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Comment. Math. Helvetici 55 (1980) 559-575 Birkhâuser Verlag, Basel

The coefficients of quasiconformality of tori in n-space

Kari Hag

Introduction

Let D and D' be domains in Rn, n > 3, the one point compactification of
euclidean n-space Rn. Next let / be a homeomorphism of D onto D'. With each

such / we can associate two dilatations

Hère M(F) dénotes the n-module of the curve family F, see [13], and the suprema
are taken over ail families F of curves which lie in D with M(F) ^ 0, <». Thèse
dilatations satisfy the inequalities

KM^Kaif)"-1, KoW^KtifT-1 (2)

and reduce simultaneously to 1 if and only if / is a conformai mapping, i.e. a

Môbius transformation since n>3. The mapping / is quasiconformal if one, and

hence both, of the dilatations is finite. Moreover, when f:D->D' is a

diffeomorphism of domains in JR" it is easy to show that

where J(x, f) dénotes the Jacobian of / at x, while \f(x)\ is the norm of the linear
mapping f(x) and I(f(x)) min{|f(x)h|:|h| l}; [13].

The inner and outer coefficient (of quasiconformality) of the ordered pair
(D, D') of domains in Rn are defined as

Kt(D9 D') inf Kf(/), KO(D, D') inf Ko(f) (4)
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560 KARI HAG

where the infima are taken over ail homeomorphisms / of D onto D'. It follows
from (1), (2), and (3) that

(5)

The problem of characterizing domains with finite coefficients and that of deter-
mining thèse coefficients are rather complicated in n-space. For Jordan domains
some results in this direction hâve been obtained in [9], [11] and [4]. Gehring [7]
has also determined the outer and inner coefficient when D and D' are circular
tori in R3, i.e. cartesian products of an open dise and a circle, while Vâisâlâ [13]
solves the problem for spherical ring domains in Rn, i.e. cartesian products of an

open interval and an (n- 1)-dimensional sphère. In the présent paper we first
extend Gehring's resuit in 3-space to n-space, the circular tori being cartesian

products of an open (n - l)-dimensional bail and a circle. Next we consider the
more gênerai case when D and D' are the cartesian products of an (n — fc)-ball
and a k-sphère. Both the inner and outer coefficients are determined, see

Theorem 4.

The standard procédure for determining the coefficients is the following: (i)
Find a lower bound for Kr(D, D') (KO(D, D')) using appropriate curve families.
(ii) Show that this bound is sharp by constructing a diffeomorphism f:D-+ D'
such that Ki(f) (Ko(f)), calculated from (3), equals the bound in (i). For the case

of circular tori in n-space we are able to follow this procédure exactly and thus

generalize Gehring's method in [7]. It may be of interest to observe that some
relations become more transparent in n-space where explicit computations hâve

to be replaced by more conceptual arguments. For the gênerai case the standard

procédure does not seem to work and we hâve treated this by introducing surface
families instead of curve families. This method does not appear to hâve been used

on coefficient problems before.
The results on the outer coefficient appeared in the author's thesis [10] while

the results on the inner coefficients in the gênerai case are new. The author
wishes to express her thanks to Professor F. W. Gehring for suggesting this
problem and for many helpful discussions.

A word on notation

We refer to [13] for ail définitions and notations not explicitly stated.

For each positive integer p let ilp dénote the p-dimensional Lebesgue measure
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of Bp, and let cop dénote the (p- l)-dimensional Lebesque measure of Sp~\ Next,
Vp(a) will dénote the volume of Bp(aely 1), a>l, with respect to hyperbolic
density in the p-dimensional half-space containing Bp(aeu 1). Similarly, vp(a) will
dénote the (p- l)-dimensional hyperbolic volume of Sp(ael, 1).

We let (r, 0, xk+2,..., xn) with fc l,2, ...,n-l dénote polar coordinates of
* lr=i *«e« in Rn. Hère

Thèse coordinates are related by the formulas: xl rcos6l, x2 r sin 6X cos 02,

x3 r sin 0t sin 02 cos 03,..., xk r sin 0! sin 02 • • • sin Qk_x cos 0k, xk+x
r sin 0, sin 02 • • • sin 6k^1 sin 0k. We identify the half-space 0 0 in Rn with R+~k,

the subspace xk+2= ••• xn 0 in Rn with Rk+1, and speakof the bail Bn k(aex, 1)

in 0 0, the sphère Sk in xk+2 • • • xn 0 etc. Finally a domain D in Rn is

called a k-torus if it can be mapped conformally onto

T(fc, a) {(r, 0, xk+2,..., xn) : (r-a)2 + x^+2+ • • - + x^< 1} (6)

for some a>l, and we call a its modulus. Note that mp, 0<p<n, dénotes

p-dimensional Hausdorff measure in Rn.

