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Zerlegung von Distributionen, die unter einer unîpotenten
Gruppenoperation invariant sind

Rainer Félix

Einleitung

Im Jahre 1959 hat Dixmier [3] bewiesen, da8 die Charaktere irreduzibler
Darstellungen einer nilpotenten einfach zusammenhângenden Liegruppe G zen-
traie temperierte Distributionen sind, die wir mit einigem Recht als die "elemen-
tarsten" zentralen temperierten Distributionen auf G verstehen dùrfen. Von
Rothschild und Wolf [12] wurde im Jahre 1976 die Frage gestellt, inwieweit aile
zentralen temperierten Distributionen auf G durch dièse elementarsten
Distributionen "beschrieben" werden kônnen-eine typische Frage der harmoni-
schen Analyse. Im Hinblick auf die Kirillov-Theorie ubertrâgt sich dièse Frage
vermôge der Fouriertransformation auf das Problem, inwieweit aile unter der

koadjungierten Darstellung invarianten temperierten Distributionen auf dem
Dualraum g* der Liealgebra g von G durch die invarianten MaBe auf den

koadjungierten Bahnen ausgedrûckt werden kônnen. Rothschild und Wolf haben
dièse Frage fur den Fall der Heisenberg-Gruppe positiv entschieden, indem sie

unter Ausnutzung der speziellen geometrischen Lage der koadjungierten Bahnen
eine Zerlegung invarianter temperierter Distributionen auf g* iiber den invarianten

MaBen auf den Bahnen explizit angegeben haben ([12], Formel 3.20). Im Fall
der koadjungierten Darstellung einer beliebigen nilpotenten einfach

zusammenhângenden Liegruppe oder - allgemeiner - im Fall einer beliebigen uni-
potenten Darstellung einer lokalkompakten zusammenhângenden Gruppe in
einem endlichdimensionalen reellen Vektorraum, wo wir eine solche explizite
Zerlegung kaum werden erhalten kônnen, soll eine temperierte Distribution
zerlegbar heiBen, wenn sie durch Linearkombinationen invarianter MaBe auf den
Bahnen approximiert werden kann. Hier hat Dixmier die Frage von Rothschild
und Wolf negativ entschieden, indem er ein Beispiel einer unipotenten Darstellung

und auch ein Beispiel des Spezialfalls der koadjungierten Darstellung einer
einfach zusammenhângenden nilpotenten Liegruppe angegeben hat, bei dem nicht
jede invariante temperierte Distribution zerlegbar ist ([4]).

In der vorliegenden Arbeit behandeln wir die Frage, welche invarianten
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temperierten Distributionen bei einer beliebig vorgegebenen unipotenten Darstel-
lung U einer lokalkompakten zussammenhângenden Gruppe G in einem endlich-
dimensionalen reellen Vektorraum V zerlegbar sind. Wir konstruieren in §1 ein
U-invariantes Polynom Q auf V, so da8 aile Bahnen von U in V, auf denen Q
nicht verschwindet, Pukanszkys simultaner Parametrisierung ([10], S. 55) unter-
liegen; ùberdies wird Pukanszkys rationale Funktion, die dièse Parametrisierung
leistet, durch Multiplikation mit einer geniigend hohen Potenz von Q zu einer
Polynomfunktion. (Ein Polynom Q mit solchen "regularisierenden" Eigenschaf-
ten wurde bereits von Pukanszky in [11] fur den Spezialfall der koadjungierten
Darstellung einer nilpotenten einfach zusammenhàngenden Liegruppe angege-
ben.) In §2 zeigen wir dann, da8 jede ([/-invariante temperierte Distribution T
durch Multiplikation mit einer hindreichend hohen, von der Ordnung von T
abhângigen Potenz von Q zu einer zerlegbaren Distribution wird; wir kônnen

sogar eine explizite Zerlegungsformel àhnlich der von Rotschild und Wolf ([12],
Formel 3.20) angeben. Da8 die Potenz von Q nicht nur aus beweistechnischen
Grùnden sondern notwendigerweise von der Ordnung von T abhàngen mu£, zeigt
Dixmiers Gegenbeispiel ([4], 1). SchlieBlich geben wir noch eine Interprétation
unseres Ergebnisses fur den Spezialfall der koadjungierten Darstellung einer
nilpotenten einfach zusammenhàngenden Liegruppe.

In einer spàteren Arbeit werden wir unter Anwendung unseres hiesigen
Ergebnisses neben der Heisenberg-Gruppe weitere nilpotente einfach

zusammenhàngende Liegruppen angeben, fur die die Frage von Rotschild und
Wolf eine positive Antwort hat.

§1. Unipotente Darstellungen

1.1. Sei G eine lokalkompakte zusammenhàngende Gruppe, V ein endlich-
dimensionaler reeller Vektorraum und U eine stetige unipotente Darstellung von
G in V. Dann existiert eine Basis {el9..., eN} in V, so da6 allen Darstellungs-

operatoren hinsichtlich dieser Basis eine untere Dreiecksmatrix entspricht, deren

sàmtliche Diagonalelemente gleich 1 sind ([1], chap. III, §9, prop. 18, ii); d.h. es

ist

l/(a)e, =e,(mod e,+1,..., eN)

fur aile aeG, j 1,..., N. Eine solche Basis heiBt Jordan-Hôlder-Basis fur 17.

