from (7.5) below.)
We state the resuit for sphères.

THEOREM 3. Let ueC(X) and suppose that

U(x,r)=u(x) r=rl9r2 (6.13)
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for ail xeX. Then Au 0 so long as the équations

<pl"'p)(ri)=l <pLa'3)(r2)=l (6.14)

hâve no common solution \eC\{±i(nJ2+ ($)}.

For X Hn(R), this resuit was obtained in [2, p. 121]; cf. (6.9).

Proof. Consider the radial distributions on X given by S, /2, - ô0, where 17, is

normalized surface area on the géodésie sphère of radius r, centered at 0 g X. The
hypothesis of Theorem 3 is that SJ(u) 0 (/ 1, 2) for ail reG. This translates to
the équations û*S,=0 (j =1,2) in G; cf. (3.10)-(3.16). Identifying the collection
of radial distributions in %'(X) with %b(G) and taking spherical Fourier trans-
forms, we hâve

-(P2 + A2)k2F,(A)

Hère p a + /3 + l (n/2 + /3); A is the Laplace-Beltrami operator on X, given by
(6.5) for radial distributions; and Tje%'0(G) is determined by #T, =Fr

Now

and by hypothesis the FJ can hâve no other common zéro. It follows that the
closure of the idéal in %'0(G) generated by 7\ and T2 is ail of %b(G); hence A80

belongs to the idéal generated by S, AT, (j 1, 2). We conclude that Au 0, as

required.

7.

Knowledge of the spherical functions enables us to dérive explicit représentations,

analogous to the classical formula of Pizzetti [22], for the spherical means of
functions defined on rank one symmetric spaces; cf. [31], [2] and [5]. For X such

a space of noncompact type and u e C(X) we dénote by U(x, r) the mean value of
u over the sphère of (géodésie) radius r centered at xeX. When u g C2(X), U
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satisfies the diflferential équation

ArU(x,r) àU(x,r)

U(x,0) u(x), ~(x,0) 0.
(1A)

or

Hère A dénotes the Laplace-Beltrami operator on X and Ar
d2/dr2 + [A'(r)/A(r)]dldr (cf. (6.5)) is the radial Laplacian, acting on functions of r.

Equation (7.1) can be written more concretely as

— AU. (7.2)
dr

where |3 dépends on X and k dépends on the normalization of the metrie; cf.

Section 6. In particular, if u satisfies Au + fx2u 0 then U(x, r) U(r)u(x), where
U(r) satisfies the ODE

U"(r) + [(n -1)k coth kt + (2|3 + 1)k tanh *r]l/'(r) + jut2l/(r) 0,

1/(0) 1

with solution

Kr

(7.3)

An équivalent représentation is given by

2KT

(cosh Kr)2p

(7.4)

cf. [11, 2.1.4(23)].
Replacing fi2 by -A in (7.3) and (7.4) and applying the operational expression
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obtained to m, we obtain the expansions

Kr\2m

and

r
/sinh

u(x)

(7.5)

2k

^+(2nj3-2n + 4p-4)K2] • • • [A + (2n/3 -2(m - l)(n — 2/3
•)¦

(7.6)
where the empty differential opérâtor (m 0) is understood as the identity.

Thèse formulas are valid for u real-analytic and r sufficiently small; for
fonctions with less smoothness truncated expansions (with remainder) hold.
Taking /3 n/2-l and setting K i\fk/2, we obtain the expansions for H(Rn)
given already in [2, p. 119]. Note also that letting k tend to 0 in either (7.5) or
(7.6) leads to the classical Pizzetti formula

valid for fonctions defined in Rn.

Expansions analogous to (7.5) and (7.6) can also be obtained for V(x, r), the
(volume) intégral of u over the géodésie bail of radius r centered at x. Thus, direct
intégration of (7.6) gives

- 2n -h4/3 -4)k2] • • • [4 + (2n|3 - 2(m - l)(n -2p + 2m - 2))k2]

m! i I-
¦)¦

(7.8)
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which corresponds to the first expression on the right hand side of (6.6); cf. [2,

p. 124]. Corresponding to the second expression in (6.6) and to (7.5), we hâve the
expansion

V(x,r) 7rnJ2[ (cosh *r)2(3+1) J £ H;

Related expansions hâve been obtained by Gray and Willmore [14].

8.

To complète the foregoing discussion, let us say a few words about rank one
symmetric spaces of compact type. Thèse spaces, which are in one-to-one
correspondence with their non-compact duals discussed in Section 6, consist of

(1) The sphères, Sn SO(n + l)/SO(n) (n 2, 3, 4,... );
(2) the complexprojective spaces, Fn(C) SU(n/2)/S(Un/2 x Ux) (n 4,6,8,...);
(3) the quaternionic projective spaces,

and

(4) the Cayley projective plane, P16(Cay) F4(_52)/SO(9), ail of which are

simply connected.

