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Closed similarity manifolds

Davip Friep™®

We classify similarity structures on closed manifolds. A similarity structure on
a manifold M is defined by an atlas of charts with gluing functions that are the
restrictions of similarity tranformations (those affine isomorphisms that change
distance by a constant factor) to open subsets of Euclidean space. Thus M has a
preferred conformal structure. The universal cover M is locally Euclidean since
one may choose a preferred inner product at a basepoint and parallel translate it
over M without ambiguity. Similarity manifolds are the affine manifolds (i.e.
manifolds with a given connection of zero curvature and zero tension) with a
“parallel protractor’” in the sense that Euclidean manifolds are affine manifolds
with a “parallel ruler.”

The classification we obtain in Theorem 2 below was given (with one omission)
by Kuiper but under the implicit hypothesis that the development map D cover
its image [K]. Here D is an affine immersion from M to Euclidean space E¢
(these properties determine D: M — E® up to composition by a similarity of E<).
For general affine structures, the development map doesn’t cover its image [S-Th]
but it will follow from our classification that D does cover its image for similarity
structures. To show this covering property directly would require essentially all of
our demonstration, so it is natural to proceed directly to the classification without
using [K].

In addition to extending the classification of [K] to all similarity structures, our
methods show that similarity manifolds which aren’t Euclidean admit a natural
metric p in the preferred conformal class, unlike Euclidean manifolds where the
preferred metric can be renormalized by any scale factor. This situation is
somewhat reminiscent of the case of Riemannian manifolds of constant curvature
K, where the metric can be normalized so that |K|=1 unless the metric is flat
(K =0). The non-Euclidean similarity manifolds possess a natural volume which
we compute in Theorem 2. Our classification of non-Euclidean closed similarity
manifolds of M of dimension d =3 shows they correspond 1-1 to the following

* Partially supported by National Science Foundation Grant #MCS-8003622.
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Closed similarity manifolds 577

arbitrary data

(1) an isometry of a d-1 dimensional Clifford-Klein space

(2) a positive real value of the natural volume.

Since similarity manifolds arise in the behavior of certain hyperbolic manifolds
at infinity [Th] we see that they are closely connected with Riemannian manifolds
of constant curvature K for K positive, negative or zero.

We thank Dennis Sullivan and Nico Kuiper for their helpful comments. We
gratefully acknowledge the support of I.LH.E.S. during the preparation of this
paper.

1. Incomplete implies radiant

The uniqueness of D determines similarities ¢(g)e€ Sim (E?), ge m; M, with
the property that ¢(g)eD=Dog:M— E% This holonomy homomorphism
¢:m M — Sim (E?) is crucial to the study of similarity structures. We call the
similarity structure reducible if ¢(m,M) fixes some affine subspace of E* and
radiant when this subspace is a single point [FGH]. Choosing the fixed point as
origin, radiant similarity structures are based on the group of linear similarities
Sim, (E4) = Sim (E4) N Gl (d, R). Since we later show that (geodesically) complete
similarity manifolds are Euclidean, the following theorem shows the structure
group of a similarity manifold may always be reduced to either Sim, (E?) or the
Euclidean group Euc (E?).

THEOREM 1. A connected closed similarity manifold which is incomplete
must be radiant.

Proof. Fix a development map D: M — E“. This defines a Euclidean metric on
M and determines scale factors a(g)eR* for gemM by the rule |gv|l=
a(g) |lv]l, ve TM. Here a: 7;M — R* is a homomorphism related to the holonomy
¢ by the equation a(g)? =|det ¢(g)|.

For each e M let D, be the largest open disc in T;M on which exp is
defined. Let r(m) e (0, ] be the radius of D,,. We see that r(m)=r(n)—dist (m, i)
(Fig. 1). Thus r satisfies |r(x)—r(y)|=dist (x, y).

Since M is incomplete, r is finite at some point and hence finite on all of M.
Clearly r is continuous and r(gm) = a(g)r(1) for all g€ m M. Thus

| Tg(y)l

22 TM— [0, «)
r(gm)
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is independent of g and defines a continuous metric & on M such that

(1) wp is in the preferred conformal class

(2) for each m € M, the unit disc in T,,M is the largest disc (relative to any
preferred inner product at m) on which exp is defined.

