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The Ahlfors-Schwarz lemma in several complex variables

H. L. Roypen!

Ahlfors [1] established a beautiful connection between curvature and distor-
tion for holomorphic maps by showing that any holomorphic map of the disk into a
Riemann surface furnished with a conformal metric whose Gaussian curvature is
everywhere less than or equal to —4 must be distance decreasing from the
Poincaré metric of the disk.

This suggests the following question: Given two Hermitian manifolds M and N
and a holomorphic map f: M — N, under what conditions can we give a bound for
the differential df of the map in terms of bounds on suitable curvatures of M and
N? The Ahlfors result immediately generalizes to the case when M is the disk
with Poincaré metric and N has holomorphic sectional curvature everywhere less
than or equal to K <0. Then ||df|*<—K™'. Chern [3] and Lu [6] obtained results
for other special cases of M, including general compact M.

Yau [9] established a general form of this result under the assumption that M
is a complete Kahler manifold. He shows in this case that if the Ricci curvature of
M is bounded from below by k <0 and the holomorphic bisectional curvature of
N is bounded from above by K <0, then

SN
laflP <A

Recently, Chen; Cheng, and Look [2] obtained a different version, assuming that
M is a complete Kihler manifold with holomorphic sectional curvature bounded
from below by k <0 and Riemann sectional curvature bounded from below by
some constant and that N is a Hermitian manifold with holomorphic sectional
curvature bounded from above by K <0. Then

laflF <.

! This work was supported by the Forschungsinstitut fiir Mathematik, ETH, Ziirich, and the U.S.
National Science Foundation.

547



548 H. L. ROYDEN

In this paper we prove variants of these theorems. Theorem 1 differs from
Yau’s result in that we assume N is also Kahler, but only assume that the
holomorphic sectional curvature is bounded from above by K <0. Theorem 2
differs from that of Chen, Cheng, and Look in that we do not need to assume that
M is Kahler. The proofs given here have some similarity to the original proof of
Ahlfors.

1. We shall need to use certain comparison functions on M for our proofs,
and we formulate their existence as a series of propositions. A non-negative
real-valued continuous function on M is said to be proper if the sets {p: u(p)<c}
are compact for each real constant ¢. We say that a function v defined in a
neighborhood V of p is an upper supporting function for u at p if v(p)= u(p) and
v(q)=u(q) for qe U.

PROPOSITION 1. Let M be a complete Riemannian manifold with Ricci
curvature bounded from below. Then there is a continuous proper non-negative
function u on M with the property that at each point p it has a smooth upper
supporting function v with |Vv||<1 and Av<1 at p.

Since we may always divide u (and v) by a given positive constant, it suffices to
show that there is a constant C and a non-negative proper function u on M which
has a supporting function v at each point with |[Vv||<C, Av<C. Let 0 M be a
fixed point. Then the function r = d(p, o) is proper by the Hopf-Rinow Theorem,
provided M is complete. Let 2a be the distance from o to the nearest cut-point of
o (i.e., the radius of injectivity of o), and B, the ball of radius a about o. If the
Ricci curvature of M is not less than —c?*(m — 1), where m =dim M, then

at points p which are not cut-points of o (see [4], [7], or [8]). Let u be a smooth
non-negative function inside the ball B,, and equal to r outside B,. Take C’ to be
greater than the maxima of ||[Vu|| and Au in B,, and set

C = max (C', l+ c).
a

Then ||Vu||<C and Au<C at p, provided p is not a cut-point of o. If p is a
cut-point of o, take o'e B, on the shortest geodesic joining o and p, and set
v=d(o,0)+d(0',p). Then v is smooth in a neighborhood of p, u(p)=v(p),
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u(q)<wv(q), |[Vv]|=<1 and at p we have

Q|

In a similar manner one establishes the following propositions (cf. [4], [7], and
[8]), where we use the expression A <B for Hermitian matrices to mean that
B — A is positive semi-definite.

PROPOSITION 2. Let M be a complete Riemannian manifold with Riemann
sectional curvature bounded from below. Then there is a continuous non-negative
proper function u on M with the property that at each point pe M it has a smooth
upper supporting function v with |[Vo||<1 and v,;<g; at p. If M is a Hermitian
manifold, this implies v,z < g5

PROPOSITION 3. Let M be a complete Kihler manifold with holomorphic
bisectional curvature bounded from below. Then there is a continuous non-negative
proper function u on M with the property that at each point p of M it has a smooth
upper supporting function v with |[Vu||<1 and v,z <g.s at p.