Lower bounds for the coefficients of 1-tori

We consider the family of Jordan curves in T= T(l, a) and 3T, respectively,
which are not homotopic to 0 in T. Let FT and FaT dénote thèse families.

LEMMA 1.

(i) M(rT) irl~nVn^(a)
(ii) MdT(rdT)=7r2-nvn^2(a),

where MdT dénotes the (n- \)-modulus with respect to dT.

Proof. For (i) suppose that p is an admissible density for FT. For each fixed

point x (r, 0, x3,..., xn)eBn"1(ae1, 1) the circular path yx given by 7X(0)

(r, 0, x3,..., xn), 0g[O, 2tt], is in FT (to see this consider for example the

projection in the xt, x2-plane). Thus we get, using Hôlder's inequality,

1<( pO, 0, x3, ..,xn)rd0 <(27rr)n"M pnrd6
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and integrating over Bn~l(aeu 1) we obtain

f pndmn>\ 0)

and hence M(Ft)>ttx nVn__{(a). On the other hand consider the function p0
which is equal to 1/2Trr in T and 0 in Ç(T). Then ly p0 ds > 1 for ail y e FT since

ds>rdO and y intersects the half space 6 t for ail f €[(), 2tt). Clearly p0 gives

equality in (7) and we conclude that (i) is valid.
To prove (ii) we argue in exactly the same manner: Suppose that p is an

admissible density for JTaT. The circular path, gênerated by revolving x
(r, 0, x3,..., xn)edBn~l(ae1, 1), is in FaT. Hence, by Hôlder's inequality

)n~-\
Ç2-U

<(27i-r)n-2 pnXrdS
¦'()

and thus

f p"-1 dmn_l>Tr2-nvn_2(a). (8)

Next po:dT—>[0,00) given by po(x) 1/27rr is admissible and gives equality in (8).
Thus (ii) follows.

PROPOSITION 1. Given Ka<b, let D,D' be 1-tori of modulus a and b,

respectively. Then

(i) KO(D,D')>^^
]V(n-2)

[il
\-]

Proo/. We may assume that D T(l, a), Df T(l, b) as in (6).

(i) This follows directly from (1), (4) and Lemma l(i).
(ii) By the Boundary Correspondenee Theorem [9], [10] (see also Notices

Amer. Math. Soc. 19, A-317, 1972) each quasiconformal mapping /:T(1, a)-*
T(l, b) can be extended to a homeomorphism of T(l, a) onto T(l, b) and the
induced boundary mapping f* is an (n - l)-dimensional quasiconformal mapping
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with Kr(/*)<Kf(/). Moreover

K (i \> K ({ W("-2)^ iVi V1 3T(l,a);
l/(n 2)

I

[ BT(\ b)) -

by the surface versions of (1) and (2). Thus (ii) follows from (4) and Lemma 1 (ii).

Remark. The above procédure is Gehring's method in [7] carried over to
n-space. It is not hard to see that we instead of the curve family FdT could hâve
used the curve family "perpendicular" to this one, i.e. consisting of Jordan curves
in dT which are not homotopic to 0 in ÇT. It turns out that this family is the right
one for further généralisations.

Modulus inequality for surfaces

In this section we give some results on surfaces which will be used to obtain
lower bounds for the coefficients in the gênerai case.

We shall follow Agard [1] and restrict ourselves to the following class of
"parametic p-surfaces" in Rn: We say that a continuous mapping from some open
set G in Rp, l<p<n-l, into Rn is (a locally p-dimensional) quasiconformai
surface if there exists for each uQe G a neighborhood U= U(u0) such that a has

the properties (i), (ii), (iii) and (iv) below in U.

(i) The partial derivatives of <x are absolutely continuous on lines ([13]) and

Lp-integrable.
(ii) a is totally difïerentiable a.e.

a.e.

(iv) There exists a constant Q Q(U) such that

a.e.

In defining the modulus M(2) we déclare a non-negative Borel measurable
function p in Rn to be admissible for a family of quasiconformal surfaces 2 if
L-c (p ° o~)PJcr dmp > 1 for ail a e 2. We dénote the class of admissible functions by
A (2), and we then set

pndmn:peA(2)}.
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This is an example of the more gênerai n/p-module of a System of measures
defined by Fuglede [3]. In particular M is monotone, countably subadditive and
has the "minorizing property."