For any fixed m € M there is a v, € dD,, such that y(t) = exp (tv,) is defined for
0=t<1 but not for t = 1. The w-speed of the affine ray y(t) is (n(y'(t), ¥'(1)))> =
1/(1—1t) that is inversely proportional to the distance from +y(t) to a(exp D,;,) (Fig.
2). Since y(t) has infinite w-length it passes by some point p € M infinitely often
and arbitrarily closely. Fixing some orthonormal frame F,, at m there is an
orthonormal frame F, at p and times t /1 such that F, is the limit of (1 -
t.) - (¥|ro.1 Fin) which denotes the orthonormal frame obtained by parallel translat-
ing F,, along +y(t) for time t, and scaling down by (1—1¢). Let g; denote the
element of (M, p) approximated by v | [, ¢].

r(R) — dist (M, A)

exp Dmp

Fig. 1.

Now lift everything to M and fix w e T,M with inner product @ (w, 9,) < 1. For
i>»>0 and j»i, g; carries y(t;) close to ¥(t) in the & metric. The holonomy ¢(g;)
is a very sharp contraction (a(g;)=(1—1¢)/(1-1t)) with almost no rotation (Fig. 3).
Using the local coordinate given by D, we see that (for j »i > 0)exp (t - g;w) lies
within exp D, for all ¢t €[0, 1]. Thus, applying g;;', we see that exp w is defined.

This shows that the vector v, considered above is unique, since all w e D,, — v,
satisfy u(w, vy)<1. So we have a vector field X on M whose value at me M is

exp Dy

Fig. 3. (Note that a(exp D,;) is perpendicular to the radius vy)
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the shortest vector v, T,,M for which exp is undefined. We have seen that each
i € M has a natural affine halfspace neighborhood H,, ={exp w | (W, §,) <1}.

Let X denote the vector field on M that covers X. We now study the
nonempty set I, ={we T.M| @(w, X(11))=1 and exp w undefined} and show it
is an affine subspace of T,M.

Suppose wel,={w|aw, X(m))=1 and expw is defined}. Let
D*: TM—E® denote the mapping which is an affine isomorphism on each
tangent space and which satisfies D*0 = D(exp ©) whenever exp ¥ is defined.

LEMMA 1. D*(X(r)) € 9(DH,), where i = exp W.

Proof of lemma 1. Choose coordinates so D*(X(m))=0. Since H; and H,
meet (indeed ne€ H;) and exp is undefined at X(ri), we cannot have 0e DH,.
Assume 0 ¢ d(DH;). Choose j>»i>»0 so that ¢(g;) carries DH; very close to 0
and rotates DH; very little. Then one sees that g;H; is a convex region that

contains exp D and that exp D; is compact. This contradiction proves the lemma
(Fig. 4).

Fig. 4.

Setting m' = exp (w— X(m)) for we I, we see that H; = H,, (because X(m")
and X () are parallel vectors and w— X (1) is parallel to 0H;). So Lemma 1
shows that D(I,)<oDH; for all AcexpJ; The convexity of H; shows that
whenever we I, and w' e J; all the vectors tw+ (1 —t)w’, 0<t <1, belong to J.
This clearly implies that I is an affine subspace of {i(w, X(m)) = 1}.
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Considering the compact set {welJ,|n(w—X(m), w—X(m))=1 and
w(w—X, I;)=0}=C, and the open union |Jgcc, Heps © M we see that E(I;)
is locally constant. Thus I = E(I,;) is constant and always outside im D. Since I is
intrinsically described, it is clearly invariant under ¢(m,M).

m
L

= C

‘\/“,-"/ m

v 'Y
/
/
E(I)

Fig. 6.

We now show I is a point. The vectorfield X on M is seen to correspond to
the vector field Y on E™ which assigns to each x € E™ the vector Y(x) from x to I
which is perpendicular to I. It is now easily checked that div, X =dim (I). Since
Vol, (M) is finite we must have dimI=0. Q.E.D.

The preceding argument raises the hope that incompleteness may be a useful
property in the study of affine manifolds.