2. Let (M, g) be a Kahler manifold. Then we may introduce normal coordi-
nates z',..., z" in a neighborhood of any point p so that

8.5 = 8,3 —3R.5,5272% + O(2?),

where R,s,s is the Riemann curvature tensor of the metric at p. It has the
symmetry property R,z 5 = R gas = Rasy = R 5.5 The Ricci curvature tensor R,z
is given by

— oYS — v
Raé - gv Raé'yg - g'y Saf3*

The Ricci curvature in the direction of a tangent vector ¢ at p is

R, 5£%€°/(g.5€E°).
Suppose N, h is another Kahler manifold and f:M — N is a non-constant
holomorphic map. We may introduce normal coordinates w', ..., w" in a neigh-

borhood of f(p) so that
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where S is the Riemann curvature tensor of N. If £ and n are tangent vectors at
f(p), the holomorphic bisectional curvature of N in the directions ¢ and 7 is

Sigkré’ 'Ein* ‘/(gaféf’)(gkm"ﬁ')-
The holomorphic sectional curvature in the direction £ is
St EEE (g EE).
In terms of the coordinates z* and w' the mapping may be expressed as
w' = fi(2).

The differential df is then given by the matrix [f:], where fi =df'/0z*. By taking
unitary changes of coordinates at p and f(p), we may bring [f.] into the canonical
form

with A,=A,=--=\, >\, ,, =" -=0, where v is the rank of [f}]. The norm |/df||
of df is just A = A;. In this section we shall be concerned with the behavior of the
quantity A = 3A2. We have

ldfl* = A*<A.

Since the A2 are just the eigenvalue of the matrix 3; f%f5, we see that A is just the
trace of this matrix, and so A =23, f.f., in our special coordinates. Since
g*?f.fLh;; is invariant under arbitrary changes of coordinates, we have in general

A= ganiaf}Shij_'
The next proposition gives a useful inequality for the Laplacian AA (See also Lu

[6]).

PROPOSITION 4. Let f be a non-constant holomorphic map from a Kahler
manifold M to a Kdhler manifold N. Suppose that the Ricci curvature of M (at a
point p) is greater than or equal to k and that the holomorphic sectional curvature of
N (at f(p)) are all less than or equal to K=<0. Then at p we have

v+1

14

Alog A =2k~ KA,

where v is the rank of df at p.
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Proof. We use the special coordinates introduced above. Since M is Kahler,
we have Au =4g"%u s and so

4g"§Ayg_ élg"g/\y‘/f8

Alog A= 1 VE

In normal coordinates we have g°® = 8_3"‘5 +3R,5,5272°+ O(z?). Since f, is
holomorphic and the first derivatives of g*® and h;; vanish at p and f(p), we have
at p

A, = g°8f i Fihiy = 2 fiy Tl
and

o,B.i

4ngAyg =2 Z Ranf,fiB“ 22 Sijkl‘ﬁ —Lﬁﬂf{"‘ Z fla‘vf_:x’v
oLy

By the Schwarz inequality

2

L1 L fou= |2 fin
Since
R.afif=kAZ,

we have

Alog A =2k —=2A ), SqafufLfsT,,

«,y

The following lemma states that

o= 1lrv+1
> Se;'krfixf’af';flysi KAZ.
oy
Hence
v+1
Alog A =2k — KA.

14



552 H. L. ROYDEN

LEMMA. Let &,,..., ¢, be v orthogonal tangent vectors. If S(£,m, {, ®) is a
symmetric bihermitian form [i.e., S(¢ M., ®)=S({, M, & &) and S(n, & w, {)=
S(& m, £, ®)], such that for all &

S(& & & H=<K e,
then

Y S(&s & &, &) <IK[(X &P+ X 1.
o,

If K=<0, then

o= - v+1
Z (ga’ gon §B7 gﬁ) = 2 K(Z “601“2)2
a,B v
Proof. Let P=Z} and represent each A€P as {e,, ..., €} with €2 =1. Let

€a = Z €éa
Then [|£4[” = . |I&.I, and so

S(gA’ é:ﬁ’ gA’ EA) < K(Z “&1”2)2

Hence
1 2 = 1 — —
K(Z “gall2)2 ?; ; S(gA, gAs gAa gA) = ; Z EaéBQESS(ga, gB’ g‘y’ gﬁ)

=Y Sl & £ ED+ Y. S(E & £, E)+S(EL E £, E,).

aF#y

By the symmetry of S, we get

Y S £ £, E)+2 Y S(E, &, £, E)<K(Y |IE.IP)

aFy

and

2Y St &, &, E)<KLX &P+ X &1,
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Since v ¥ l&[I* = l&17)?, we get

ZS(g, & &, E, )\

proving the lemma.