Die Faktorgruppe G/Kern (U) ist eine Liegruppe ([7], S. 88). Somit ist

U(G) G/Kern U eine analytische Untergruppe von GL(V), also auch eine
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analytische Untergruppe der nilpotenten einfach zusammenhângenden Liegruppe,
bestehend aus denjenigen Transformationen, denen hinsichtlich der Basis

{eu eN} untere Dreiecksmatrizen mit Einsen in der Diagonale entsprechen.
Folglich ist U(G) eine einfach zusammenhângende nilpotente abgeschlossene
Lieuntergruppe von GL (V) ([7], S. 137).

1.2. Bekanntlich kann man die Bahnen von U in V durch Polynomfunktionen
beschreiben ([10], S. 50). Und zwar existieren zu einer Bahn B Indizes l<h<
• • • < jd < N und eine Polynomfunktion PB, definiert auf WB, dem von den
Basisvektoren eh,..., eJd erzeugten Unterraum von V, mit Werten in V, so daB

gilt:
(i) B PB(WB).
(ii) ttb(Pb(z))= z fur aile zeWB, wobei irB die Projektion von V auf WB

bezeichne.

(iii) Die /-te Komponente von PB(z) bezùglich der Basis {eu eN} von V
hàngt nur ab von den ersten fc Komponenten von z bezùglich der Basis

{eh,..., eJd} von WB, wobei k maximal ist fur jk </ (j 1,..., N).
Nach Vorgabe der Jordan-Hôlder-Basis {el5..., eN} sind die Indizes ju jd
und die Polynomfunktion PB eindeutig bestimmt durch (i), (ii), (iii). Wir nennen
WB den Parameterraum und PB die parametrisierende Polynomfunktion von B.
Wegen (i) und (ii) ist B {x e V \ Pb(itb(x)) x}, also Zariski-abgeschlossen in V.

Da PB einen Homôomorphismus von WB nach B definiert, induziert das Lebes-
guemaB auf WB, normiert gemâB der Basis {eh,. eu) von WB, ein MaB AB auf
B, das invariant ist unter U(G) ([10], S. 54). Mit (ii) folgert man leicht, daB AB,

als MaB auf ganz V betrachtet, temperiert ist. AB heiBt Pwjektionsmaji auf B.
1.3. Die in 1.2 gegebene Parametrisierung einer einzigen Bahn von U in V

kann auch simultan fur "fast aile" Bahnen durchgefùhrt werden ([10], S. 55), und
zwar im folgenden Sinne: Es gibt eine U-invariante Zariski-offene Teilmenge %

von V, so daB aile in ££ enthaltenen Bahnen denselben Parameterraum haben und
daB die Abhângigkeit der parametrisierenden Polynomfunktion von der

jeweiligen Bahn in 2£ durch eine l/-invariante rationaie Funktion auf V be-
schrieben wird.

In [2] wird eine solche Zariski-offene Menge ££ als Komplement der Nullstel-
lenmenge eines durch U bestimmten Polynoms auf V definiert; sodann wird die
Invarianz von 2£> nicht aber die Invarianz dièses Polynoms selbst bewiesen ([2],
Lemma 3.1). Pukanszky dagegen beweist die Invarianz eines solchen die Menge 2£

bestimmenden Polynoms, allerdings nur fur den Spezialfall der koadjungierten
Darstellung einer einfach zusammenhângenden nilpotenten Liegruppe ([11],
Remark 2, S. 275). Dièses Polynom hângt eng zusammen mit den parametrisierenden

Polynomfunktionen der Bahnen in 2£ ([11], Lemma 4, S. 276). Wir wollen
nun ein entsprechendes Ergebnis fur unsere allgemeinere Situation beweisen.
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1.4. Sei n die Liealgebra von U(G), verstanden als Liealgebra von V-
Endomorphismen. Es ist klar, da8 den Elementen aus n hinsichtlich der Basis

{e1?..., eN} von V untere Dreiecksmatrizen entsprechen, deren sàmtliche

Diagonalelemente gleich 0 sind (siehe 1.1). Da n nilpotent ist, existiert eine Folge
von Idealen n=nQ^nl => ••• =>ttm ^{O} mit dim n, m — i und [n,n,]cnl+1, i

0, ...,m-l.
Sei d: maxXGV dimnx. Wir kônnen d>0 annehmen; denn fur d 0 liegt der

triviale Fall vor, daB U die Einsdarstellung ist. Sei ik : min {i | maxXGv dim ntx
à — fc}, k 1,..., d. Dann ist 1 <ix < i2< * * • < id m und maxXGV dim nlk_xx
d-fc + 1, fc l,...,d. Also ist fur fc l,...,d die Menge
{x e V | dim nlk_iX d — fc + 1} Zariski-ofïen in V, wie man mit einem Determin-
antenargument einsehen kann, und nichtleer; dann ist aber auch die Menge
Z' : Hk i {* e V \ d™ nllc_!X d - k + 1} Zariski-ofïen und nichtleer.