By Theorem 6 in [1] we hâve

THEOREM 1. Suppose that f\D-*D' is a quasiconformal mapping of
domains in Rn, and that X is a family of quasiconformal surfaces in D. Then there is

a family Xo^ X, with M(X — X0) — 0, of mappings a such that <x* f°a is quasiconformal

surface and

M(X0)^Ko(f)M(X*).

Remark. This theorem holds for surfaces satisfying only conditions (i) and (iv)
(slightly rephrased) as proved by Reimann [12] and pointed out by Agard [1]. For
quasiconformal surfaces Agard has also established the modulus inequality for
surface area based on Lebesgue area while it is not yet established with respect to
Hausdorfï measure.

We want to establish the analogous resuit for quasiconformal mappings of
smooth hypersurfaces in Rn. For this we first generalize the concept of the
modulus to families of surfaces in an (n— l)-dimensional C^-manifold S in Rn: If
X is a family of surfaces in S, then the modulus of X wrt to S is given by

p-1dmn_1:p€A(i;)}.

Next, suppose /: S —» S'is a homeomorphism of (n — l)-dimensional C^manifolds
in Rn. For each e>0 and each point p on the manifold we hâve an Rn-

neighborhood U and a bi-Lipschitzian diffeomorphism ip : U —> Ur such that ip

maps the manifold into Rn-1 and Ko(ip)<l + e, see 17.12 [13].
Now for xeS, let xr f(x). We say that / is quasiconformal if there exists a

K, 1 <K<o°, such that for each s >0 there is a corresponding map gx ix°f° C1

satisfying

supKo(gx)<°°, esssup Ko(gx)<K + e.

The smallest K > 1 for which the above is true is called the outer dilatation of /
and is denoted by Ko(f). The inner dilatation Kj(/) is similarly defined and as

before / is said to be quasiconformal if one (and hence both) of the dilatations is
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finite. There are several characterizations of thèse concepts, see [9], [10]. We shall
only need the following resuit.

THEOREM 2. If /: S —» S' is a quasiconformal map then

Ko(f) ess sup ^(
where

L(x, /) hm sup —: j—i, /uif(x) - lim sup|yx| r*> m:j, /uif(x) - limsup-.|y-x| r-*> mn_1(SnBn(x, r))

Furthermore, f is mn^x-absolutely continuons so that if g:S'—»[0, ^] is a Bore/

function then

gdmn_1= (go/X^

Before we can prove the surface generalization of Theorem 1 we need some more
preliminary results.

LEMMA 1. If a: G —» Rn is a quasiconformal surface and f is diffeomorphism
defined in some domain containing a (G) then f ° a is a quasiconformal surface.

Proof This is an immédiate conséquence of the définition. In addition to chain

rules we use the fact that / is locally Lipschitzian for (i), and for (iii) the following
lemma (stated for C^-maps for later référence).

LEMMA 2. Given a:GcRp->Rn and a Cl-map f in Rn of a domain

containing o~(G). Then f OlDO2 where OX,O2 are orthogonal matrices and
D diag (dl,. dn) with 0<dA<- • • < dn, and at points where a is differentiable
we hâve

I (n«*?W mth I o^
C(n,p) \&y ' > 7eC(n,p)WeC(n,p)

where C(n, p) is the set of naturally ordered subsets of p éléments from the integers

Proof See proof of Lemma 0 in [1].
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LEMMA 3. Given a: GcRp-^Rn and a nonnegative Borel function f. Then

f /(x)mo(a,x,G)dmp(x)>f f(<r(u))Jv(u) dmp(u)

whenever a is mp - a.e. differentiable with equality if a is mp-absolutely continuous.

Proof. See p. 38 [1]. The proof is based on Theorem 5.3 [2] and the validity
of the area formula for Lipschitzian maps.

LEMMA 4. Suppose thaï S is an (n - \)-dimensional Cl-manifold in Rn and
that i:U-*U' is a bi-Lipschitzian map, Le. there exists a C>0 such that

Cl\y-x\<|/(y)-/(x)|<C\y-x\ for ail jc, y e S. Assume further that i(S H U) is

a domain D a Rn~\ that X is a family of quasiconformai p-surfaces in SHU and
letX' {i°o~:(reX}. Then

and MS(X) 0 if and only if MP(X') 0.