We now assume that M is complete with Ricci curvature bounded from below
by k and let u be the function given by proposition 1. Since u is proper and
non-negative, the regions D, ={p: (1 —eu)>0} have compact closure, and each
point p of M belongs to all D, with e<u(p)™'. Let f be a non-constant
holomorphic map of M into a Kahler manifold with holomorphic sectional
curvature bounded from below by K <(0. We also suppose k <0.

The function A(1—eu)? is a continuous non-negative function in ﬁe, vanishes
on the boundary and is not identically zero. Since D, is compact, it must have a
positive maximum at some point p. Let v be a smooth upper supporting function
for u at p with |[Vu||<1, Av<1. Since 1—ev(p)=1-eu(p) and 1-ev(q)=
1-u(q) in a neighborhood of p, we see that A(1—ev)® has a positive local
maximum at p. Thus log A(1— ev)? also has a local maximum there, and so at p

edv € |Vol?

2
0=AlogA(1—-ev)"=Alog A — —ev (I—eof

If e<1, we then have

v+1 2e
0=-2k+ KA ——m——.
v (1—ev)?
Since K <0,
A< 2v k €

_._..+_._.___._.__,
r+1K (1-ev)*
and so

(1- o)A =2 She
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Now v(p) = u(p), and A(1— eu)* has its maximum at p. Thus for any q € D,

2vk

(-eu@PA@=(1-eu@V’A®) <5 T

€,

or

2v k 1 €
<22 +
v+1 K(1—eu)* (1-eu)?

for all points in D.. If we fix q and let € tend to zero, we have

2v k
A< —
v+1 K

thus proving the following Theorem:

THEOREM 1. Let M be a complete Kdhler manifold with Ricci curvature
bounded from below by k <0, and N a Kdhler manifold with holomorphic sectional
curvature bounded from above by K <0. Then for any holomorphic map f: M — N
we have

2v E
v+1K’

ldflP < A(f)<

where v is the maximal rank of df.

If M and N are both the unit ball in C* with the Kahler metric of constant
holomorphic section curvature —c?, and f is the identity map, then A =n,
k=[(n+1)/2]c? and K =—c?, and so A =[2v/(v + 1)](k/K). Of course ||df|F=1<
A unless n=1.

Observe that if k=0 in the Theorem then, ||df|?=0, and f is constant map.
This gives the following corollary. The case where dim M =dim N =1 was origi-
nally obtained by Alfred Huber [5].

COROLLARY 1. Let M be a complete Kdhler manifold with non-negative
Ricci curvature and N a Kdhler manifold whose holomorphic sectional curvature is

bounded above by K <0. Then there is no non-constant holomorphic map of M into
N.
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In the proof of Theorem 1 we needed the assumption k<0 to conclude
—k(1—ev)><—k. If, however, the Ricci curvature of M is bounded from below by
a positive constant k, then M is compact. If f is a non-constant holomorphic map
of M into N, then A must have a positive maximum at some point p. There we
must have

v+1

[ 4

0=Alog A =2k — KA,

and so K >0, proving the following corollary:

COROLLARY 2. Let M be a complete Kahler manifold with Ricci curvature
bounded from below by a positive constant k. Then M is compact, and there is no
non-constant holomorphic map of M into a Kahler manifold with non-positive
holomorphic sectional curvature.

3. In this section we consider holomorphic maps between Hermitian man-
ifolds. The study of curvature for a Hermitian manifold (M, g) is quite compli-
cated. There are several different versions of the curvature tensor. Fortunately,
they all give the same definition of holomorphic sectional curvature. If £ is a
tangent vector at a point p of M, then the holomorphic sectional curvature at p in
the direction £ is the Rieman sectional curvature of the section determined by ¢
and i If ¢ is a holomorphic map of a disk 4, in C into M with ¢(0)=p and
¢'(0) =&, then the pullback ¢ * g=g.z07¢! is a conformal metric in A, whose
Gaussian curvature at O is less than or equal to the holomorphic sectional
curvature of M at p in the direction &, and there is a map ¢ for which it is equal.
This is the only property of holomorphic sectional curvature for Hermitian
manifolds that we shall use, and could in fact be taken as the definition of
holomorphic sectional curvature. Note that the Gaussian curvature of the confor-
mal metric ds® = p” |d{|* is given by —2p?p

Let (M, g) and (N, h) be two Hermitian manifolds, and f:M — N a non-
constant holomorphic map. We assume that the holomorphic sectional curvature
of M is bounded from below by a constant k <0, and that the holomorphic
sectional curvature of N is bounded from above by a constant K <(0. We shall
also assume that M satisfies the following condition.

(C). There is a continuous proper non-negative function u on M with the
property that at each point p there is a smooth upper supporting function v with
IVul|<1 and v, < g.s at p.