Fur x g V sei p;(x) die /-te Komponente von x beziiglich der Basis {el9..., eN}

und pj'—P\ei + * ---\-pjCj die Projektion auf den von den Vektoren eu e]

erzeugten Unterraum, / 1,..., N. Sei /k : min {/1 maxxeV dim pj(nx) k}, k

1,. d. Dann ist Kji < • • • </d <N und maxXGV dim pJk(nx) k, fc 1,..., d.

Es folgt wiederum, daB die Menge Z:= f>\k^l{xeV\diïnpJk(nx)=z k} Zariski-
ofïen und nichtleer ist.

Wir fixieren nun ein Elément xeZHZ'. Dann ergibt sich aus rt^x nx die
Existenz eines Elementes X^n,,-! mit pJi(X1x)^0. Da n.j-An^ in n.^t dicht
liegt, kônnen wir XjGn^An^ annehmen; dann ist x\h-i =RX1 + nIl, also nx—
RXxx + nl2^]X. Folglich existiert ein X2enl2_1, so daB p^X^) und pj2(X2x) linear
unabhângig sind. Wir kônnen wieder X2enl2_1Vv, annehmen; dann ist nx

KXxx +RX2x +n,3_1x. So gewinnen wir sukzessiv Elemente X^n^Xn,,, 1

1,. d, so daB die Vektoren ^(X^),..., pJk(Xkx) linear unabhângig sind fur
aile fc 1,. d. Daraus folgert man ohne Schwierigkeiten durch Induktion nach
fc, daB die Matrix (p^CX.x) | 1 < l,i < k) den Rang k hat fur aile fc 1,..., d. Also
ist die Menge 2£" : fl t=i {* e V \ det (p^x) 11 < I, i < k) + 0} Zariski-ofïen und
nichtleer. Insbesondere ist das homogène Polynom Q(x) : det (ph (X,x) 11 < I, i <
d), xgV, nicht das Nullpolynom, und 3£': {xeV\Q(x)jz0} ist eine Zariski-
ofïene nichtleere Menge in V.

Fur xe2E' und l<k<d hat das Gleichungssystem Xf-i pJl(X1x)yt SkM 1

1,..., d, genau eine Lôsung (yl5..., yd)=:(yii\x),..., ydk\x)); hierbei sei ôKl

das Kronecker-Symbol. Nach der Cramerschen Regel sind die Funktionen

Q(x) • y[k\x) Polynôme auf V fur aile i, fc - 1,..., d. Fur x e 3£' und 1 < fc < d

definieren wir Xk(x): Xf=i 7ik)U)^; dann sind die Funktionen Q(x) • Xk(x)
Polynomfunktionen auf V mit Werten in n fur aile fc 1,..., d. Wir zeigen jetzt:
Ist j<jk, l<fc<d, so ist pJ(Xk(x)x) 0 fur aile xeT. Das ist zunâchst klar fur
aile je{ji,... ,/k-i) nach Définition von Xk(x). Nehmen wir nun /</k minimal
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an, so da8 pJ(Xk(x)x) ^0 wàre fur ein x e£E', und l minimal mit j </{. Dann gàbe

es aber auch ein xeT, mit pJ(Xk(x)x)^: 0; fur xeT' sind aber die Vektoren

Pj-itXïX),..., pJ_1(Xi_1x) linear unabhângig. Wegen der Minimalitàt von / wàre

nun pJ(Xk(x)x) pJ(Xk(x)x)eJ, also p,(Xk(x)x) linear unabhângig von

pjiXxx),..., pjiX^x), da schon p^^x),..., pJ_1(Xl_1x) linear unabhângig
sind. Damit wâre pj(nx) mindestens /-dimensional im Widerspruch zu /</V Also
mu8 pJ(Xk(x)x) 0 sein fiir aile xg£T und aile j<jk. Daraus ergibt sich zusam-
men mit der Définition von Xk(x), da8

Xk(x)x eJk (mod cJk+1,..., eN) (*)

ist fur aile x e 2tr und aile k -1,..., d. Dies hat insbesondere zur Folge, da8

2'cZist.

1.5. LEMMA. Das Polynom Q ist U-invariant.

Beweis. Seien x e 3E" und A e U(G) fest vorgegeben. Fur einen Endomorphis-
mus X von V setzen wir X:=(ph(Xx),..., pJd(Xx))eRd. Wegen xef" ist dann

{Xj,..., Xd} eine Basis von Rd. Also wird durch die Vorschrift Xk »-» AXkA~l,
k 1,..., d, eine lineare Abbildung / von Rd in sich definiert. Nun wollen wir
einsehen, daB sich die lineare Abbildung X^A^X von n nach Rd zu einer
linearen Abbildung g: X^A^Xvon Rd in sich faktorisieren lâBt. Dazu geniigt
es zu zeigen, daB Xx 0 ist, fails X 0 ist. Wir argumentieren âhnlich wie am
SchluB von 1.4: Wâre X 0 und Xx^ 0, so wâhlen wir / minimal mit p;(Xx) ^ 0

und l minimal mit /</{; ;^{/i,... ,jd} wegen X 0. Wegen xef" wâre dann

p,(Xx) pJ(Xx)eJ linear unabhângig von ^(Xjx),..., p^X^jx), also PjCnx)
mindestens Z-dimensional im Widerspruch zu j<h. Die Abbildung g ist also wohl-
definiert.