To complète the list we must add

(5) the real projective spaces, Pn(R) SO(n + 1)/O(n) (n 2, 3,4,...).
So far as the local expansions obtained in Section 7 are concerned, there is

little to add: thèse formulas retain their validity in the compact case under the

simple change of variable k ^ ïk.
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The situation as regards the results of Section 6 dépends upon global proper-
ties of the spaces involved and is correspondingly more délicate. Thus, in the

compact case, ail geodesics are closed and hâve the same finite length [17, p. 356].
This fact may be conceived of as imposing on radial functions an additional
requirement of periodicity, which reduces by one the number of conditions
needed for a positive resuit. It turns out that a condition involving only a single
radius is sufficient to ensure an affirmative solution to the Pompeiu problem. The
rôle of the Fourier transform is taken over by expansion in séries of spherical and
associated spherical functions; in particular, the exceptional set is the collection of
zeroes of a certain family of Jacobi polynomials. The case X Sn, treated by
Ungar [28], Schneider [24], [25], and the authors [2] is typical and already
contains the essential features of the gênerai case. Accordingly, we shall content
ourselves with a brief sketch and statement of the results. The reader intent on
working out the détails should find [21] an instructive référence.

For X a compact symmetric space of rank one, viz. any of the spaces listed in

(l)-(5) above, the corresponding spherical functions are given by

<pm(t) R^\œs 2*0 m 0,1, 2,... ;

cf. (6.2). Hère R^(x) F(-m,m + a + |3 + l;a + l;(l-x)/2) is, up to normali-
zation, a Jacobi polynomial; and t dénotes the géodésie distance from 0 7r(e)e
X. As before, a n/2-l and 0 are parameters depending on X; we hâve

0 n/2- 1,0,1, 3, or -\ as X= Sn, Pn(C), Pn(H), Fn(Cay) or Pn(R), respectively.
Finally, k is a real parameter which may now be interpreted as tt/2L, where L is

the diameter (maximum distance between two points) of X.
Corresponding to Theorems 1 and 2 of Section 6 we hâve

THEOREM 4. Let X be a compact rank one symmetric space. Suppose

ueL\X) and

l u(x)dx 0 (8.1)

for each géodésie bail in X of (fixed) radius r. Then u 0 so long as r is not a zéro

of any of the functions

Rm +1'3+1)(cos 2*0 m 1, 2, 3,.... (8.2)

More generally, if (8.1) holds for ail géodésie balls of radii rt, r2,..., rx and the
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équations

R(«+i.*+i>(cos 2Kr}) 0 / 1, 2 I (8.3)

hâve no common solution for m 1, 2,..., rfien u 0.

THEOREM 5. Let X be a compact rank one symmetric space. Suppose

u g C(X) and that

U(x,r) 0 (8.4)

for ail xeXand some fixed r. Then u 0 unless r is a zéro of one of the functions

JRÎ?3)(cos 2Kt) m 1, 2, 3,.... (8.5)

Similarly, if (8.4) holds for r rl9 r2,..., f\ and the équations

K£'3)(cos 2fcr,) 0 / 1, 2,..., I (8.6)

hâve no common solution for m 1, 2,..., fhen u =0.

Examples analogous to those given in Section 6 show that the exceptional set

cannot be dispensée! with.

9.

The discussion in Sections 3 and 4 can also be applied to recapture the central
resuit (Theorem 4.1) of [4], dealing with functions defined on Rn. We sketch the

détails, as they relate to the Pompeiu problem, below.
Write Rn G/K, where G M(n), the group of euclidean motions, and

K SO(n). Let a family 0> of compact sets AcR" be given. To settle the

Pompeiu problem for 9* we must détermine whether or not the closed idéal °U

generated by distributions of the form Xa*4t*^*£i exhausts %b(G). Formula

(4.14) shows that it suffices to consider the convolutions Xâ*T, where T ranges

over ail right-invariant distributions in <£'(G). Since xâ is left-invariant, Xâ*T is

bi-invariant and so may be identifled with a radial function on Rn.