Proof. If peA(X') then CpoieA(S) since J^^C^ by Lemma 2. Thus

by Lemma 4. The first half of the inequality follows. The second half is proved in

exactly the same manner.

THEOREM 3. Suppose f:S->Sr is a quasiconformal mapping of (h-1)-
dimensional ^-manifolds and let X be a family of quasiconformal surfaces in S.

Then there is a family XQ c X, with M(X - Xo) - 0, of mappings a such that
a* f ° <j is a quasiconformal surface, and

Ms(XQ)^Ko(f)Ms'(X*).

Proof. Given xeS let ix:UX->U'X and ix>: UX' —» U'x> be the diflfeomorphisms
introduced earlier. In particular gx ixo/oC1 is a quasiconformal map. Let o~x

dénote the restriction of a to cr~l(Ux), set Xx ={ax}, and consider ix(Xx) under gx.

By Theorem 1 followed by Lemmas 1 and 4 there is a family Xx 0 ^ Xx with
MUx(Xx — XXf0) 0 of mappings crx such that crf — f°ax is a quasiconformal
surface. Next let {Ux) be a countable covering of S and let XA
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{creX (3i€N)(cjx eix -X^o)} It follows from the countable subadditivity and
the "minonzing property" of M that Ms(£1i) Q Hence we can choose 20
X -Xx To prove the inequahty let pfeA(X'o) and define p S-»[0,<»] by
p'(/(x))L(x,/) For each creX0 we obtain

f (p o o-yX dmp f p'(f(a(u))pL(cr(u), /)pJCT(w) dmp(u)
•>g ->g

Thus peA(i0) and

" *dmn j J p'(x)n ^(x,

(p')n ^m^

by Theorem 2 Since p'gA(-S&) was arbitrary we hâve the desired modulus
inequahty

Lower bounds for the coefficients of fc-tori

In addition to the Lemmas 2 and 3 we shall need the followmg lemma for our
considérations

LEMMA 5 Let f T(fc, a)--» T(fc, b) 6e a quasiconformal mapping of k-ton,
and let f* dT(k, a) —» dT(fc, b) be fhe induced boundary mapping Then

(î) /or mn k-a e x (r, 0, xk+1, xn)eBn k(a, 1) the map f restncted to the

sphères Sx Sk(r) + xk+2ek+2+ +^n^n IS mk-absolutely continuous
(n) /or mk-ae xeSk rfie map /* restncted to the (n-fc-1)-sphères Sx

dBn k(a, l) + ax is mn k-absolutely continuous

Proof The proof of Theorem 8 in [1], which îs based on a method used by
Gehnng [5], uses the fact that every quasiconformal mapping in n-space has finite
hnear dilatations at each point From Lemma 1 p 12 [8] it follows that the same

îs true for quasiconformal boundary mappings The proof of Theorem 8 [1] can be

carned over with the obvious modifications except for the followmg

COVERING LEMMA Let E be a subset of a sphère Sx as in (î) or (n) Then
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there exists for each t>0 a séquence of open n-balls Bu B2,..., Bq (q q(t)) such

that
(i) Ecu

(ii) U?-ii
(iii) No point in Rn lies in more than N of the BJ where N is independent of t (In

particular no point of Sx lies in more than N of the B} n Sx.)

Proof of covering lemma. Fix f >0 and pick a finite séquence yl7 y2,... as

follows: Let yt be an arbitrary point in E. If Bn(y{, t)j>E pick y2eE-Bn(yl, t).
If [Bn(yi, 0UBn(y2, t)]$E pick y3eE-[Bn(yu r)UB"(y2, f)] etc. The process
must stop after a finite number of steps, i.e. there exists a q such that
U?=i Bn(y,, Û^E, since for each q' the union U?=i Bn(yp r/2) is disjoint and so

q'mp(Bn(y1, r/2)nSx)<mp(Sx) where p k in the case (a), p n-k-l in the
case (b). This proves (i) and (ii). To prove (iii) let y be an arbitrary point in Rn. If
y e Bn(yv t) then Bn(yr t) c Bn(y, 2t). Again, by considering the Bn(yp r/2) we see
that if y belongs to N' of the Bn(yp t) we must hâve NfOn(tl2)n <iln(2f)n and so
N'<4n.