Wegen 1.4 (*) und wegen der Unipotenz von A"1 gehôrt zu der Abbildung g

von Rd in sich hinsichtlich der Basis {X^x),..., Xd(x)} eine untere Dreiecksma-
trix mit Einsen in der Diagonale; also hat g die Determinate 1. Zum Nachweis,
daB auch / die Déterminante 1 hat, zeigen wir, daB die Matrix von / hinsichtlich
der Basis {Xt,..., Xd} von Rd ebenfalls eine untere Dreiecksmatrix mit Einsen in
der Diagonale ist. Wir bezeichnen mit Ad die adjungierte Darstellung von U(G)
in n und sehen zunâchst durch Differentiation der Gleichung A(ExpfX)A~1
Exp (tAd(A)X), Xgtî, t€R, nach t im Punkte t 0 ein, daB AXA'1 Ad(A)X
ist. Fiir k 1,..., d gilt nun Ad(A)Xk Xk + Yk mit Yk e nlk aufgrund der Wahl
der Idealfolge n n0 3 ri! 3 • • • 2 nm {0}. Da wegen x e T' die Vektoren

Xk+1x,..., Xdx e nlkx linear unabhângig sind, bilden sie nach Définition von ik aus

Dimensionsgriinden eine Basis von nlkx. Folglich liegt Ykx im linearen Erzeugnis
der Vektoren Xk+1x,..., Xdx, also Yk im Erzeugnis von {Xk+t,..., Xd}.
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Mit det / det g 1 folgt nun:

Q(A~*x) det (pJi(XkA~1x) | l, k 1,..., d)

det(A
'

Da S" in V dicht liegt, ergibt sich die Gùltigkeit der Gleichung Q(A1x)= Q(x)
fur aile xeV durch Stetigkeit. ¦

Bemerkung. Die sorgfàltige Wahl, die wir in 1.4 fur die Elemente Xl9..., Xd
getroffen haben, war fur die Invarianz von Q wesentlich. Es gibt nàmlich einfache
Beispiele unipotenter Darstellungen, auch Beispiele fur den Spezialfall der koad-
jungierten Darstellung einer einfach zusammenhângenden nilpotenten Liegruppe,
in denen Elemente Xu Xd en so gewàhlt werden kônnen, daB das Polynom
det (pJ((Xk)x | /, fc 1,..., d), x e V, nicht l/-invariant ist. Es hâtte auch nicht
genùgt, fur fc 1,. d das Elément Xfc beliebig aus n^-An^ zu wâhlen, da sonst
das Polynom det (pu(Xkx) \ l, k 1,..., d) das Nullpolynom hâtte werden
kônnen.

1.6. Wir beweisen nun unter Verwendung der Methoden von Pukanszky
([10], part. II, chap. I, §§3, 5) den folgenden

SATZ. In V sei eine Jordan-Hôlder-Basis {el5..., eN} fur U vorgegeben.
Dann existiert ein U-invariantes homogènes Polynom Q^O auf V, so daB gilt:

(i) Aile Bahnen von U in V, auf denen Q nicht verschwindet, haben denselben

Parameterraum W; die Dimension von W stimmt mit dem Grad von Q ùberein.

(ii) Fur xeV mit Q(x)j=Q sei z*-*P(z,x), zeW, die parametrisierende

Polynomfunktion der Bahn von x; dann gibt es eine ganze Zahl r>0, so daji die
Funktion (z, x) •-> O(x)r • P(z, x) eine Polynomfunktion auf WxV mit Werten in
V ist.

Beweis. Ist U die Einsdarstellung, so ist die Aussage des Satzes mit Q l,
W {0} und P(z, x) x trivialerweise erfiillt. Wir nehmen also an, daB [/nichttri-
vial ist, und zeigen nun, daB unser in 1.4 definiertes Polynom Q die Aussage des

Satzes erfûllt.
Wir behalten die Bezeichnungen von 1.4 bei und setzen Yk(x):= Q(x) • Xk(x),

k 1,..., d. Da dièse Funktionen Polynomfunktionen auf V sind (1.4) und da
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die Exponentialreihe wegen der Nilpotenz von n abbricht, werden durch die

Gleichung
N

(Exp tlYl(x) Exp tdYd(x))x : X Q,(f, x)e,

Polynôme Q(F, x), F (tl9..., td) e Rd, x g V, definiert.
Wegen 2f' c Z (1.4) ist pJk(nx) fur x g SE' und 1 < fc < ci fc -dimensional, also der

Kern der Abbildung X>-*pJk(Xx), Xen, (m-fc)-dimensional. Dieser bildet eine

Lieunteralgebra von n, die aus Dimensionsgrûnden von Yk+1(x),..., Yd(x) und
dem (m - d)-dimensionalen Annullator nx von x erzeugt wird. Also ist U(G)
ExpRY^x) ExpRYd(x) Expnx (siehe etwa [10], S. 85), und folglich
durchlàuft XJLi Q]{t,x)eï mit ïeRd die ganze Bahn von x.

Sei nun W der von den Vektoren eu,..., eJd erzeugte Unterraum von V.