Now for radial functions, the euclidean Fourier transform takes the guise of a

Bessel transform. Indeed, suppose F(x) F(r), \x\ r; then writing x r<o, £



618 CARLOS A BERENSTEIN AND LAWRENCE ZALCMAN

Rw' (K2 £? + {!+• • • + £„), we hâve (cf. [3, p. 69])

f f e~lrR(* "'F(ra>)da>rn-ldr

where ^j(z) JI(z)/zI. Clearly, the Fourier transform maps radial functions to
radial functions. In fact, it is an isomorphism between the space %q(G) and the

even functions in g*(R) (see [27] or [4, p. 134]).
Consider the collection of Fourier transforms (xa * ?T obtained as A ranges

over 0> and T varies over ail right-invariant distributions in %'(G), thèse are
functions of fï + fi+" * * + £n£C- In case thèse transforms hâve a common zéro

a e C, it is clear that °U cannot coincide with %'0(G), since 1 e °U ; thus the Pompeiu
property fails for 0>. If, on the other hand, the transforms hâve no common zéro
we may, in view of the isomorphism between ^o(G) and the even functions in
%'(R), apply Schwartz' one-variable theorem to conclude that 9* has the Pompeiu
property.

To obtain a more tractable condition than the vanishing of the transforms

(Xâ*T)a requires some additional calculation. Recall that M(n) can be rep-
resented as the group of (n +1) x (n +1) matrices of the form g ||o ï||, where
fceSO(n) and xeR" (as a column vector). Then

g
x and dg dk dx,

where dk is normalized Haar measure on SO(n) and dx is Lebesgue measure on
Rn. Suppose / is K left-invariant and T is K right-invariant. Then F(g) (/* T)(g)
is bi-invariant and so dépends only on |x|. Abusing notation, we write F(x)
(xeRn).

Taking g ||o ï||, we hâve

F(x) f f(gh'l)T(h) dh

where

h Ia il and dh dkdy-
110 1 II
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Since T is right invariant we may write

Moreover,

_
III xll llfc-1 — fc-^ylj _ jjfc-1 x - fc^yll

g ~i lI I I IIio ilI o i II II o

so that

Y — t~1vll\ /\\T l-Y

since / is left-invariant. Writing <p(x) /(||J *||), we obtain

F(x)=J <p(kx-y)T(y)dkdy,

so that the Fourier transform is given by

<p(fcx - y)T(y) dk dy dx.[
n JSO(n)

Set x' kx; then x • £ fc~V • f x' • (fe"1)^ x' • kf and dx dx' since k g

SO(n). Interchanging order of intégration and writing x for x', we obtain

y(y)ydk
dfc.

This is the desired formula.
Setting f=XA, we hâve

I I e lx H\ (p(x-y)r(y)dydx

4o(n)

so that <p(ê) XA(~~£)> while r is an arbitrary distribution of compact support in
Rn. Suppose that Xa vanishes on the complex sphère Ma {%\ + £| + * * * + ^n «}»
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a t^O; then (9.1) shows that, for £ eMa, F(|) (*à * TM£) 0, whatever the

choice of T. Conversely, if F 0 on Ma for ail choices of T, we hâve *a 0 on

Ma. Indeed, write a \a\el6 and consider the (n-l)-sphere S {e'e/2jc :xeRn,
|x|2 |a|}c: Ma. The restrictions of holomorphic polynomials peC[zl9 z2, • • •, zn]

are dense in C(S) because z?*z%* • • • zMs elim^m^ ' +m»)enx?*x^ • • • x£».

Since Cfo, z2,..., zn] c t'(Rn) and S SO(n) • (VRe1*'2, 0,..., 0), it follows
from (9.1) that Xa=0 on S. An additional re'asoning, based on the fact that a

function analytic on a connected open set U^Cm which vanishes on L/HRm
must vanish on ail of U, now shows that xà 0 on the full variety Ma ; we omit
the détails. This argument fails for a 0; in that case, however, £a(0) \A\ ^ 0,

so that (9.1) yields F(0) xa(0)t(0)^0 as long as î(0)^0.
The discussion given above actually shows that if 0> {P} is a family of

distributions for which Ma<£ f]9>{P~1(0)}= Z for ail a^ 0 then any solution of the

System Pg(/) 0, geM(n)9 Pe& is polyharmonic; i.e., there exists m m(0>)>O
such that âmf= 0. If 0 £ Z, then m 0, and the family 0> possesses the Pompeiu
property.

10.

The spaces considered in this paper, the symmetric spaces of rank one
(compact and noncompact), together with the Euclidean spaces Rn (n
1, 2, 3,... and the circle S1, comprise the two-point homogeneous spaces [17],
[18], [23]. Thèse are the Riemannian manifolds with the property that for any two
pairs points (jc19 x2) and (yu y2) satisfying d(xl9 x2) d(yx, y2), there exists an

isometry mapping xt to yx and x2 to y2. The same collection of spaces also
exhausts the class of manifolds known to be harmonie spaces [23]. (A Riemannian
manifold X is harmonie if every function defined and harmonie on an open subset

U<^X possesses the mean-value property at each point of U; cf. [23, pp. 45-52].)
It would be interesting to investigate the extent to which the conditions defîning
either of thèse classes can be made to enter explicitly into the formulation and

proof of the results of the présent paper.
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