PROPOSITION 2. Given Ka<b, let D,Df be k-tori of modulus a and 6,

respectively. Then

un_fc_1
[u(6)J

Proo/. We may assume that D T(fc, a) and D' T(fc, 6) as in (6). Let / be an

arbitrary quasiconformal mapping of T(fc, a) onto T(fe, b).
(i) We consider for each xeBn~k(ael7 1) such that / restricted to Sx

Sk(r) + xk+2+* ' * + *„£,! is mk-absolutely continuous the spherical projection
ax : Rk —> Sk(r) + xk+2ek+2 + * * • + ^e.t. The hypothesis of Theorem 1 is satisfied for
/: T(k, a) -> T(fc, b) and the family X of the ax above. Thus (i) is established if we
can show that for some positive constant c

(a) M(2)>:cVn_k(a)
(b) M(^)<cVn_k(b).
Proof of (a): Suppose that peA(2). In this case (punctured sphères) we can

perform the surface intégration using Hausdorff measure, cf. Lemma 4. Fixing a
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parametric ax we get by Hôlder's inequality

[ )f pnrk dmk.

Integrating over Bn~k(aex, 1) we obtain

f pndmn>\ ([ pnrk dmk) dmn_k
JR" •'B" k(ae, 1) X->SX /

and hence (a) with c 2n-kwkk~n)Jn.

Proof of (b): The function p which is equal to l/cokkr in T(fc, 5) and 0 in

ÇT(K b) gives JRn p" dmn cVn_k(b).
It remains, however, to prove that p<=A(2*). Denoting the orthogonal

projection of Rn onto Rk+1 by P it follows directly from the définition of J^ that

f
•>Rk

Next, let S be the central projection of Rk+1-{0} onto S\ i.e. S(u)= u/\u\. The
derivative of S with respect to the natural orthogonal system based on spherical
coordinates has matrix D diag (0, 1/r,..., 1/r). Thus from Lemma 2

f (pk o P o o-f)/Po(r; dmk >— f JSoPoct: dmk.

Now, the function S°P°cr* is mk-absolutely continuous as a composition of

mk-absolutely continuous functions. Lemma 3 can be applied and we conclude

(pfcoc7Î)Joîdmk>— f
•^Rk wfc -'(S°Poo-x*)°Poo-x*)(Rk)

where the last inequality follows from simple topological considérations: By
assumption <r*(Rk) (one point compactification of aJ(Rk)) is not contractible in

T(k,b) and hence cr*(Rk) meets ail the (n - fc)-dimensional half-spaces 6

constant. Thus (S ° P)(of(Rk) Sk and (S°P°(jf)(Rk) is Sk possibly punctured
at one point.

(ii) For k^n-1. Consider the induced boundary map f*:dT(k, a)-> dT(k, b).
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Since Kjif^j^Kjif) by the Boundary Correspondence Theorem [9] [10] and

KT(f*) Kn(f*1) it îs sufficient to show

KoiU1)^]^
k 1)

We associate with each xeSk such that f*1 restncted to Sx ~dBn k(b \) + bx îs

mn k-absolutely continuous the sphencal projection ax Rn k 1

—» Sx The
hypothesis of Theorem 3 îs satisfied for f*1 àT{k b)->dT(k a) and the family i
of the ax above We now follow the procédure from (î) and note that (n) îs

estabhshed if we can show that for some positive constant c

(a) MdT(kh)(2)>cvn k {(b) k/(n k 1}

Proof of (a) Suppose peA(à) Fixing a parametnc surface Sx we get by
Holder's înequahty

/ Ç \ (n l)/(n kl) ç
1< pn k xdmn k A <2kun k ,(6)^ k 1} pn lrkdmn k A

and hence

p" ldmH ,22
b)

Proof of (b) The function p which îs equal to vn k ,(a) 1/(n k 1}(2r) l in
and 0 in ÇaT(fc,a) gives JaT(ka)pn

1

dmn { 2 ka>kvn2 ka>v k {a) k/(n k
k

Again it remains to prove that peA(S*) Consider the polar projection
P(r, 0, xk+2, xn) (r, 0, xk+2, xn) It follows that

L.
Since the function P°o-f îs mn k ^absolutely continuous Lemma 3 can be

apphed and we conclude as before that the value of the intégral îs larger than 1

(n) for k n -1 The ton are sphencal rings and we get the bound by
considenng the family of curves which jom the boundary sphères, see Theorem
39 1 [13]
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Extremal mappings

We show that the lower bounds given in Proposition 2 are sharp by construct-

îng a pair of extremal mappings In this construction we make use of the

symmetry properties of the domains and the fact that the bounds are given in
terms of hyperbohc volumes