2. The classification

Using Theorem 1, we may classify similarity manifolds in terms of the
well-understood Riemannian manifolds of constant nonnegative curvature [W].

THEOREM 2. A closed connected similarity manifold M is either Euclidean
(if it is complete) or radiant (if it isn’t complete). All radiant similarity manifolds M
are constructed in the following ways.

(1) d=2: M is R" or C*. Via e* the action of m,M on M by similarities
corresponds to a uniform discrete group of rigid motions of R or C (translations or
glide reflections), in the coordinate z in R or C. This change of coordinates
associates a Euclidean manifold to M in a natural way.

(2) d=3: M is the quotient of E* —0 by a group KXZ, where K = O(d) is finite

and Z is generated by an expansion g € Sim, (E4).
Topologically, radiant similarity manifolds are precisely the mapping tori of isomet-
ries of Clifford—Klein spaces. For d =3, this isometry and the volume of M (relative
to the natural metric w introduced in Theorem 1) are natural invariants that classify
M, and the volume can be freely chosen in R". The value of Vol, (M) ford=3 is

(log |det g|)(vol S471)
d(card K)

All similarity manifolds are finitely covered by T* or S* ' x S'.
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Proof. When M is Euclidean the Hopf-Rinow Theorem shows M is complete.
If M is complete then M= E*w M so m M acts without fixed points, the
holonomy contains only isometries and M is Euclidean [K]. Theorem 1 shows that
incomplete M are radiant. Conversely when M is radiant, the fixed point e € E4
lies outside the developing image im (D) (see [FGH, Thm. 3.3] for a correct
proof) and so M isn’t complete.

When M is radiant, we choose ee E¢ as origin and find that the holonomy
preserves the complete metric ds/||x|| on E? — 0. This induces a metric on M which
is clearly just the metric u constructed in Theorem 1.

It's known [e.g. Th, Thm. 3.6] that when G is a group of analytic isometries of
a complete simply connected Riemannian manifold X and M is a closed (G, X)
manifold the development map D:M — X is a homeomorphism. Let G be
W)- Choosing X appropriately, we find that M is R*, C* or E¢ -0 (d =3).

It remains to analyze the action of ;M on M. The case d <2 is easy. since the
only fixed point free rigid motions of R and R? are translations and glide
reflections. For d = 3, the subgrfo\u’p a(m,M)< R" must be discrete for ;M to act
discontinuously (since O(d) = O(d) is compact, a(g) near 1 implies ¢(g") near 1
for some n>0). As ;M acts uniformly, a(m,M) is infinite cyclic. The kernel
K = ¢(m,M)N O(d) acts properly discontinuously on S¢~' and hence is finite.
The map log ||x||: E* — 0 — R induces a fibration f: M — S' with fiber the Clifford—
Klein space S¢ '/K. Transverse to f is the radiant vectorfield X considered in
Theorem 1, given in coordinates by X(ii)= —ri. The flow ¢ generated by X
permutes the fibers of f and has return map corresponding to the isometry
g/(a(g)) of S7'/K.

In dimensions d <2, the only mapping tori of Clifford-Klein spaces are S', T?
and the Klein bottle. These admit Euclidean metrics and e* gives rise to radiant
similarity structures on these manifolds. For d =3, an isometry h:S*"'/K < of a
Clifford—Klein space gives rise to a one-parameter family of radiant similarity
structures on the mapping torus M, as follows. Lift h to h'e O(d) and let G be
the subgroup of Sim, (E?) generated by K and g=ah’. a>1. Then G acts
properly discontinuously on E* —( and quotient is the desired similarity manifold.

The volumes are easily computed by passing to a finite cover to reduce to
K = {1} and considering the fundamental domain {1 <||x||<a(g)}. It follows that
the parameter a >1 may be replaced by vol, (M)>0.

Since Bieberbach proved that flat manifolds M are covered by T¢ [W], we
have shown all portions of Theorem 2. Q.E.D.

We note that the existence of a finite cover with abelian fundamental group
allows one to apply [S] and [FGH] to affine structures on M. For instance, when
d =3 and M is an incomplete closed connected similarity manifold, every affine
structure on M is radiant. Also, perturbations of similarity structures within the
class of all affine structures are well-understood.
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