It follows from propositions 2 and 3 that M satisfies (C) if it is complete and
the Riemann sectional curvature of M is bounded from below or if it is a
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complete Kahler manifold with holomorphic bisectional curvature bounded from
below.

Let A = A(p) be the function ||df||. Thus for each tangent vector £ at p we have
If*&ll<A(p) |l€|l, and there is one tangent vector ¢ for which equality holds. Let u
be the function given by condition (C), and set D, = {p € M: eu(p)< 1}. Then D, is
compact. The function A(1—eu) is continuous on D, and vanishes on the
boundary of D,. Hence there is a point p in D, where it assumes its maximum.
Let £ be a tangent vector at p such that A(p)=||f*¢|,|¢ll=1, and let ¢ be a
holomorphic map of a disk 4, < C into M with ¢(0)=p, ¢'(0) = ¢ such that the
conformal metric

p* |de|* = gugeg ¢ d¢ dL

has Gaussian curvature at 0 equal to the holomorphic sectional curvature of M at
p in the direction £. Since ||£]|= 1, p(0) = 1, and the Gaussian curvature of p at 0 is
at least k.

Let o? |d¢|* be the conformal metric on 4, obtained by pulling back the metric
h on N by the holomorphic map f ° ¢. Then o(0) =||f*¢||= A(p) and the Gaussian
curvature of o at 0 is at most K. For an arbitrary { € 4, we have p(¢) =|l¢'(2)|| and
o(O) =[f*e" (Ol=A e ) lle' (Dl = Ae(2)p(Q).

Let v be a smooth upper supporting function of u at p with |[Vuv||<1 and
Vo3 < aa- Let us take A, so small that ¢[A,] is contained in the domain of v. Then
we have

AMq)(1—ev)(q)) = A(q)(1 - eu(q)) < A(p)(1—eu(p)) = A(p)(1 - ev(p)),

and so A(1—ev) has a local maximum at p. Hence

LA
o(0) [1-ev(e())]

has a local maximum at = 0. Now

5% o(@(0)| = leae gl <IVolllle @l = p(2)

and

0* _
“%2%592 = 0agPIPL < Bag®7ée = P*(0).
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If A(p) >0, then log o/p (1 — ev) must also have a local maximum at { =0, and
we must have there

82
0=-"2— [logg(l—ev)]

L1474 p
2 €V €°UD
> s [ -1 _ & (94
aca{(oga o¢ p) 1-ev (1—ev)?
e 2 20 _ 2602(0) _{_ 5 ___2_6____ >
=—Ko*(0)+ kp*(0) ey ( KA%(p)+k (1-ev(p))2)p (0)

Thus at p we have
—KA*(p)(1—eu(p))*<—k(1-eu(p))*+2e<—k +2e.

Thus for any qe D, we have
—KA%(q)(1—eu(q))*<=—k +2e

or
2 k 26 —2
A (q)5535(1-eu(q)) %-ig(l—*eu(q)) :

Since q € D, whenever € <[u(q)]™', we may let € tend to 0, getting A><k/K.
We have thus established the following Theorem:

THEOREM 2. Let M and N be Hermitian manifolds with M complete and
holomorphic sectional curvature bounded from below by a constant k <0 and the
holomorphic sectional curvature of N bounded from above by a constant K <0.
Assume either that M has Riemann sectional curvature bounded from below or that
M is Kdhler with holomorphic bisectional curvature bounded from below. Then any
holomorphic map f: M — N satisfies

ldf|]* < k/K.

COROLLARY 1. If M is a Hermitian manifold with non-negative
holomorphic sectional curvature and either has Riemannian sectional curvature
bounded from below or is Kdhler with holomorphic bisectional curvature bounded
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from below, then there are no non-constant holomorphic maps of M into a
Hermitian manifold with curvature bounded from above by K <0. In particular,
there are no non-constant bounded holomorphic functions on M.

In the proof of Theorem 2 we made use of the fact that k was non-positive to
conclude —k <—k(1—e€u)?. I do not know whether or not a Hermitian manifold
with holomorphic sectional curvature bounded below by k>0 and satisfying
condition C can have non-constant maps into a manifold with non-negative
sectional curvature. If, however, M is compact and has holomorphic sectional
curvature bounded from below by k, then the above proof can be carried out with
u=v=0, and the sign of k is irrelevant, and one obtains the inequality
—K ||df|?<—k. Thus if K=<0, we must have k<0, and so there are no non-
constant maps of a compact Hermitian manifold with holomorphic sectional
curvature bounded from below by k>0 into a Hermitian manifold with non-
positive holomorphic sectional curvature. In particular, if M is a complete Kahler
manifold with holomorphic sectional curvature bounded from below by k >0,
then M is compact.
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