To be more précise, first let gt, g2 be Mobius transformations of the (n-k)-
dimensional half-space R" k onto the unit bail Bn k so that g^B" k(aeu 1))

Bn k(c), g2(Bn k(beu\)) Bn k(d) for some c, d<l (Od) Next suppose we
are given a difïeomorphism h [0, c) —» [0, d) We use h to define a mapping
/ T(fc, a)—» T(fc, b) in two steps as follows

(î) k Bn k(c)^Bn k(d) îs defined by

Iph(M) if 0<|x|<c
k(x)=<\x\

[() if x - 0

(n) g2lofc°gi Bn k(ae1,l)->Bn k(be!, 1) îs extended in the obvious way to

/ Tflfc, a) -> T(/c, 6), i e /(r, 0, xk+2, xn) (r', 0, 4+2, O where

(r\ x^2, x'J g2 o fc o gl(r, Xk+2, xn)

LEMMA 6 For f T(fc, a) —» T(fc, b) constructed from a diffeomorphism
h [0, c) —» [0, d) as aboue the following holds

(i) // h has tfie property

for re(O,c) (9)

then

(n) // /î has rhe property

maxi h (j) > |or te(o, c) \iy))

then

1-r2
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Proof The function / is a diflfeomorphism and the dilatations are given by the
formulas (3). By symmetry it is enough to consider points in Bn k(ae1, 1) and
hence in Bn~k(ael, 1)- glHO). Thus the problem is to détermine the semi-axes of

f (x) when xeBn-k(aeu \)~g^(0).
We hâve / | Bn~k(aeu 1) g^1 ° k ° gj and we set v gi(x), w /c(d), and

y g2(w)- Let us first détermine the semi-axes of f'(x) in Rn~k. Since k is a radial

map induced by h the (n — k) semi-axes of k'{v) are h'(|t;|) and h(|u|)/|u| where
h(M)/|u| occurs {n-k- 1) times. Thus returning to the map / the corresponding
semi-axes of f'(x) are

and

Next, suppose that x and y /(x) hâve polar coordinates (r, 0, xk42 xM) and

{t\ 0, yfc+2> • • • » Yn) respectively. Then the last k semi-axes are

r de, 2r \g\(x)\ l-|w|2
rddt 2r \g'2(x)\ l-\v\2

where the last equality holds since

1 |gî(x)l
— and :—-~-pr2r l-|gi(x)|

both represent the density function for the hyperbolic metric in R" k.

The results follow by substitution in (3).

THEOREM 4. Given Ka<6, let D and Df be k-tori of modulus a and b,

respectively. Then

08

Proof. We may again assume that D T(fc, a), D' - T(fc, b).



The coefficients of quasiconformahty of ton in n-space 573

(i) It is sufficient by Proposition 2 and Lemma 6 to construct an h satisfying (9)
and so that

1 n-h(t)2\" '/ t \-2 Vw-fc(a)

h'(t)\ \-t2 \h(t)J vn_k(bY uu

Setting L= Vn^k(a)/Vn_k(b) we can also write

d _n—k—1

where c and d are as in Lemma 6. Let therefore h:[0, <:)->[(), d) be given by

J'h(t)
n-k-l

Then it is not hard to see that h is a difïeomorphism of [0, c) onto [0, d).
Furthermore, difïerentiation of (12) gives (11). It remains to show that (9) is

satisfied. That h(t)/t< 1 -h(t)2/\ - î2 is obvious since h(t)<t. That h'(t)<
1 - h(t)2/\ - t2 is équivalent to

and this follows since

is increasing in (0, c).

(ii) For fc7^ n-\. We observe that

M —c cot

Hence it suffices, by Proposition 2 and Lemma 6, to construct an h satisfying (10)

and so that



574 KARI HAG

Let therefore h : [0, c] -* [0, d) be given by

Again h is a difïeomorphism of [0, c) onto [0, d). That

t ~ l-t2

is trivial since h(t)<t. It remains to prove that h(f)/r<h'(t) for fe(0, c), or
equivalently

t \-h(t)2 c\-d2
h(t) \-t2 d\-c2'

For this we observe that (14) implies

Now, from the above inequality and (14) we obtain

4(t> L s \ s

The integrands equal

d/l-s2\k
kds\kds\ s

and the resuit follows.
(ii) for k n —1. Computation shows that / in (i) for k — n-\ is given by

/(x) (a-irv'(a)/v«(b)(6-l)|x|v'(û)/v'(b)-1x. The map is radial and
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