Wegen 1.4 (*) hat Qlk(ûx) die Form pfc(x)+ O(x) • (tk + /k(r1,.. rk_^ x)) fur
fc 1,..., d, wobei die Funktionen fk Polynôme sind. Offenbar lâBt sich fur
zeW, z= Sk i zke1k, das Gleichungssystem tk +fk(tu fk_i, x) zk, fc

1,..., d, sukzessiv nach tl5..., td auflôsen, also tk Fk(z, x), fc 1,..., d, oder in
Vektorschreibweise f=F(z, x) mit einer Polynomfunktion F. Da F(z, x) mit
zeW ganz Rd durchlàuft, durchlàuft P'(z, x): X;N=1 Q(F(z, x), x)e; mit zeW
die ganze Bahn von x fur aile xef. Ferner gilt

pJk(P'(z,x))=QIk(F(z,x),x)

Pfc(x)+ Q(x) • (Fk(z, xJ + ZJF^z, x),..., F^iz, x), x))

pjk(x) + Q(x) • (zk-fk(Fl(z, x),..., Fk(z, x), x)

PIkW + Q(x)-zk fur fc l,...,d.

Sei 7r:=Xk i PJk^Jk die Projektion von V auf W. Da P'(z,x) eine Polynomfunktion

ist, ist der Satz bewiesen, wenn wir zeigen, daB fur aile xef der
Unterraum W und die Polynomfunktion z»-*P'((l/Q(x)) • (z - tt(jc)), x) die Aus-

sagen (i), (ii), (iii) von 1.2 bezûglich der Bahn von x erfiillen. Da P'(z,x) mit
zeW die Bahn von x durchlàuft, folgt (i). Aus der obigen Rechnung ergibt sich

(ii). SchlieBlich hàngt p}(P'(z,x)) fur testes xgî' nur ab von zx,...,zk mit
maximalem fc fur /k^/, da Qj(t, x) nur von tl9..., tk und Ft(z, x) fur l<I<d
nur von zl9..., zx abhângt. ¦

Bemerkung. Sei Wx der von den Vektoren epj^ju 9jd9 erzeugte Unterraum

von V. Wegen der Invarianz von £T ist P(0, x)eW±C\ SE' fur aile ze3£'; also
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ist W±n2£' eine nichtleere Zariski-offene Menge in Wx. Fur zeW und y g

W±nT ist P(Q(y) • z, y) P'(z, y). Demnach ist die Funktion

(z,y)H->P(Q(y).z,y)

eine Polynomfunktion auf Wx W\

1.7. Der nach Vorgabe einer Jordan-Hôlder-Basis eindeutig bestimmte Un-
terraum W von V soll Parameterraum und die Funktion P(z, x) parametrisierende
rationale Funktion von U heifien. Ein [/-invariantes Polynom Q#0 der Form
Q(x) det (p^X^x) | 1 < /, i < d), X,,..., Xd g n, nennen wir wegen seiner in Satz
1.6 angefùhrten Eigenschaften regularisierendes Polynom von U. Im allgemeinen
sind weder Q noch die Nullstellenmenge von Q eindeutig bestimmt, wohl aber
der Durchschnitt der Nullstellenmengen aller solcher Polynôme Q; diesen nennen
wir den Singularitâtsbereich, dessen Komplement ££ den Regularitàtsbereich von
U. Offenbar gibt es regularisierende Polynôme Qu Qs von U, so da8 ££

{x g V | Q^x)2* • • • -h Os(x)2 ^ 0} ist. Es ist klar, da(3 das Polynom Q:= Q?+ • • • +
O2 ebenfalls die Aussage von Satz 1.6 erfûllt (natiirlich abgesehen von der
Aussage ùber den Grad von Ô). Insbesondere ist die parametrisierende rationale
Funktion P(z, x) von U fur aile xel wohldefiniert. Die Funktion cr: x •->P(0, x)
von 3f nach W':= Wxn^ ist [/-invariant, wie man sofort einsieht ([10], S. 58),
liefert also einen stetigen Schnitt fur die Menge aller Bahnen in 2£. Und zwar wird
jeder Bahn in 3t ihr Schnittpunkt mit W± zugeordnet. Man kann leicht zeigen,
da8 dièse Abbildung ein Homôomorphismus ist zwischen der Menge aller Bahnen
in 2E und der Zariski-offenen Menge W in Wx. Ferner ist die Abbildung

ein Homôomorphismus, dessen Umkehrung durch x ^ (tt(x), cr(x)) gegeben ist.

Dieser Homôomorphismus ist im allgemeinen nicht zu einem Homôomorphismus
von Wx Wx nach V fortsetzbar. Das bringt eine Schwierigkeit mit sich, die uns
noch beschâftigen wird.

§2. Zerlegbare Distributionen

2.1. Ist V ein endlichdimensionaler reeller Vektorraum, so bezeichnen wir mit
Sf(V) den Raum der Schwartz-Funktionen auf V und mit Sff(V) seinen Dual-

raum, den Raum der temperierten Distributionen auf V, versehen mit der starken



536 RAINER FELIX

Topologie. Ist M^y(V) eine beliebige Menge temperierter Distributionen auf
V, so nennen wir eine temperierte Distribution T auf V zerlegbar ùber M, wenn
jede Funktion <p e £P{ V), die von allen Distributionen aus M annulliert wird, auch

von T annulliert wird oder, was dasselbe ist, wenn T in dem von M erzeugten
abgeschlossenen Unterraum von $f'{V) liegt. Der Name "zerlegbar" motiviert
sich durch folgende Ûberlegung:

Definieren wir zu jeder Funktion <p e if{ V) die Funktion <p: M —» C

dann lâBt sich T ùber den Raum &(M) : {$ | <p e Sf( V)} faktorisieren; d.h. es gibt
ein lineares Funktional f auf ^{M) mit T(<p) t(<p) fur aile <p e S?( V). Da f ein
lineares Funktional auf einem Funktionenraum ist, ist die symbolische Schreib-
weise

:=i /(S)df(S),

naheliegend. Dann kônnen wir fur aile <peSf(V) schreiben: T(ç)=f(<p)
§Mç(S)df(S) §MS((p)df(S); T kann also interpretiert werden als "Schwer-

punkt" eines verallgemeinerten Intégrais iiber M.
2.2. Ist U eine stetige unipotente Darstellung einer lokalkompakten

zusammenhângenden Gruppe G in V, so ist mit der Menge M der invarianten
MaBe auf den Bahnen von U in V (siehe 1.2) auf natiirliche Weise eine Klasse

l/-invarianter temperierter Distributionen auf V ausgezeichnet. Wie man weiB,
ist im allgemeinen nicht jede l/-invariante temperierte Distribution zerlegbar
ùber M [4]. Es stellt sich also die Frage, welche Distributionen zerlegbar sind
ùber M oder, wie wir auch sagen werden, zerlegbar fur U (oder einfach:

zerlegbar). Es wird sich zeigen, daB sich die nichtzerlegbaren l/-invarianten
temperierten Distributionen im wesentlichen auf den Singularitâtsbereich von U
"konzentrieren". Wir werden nâmlich sehen, daB jede LMnvariante temperierte
Distribution durch Multiplikation mit einer hindreichend hohen Potenz eines

regularisierenden Polynoms von U zu einer zerlegbaren Distribution wird.
2.3. Zunâchst mùssen wir etwas distributionstheoretische Arbeit leisten:
Sind m und b nichtnegative ganze Zahlen, so bezeichnen wir mit Cmb(R2V) die

Menge aller m-mal stetig differenzierbaren Funktionen / auf RN, fur die die
Funktionen x «-»(l + |x|2)b/2d/(x), xeRN, im Unendlichen verschwinden fur aile

Ableitungen d der Ordnung ^m. Wir versehen Cmb(RN) mit der Topologie der

gleichmâBigen Konvergenz aller dieser Funktionen (l + |x|2)b/2d/(x). Fur aile m

und b liegt der Raum ^(RN) der Testfunktionen auf RN (und damit "a fortiori"
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auch der Raum ^(RN)) dicht in Cmb(RN); ferner ergibt sich mit [15], chap. VII,
§4, th. VI, da8 jede temperierte Distribution auf RN eine stetige Linearform auf
Cmb(RN) definiert, wenn nur m und b genùgend groB gewàhlt werden.

Sei nun R eine rationale Funktion von RN nach RN und p ein Polynom #0
auf RN, so daB p • R eine Polynomfunktion von R^ nach RN ist. Wir nehmen an,
daB fur aile xgRn mit p(x)^0 der Ausdruck |p(x)| • |x| beschrânkt ist durch
einen Ausdruck der Form e • (1 + |.R(x)|2)s/2, wobei s eine natùrliche Zahl und e

eine positive Zahl sei. Natûrlich làBt sich dann durch etwaige VergrôBerung von e

erreichen, daB auch |p(x)|<e • (l4-|R(x)|2)s/2 ist. Dann gilt fur aile m>0:

LEMMA. Zu jedem c^O existiert ein b>:Q und eine natùrliche Zahl r>
2m + \,soda6fûrfe Cmb(RN) die Funktion g(fr):RN -»C

x~p(x)rf(R(x))

zu Cmc(RN) gehôrt. Ùberdies ist die Abbildung Cm'b(RN)-n> Cm'c(RN) stetig.

Beweis. Durch Induktion nach n zeigt man, daB fur fe Cm b(RN) und fur jede
Ableitung d der Ordnung n<m die Funktion dg}r)(x) die Form
p(x)r~2n • Y,j PjWfjiRW) nat- wobei die Funktionen /, Ableitungen von / der
Ordnung <n und die Funktionen p/x) Polynôme sind, beschrânkt durch ô • (14-
|x|2)k/2 mit Zahlen 8>Q und fceN, die lediglich von p, JR, m und r, nicht aber von

/ abhângen, wâhrend die Anzahl der Summanden durch eine nur von N und m

abhângige Zahl beschrânkt ist; man beachte dabei, daB fur eine Ableitung 3 erster
Ordnung p(x)2 3R(x) eine Polynomfunktion ist. Nun setzen wir r 2m + k 4- c + 1

und schâtzen ab:

+l)/2 |dg(r)(x)|^g (1+|jc|2)(^c + 1)/2 |p(jc)|r-2n
J

Ô • (l + |x|2)(-2n)/2(lp(x)|2)(r-2n)/2 • Z \f,Wx))\
J

8 ¦ (|p(x)|2 + (|p(x)| |x|)2)('-2""2 • I \f,(R(x))\

S • (2e2(1 + |R(x)|2)s)('-2b)'2 • I \f,(R(x))\

)|, xeRN mit
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Setzen wir nun b sr, so ist (l + |x|2)(c+1)/2 • |dg}r)(x)|, xeRN, fur /eCmb(RN)
offensichtlich beschrânkt und geht ùberdies gleichmàfiig gegen 0, wenn / in
Cm'b(RN) gegen 0 geht. Folglich verschwindet die Funktion (1 + |x|2)c/2 dgf\x) fur
fe Cmb(RN) im Unendlichen und geht gleichmàBig gegen 0, wenn / in Cmb(RN)

gegen 0 geht. ¦
2.4. In der Notation von 1.7 wird durch x »-» (tt(x), ct(x)) bzw. (z, y) •-» P(zy y)

eine rationale Funktion von V nach Wx Wx bzw. von Wx WL nach V definiert.
Nach Satz 1.6 gibt es eine ganze Zahl r>0, so da8 fiir das Polynom
p(x) : Q(x)r : Q0(x) auf V bzw. p(z, y) : O(y)r - Q0(y) auf W x WL die Funktion

p(x) - (tt(x), cr(x)) bzw. p(z, y)P(z, y) eine Polynomfunktion von V nach

WxWx bzw. von WxW1- nach V ist. Nun gilt fur xeV mit p(x)^0 die

Gleichung

p(x) • x Q0(x) • P(tt(x), a(x)) - Q0(cr(x)) • P(tt(x), or(x)).

Der letzte Ausdruck ist aber eine Polynomfunktion in (tt(x), ct(x)), und folglich
erhalten wir eine Abschàtzung der Form |p(x)| • |x|<e • (1 + |(tt(x), o-(x))|2)s/2.

Ebenso gilt fiir aile (z, y)g Wx W± mit p(z, y)^0 die Gleichung

p(z, y) • (z, y) Q0(y) • (7r(P(z, y)), cr(P(z, y)))

Q0(P(z, y)) • (tt(P(z, y)), a(P(z, y))).

Der letzte Ausdruck ist eine Polynomfunktion in P(z, y), und wir erhalten
wiederum eine Abschàtzung der Form |p(z, y)| • |(z, y)|<e • (l + |P(z, y)|2)s/2.

Somit sind fur unsere beiden rationalen Funktionen die Voraussetzungen von
Lemma 2.3 erfùllt, und wir erhalten fur aile m >0 die folgenden Aussagen:

(a) Zu jedem c^O existiert ein b>0 und eine ganze Zahl s>0, so daB fur
/€ Cmb(V) die Funktion g£s) ^
zu Cm>c(Wx Wx) gehôrt. Die Abbildung /»-> g^s) ist stetig.

(b) Zu jedem c>0 existiert ein b>0 und eine ganze Zahl r>0, so daB fiir
geCm>b(Wx Wx) die Funktion /<r): V->C

zu Cmc(V) gehôrt. Die Abbildung g »-»/<;> ist stetig.

Bemerkung. Ist die parametrisierende rationale Funktion P(z, x) von U eine
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Polynomfunktion, so kann Q()=l gewâhlt werden (siehe Satz 1.6); d.h. die
Aussagen (a) und (b) sind mit s 0 bzw. r 0 erfûllt.

2.5. Sei jetzt T eine [7-invariante temperierte Distribution auf V. Wie bereits
erwàhnt, existieren natûrliche Zahlen m und c, so daB T eine stetige Linearform
auf cm~l'c~\V) definiert. Nach 2.4 (b) existieren dann nichtnegative ganze
Zahlen b und r, so daB die Abbildung g «->/£> von Cm*(Wx Wx) nach Cmc(V)
stetig ist. Also wird durch S(g):= T(fgr)) eine stetige Linearform auf Cm'b(Wx
Wx) und damit eine temperierte Distribution auf Wx Wx definiert.

Ist n die Liealgebra von U(G), verstanden als Liealgebra von V-
Endomorphismen, so kônnen wir die l/-Invarianz von T infinitésimal for-
mulieren, indem wir die Gleichung <Tx,/((Exp tX)x)) <T,/>, feSf(V), Xen,
teR, nach t im Punkte £ 0 difïerenzieren; wir erhalten (Tx, d/(x)(Xx)) 0,
wobei df das Differential von / bezeichne. Beachten wir nun, daB die Funktion
x -> d/(x)(Xx) fur fe Cmc(V) zu Cmlcl(V) gehôrt und stetig von / abhàngt, so

ergibt sich die Gùltigkeit der Gleichung <TX, d/(x)(Xx)> 0 fur aile /eCmc(V).
Nun identifizieren wir V mit RN, W mit Rd und Wx mit RN~d vermôge der
Vektoren eu eN und setzen TTk:= pik, fc 1,..., d (siehe 1.6); d.h. 7rk(x) ist
die fc-te Komponente von tt(x) in W== Rd. Fur y g Wx mit O(y) ^ 0 hàngen nach
1.2 (iii) die ersten jk -1 Komponenten von P(z, y) nur von z1?..., zk_l5 nicht
aber von zk ab, 1 <k <d; also ist 7rk(X(Q0(y)P(z, y))) unabhàngig von zk fur aile

yeW1 und aile Xen. Fur ge^WxW1) und Xen erhalten wir dann mit
h(z, y):= Q0(y)g(z, y) unter Beachtung der L/-Invarianz von Q, Qo und a:

-,7rk(X(O0(y)P(z,y)))g(z,y)
zk

l î 7ik(X(Q0(y)P(z,y)))^(z,y))
k l uZk I

-(tx,Q(xY t irfc(X(Qo(x)x))^-0r(x),cr(x)))

\ kZl ÔZk I

- (tx, jt Q(x)rh(7r((Exp tX)x), <r(x))U0)
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Nun seien Xl9..., Xd die das Polynom Q bestimmenden Elemente von n (siehe
1.7), und fur xeV bezeichnen wir mit Atl(x), 1</, i<d, die Adjunkte von
TTiiX^) bezûglich der Matrix (iri(X,x) | /, i 1,..., d). Nach Définition von Q gilt
dann Iti irk(Xtx)AUt(x) 8ktl • Q(x), l<fc,/<d. Da AI,l(Qo(y)F(2, y)), 1<J, i<
d, ein Polynom auf WxW1 ist, folgt fur aile ge^WxW1) und fur aile
J 1,..., d unter Anwendung der obigen Gleichung

0= I (—, I 7rfc(X,(Qo(y)P(2,y)))Ai,l(Qo(y)P(z,y))g(z,y))

I (j^. «k.. • O(O0(y)P(z, y))g(z, y))

Da Qo eine Potenz von Q ist, ergibt sich das folgende

LEMMA. Es existiert eine (von T unabhângige) natùrliche Zahl n, so daB

Q(y)n~ o
dzk

ist fur aile k 1,..., d.

Bemerkung. Ist die parametrisierende rationale Funktion P(z, x) von U eine

Polynomfunktion, so kann im Lemma n 1 gewâhlt werden.

2.6. Durch Routineùberlegungen beweist man die beiden folgenden Aussagen:
(a) Ist bf hinreichend groB, so liegt fiir eine Funktion geCm'b'(Wx Wx) die

Funktion Q(y)ng(z, y) in Cm*(Wx W1-) und hàngt stetig von g ab.

(b) Ist ye£f(W) mit $wj(z) dz-\ und ist b' hinreichend groB, so liegt fiir
eine Funktion geC^'iWxW1-) die Funktion g(z, y):= y(z) • Jwg(w, y) dw in
Cm'b(Wx Wx) und hângt stetig von g ab.

LEMMA. Ist b' hinreichend groB, so liegen fiir eine Funktion ge
Cm>b'(WxW^) die Funktionen Q(y)ng(z, y) und Q(y)ng(z, y) in Cm*(WxWL),
und es gilt: <S, O(y)ng(z, y» <S, Q(y)ng(z, y)).

Beweis. Aus Stetigkeitsgriinden genùgt es, die Gleichung fur g

zu beweisen. Da JwCg-gX2* y) dz =0 ist fiir aile y g Wx, existieren Funktionen
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mit

wie man durch Induktion nach d leicht zeigt Mit Lemma 2 5 ist also

d 1 iT
<S,O(yr(g-g)(z,y))=-£ (Q(yr—, cfc(z,

2 7 SATZ Sei U eine stetige unipotente Darstellung einer lokalkompakten
zusammenhangenden Gruppe G in einem endhchdimensionalen reellen Vektorraum
V Sei Q regulansierendes Polynom von U und tt die kanonische Projektion von V
auf den Parameterraum W von U Fur x e V sei Àx das ProjektionsmaB auf der
Bahn von x

Ist T eine U-unwanante tempenerte Distribution auf V, dann existiert eine
naturhche Zahl R (abhangig von der Ordnung von T), so daB fur aile Funktwnen

ipe^(V) derAusdruck (TXJ Q(x)Ry(7r(jt))Àx(<p)> wohldefiniert ist, wobei yeïf(W)
sei mit Jw y(z) dz h und es gilt QR T(ç) <TX, Q(x)R7(7r(x))Àx((p)>

Beweis Wir wahlen m, c, b, r, S und n gemaB 2 5 Nach 2 4 (a) existiert eine

ganze Zahl s >0, so daB fur <peSf(V) die Funktion g^s) e Cm b (WxW^) ist, wobei
b' gemaB Lemma 2 6 gewahlt sei Die Funktion h(z, y) O(y)ng^s)(z, y), (z, y) g

Wx W\ hegt nach Lemma 2 6m Cmb(Wx Wx), die Funktion fhr) folghch in
Cmc(V), so daB (Tx,f(h\x)) wohldefiniert ist Unter Beachtung der U-Invananz
von Q berechnen wir fur xeV mit Q(x)^ 0

O(x)r+"7(ir(x)) f g(:\w, o-(x)) dw

O(xrnO(x)s7(7r(x)) J <p(P(w,cr(jc

Q(x)r7(tt(x))Ax((p) mit R =r+n

fur xg V mit Q(x) 0 gilt die Gleichung ft\x) Q(x)Ry(ir(x))kx((p) tnvialer-
weise, da beide Seiten verschwinden Also ist <TX, Q(x)R7(7r(x))Ax((p))
wohldefiniert Nun betrachten wir die Funktion g(z, y) O(y)ng^s)(z, y), (z, y) g

Wx W\ aus Cmb(Wx Wx), bilden die Funktion /(gr)G Cmc(V) und rechnen aus,
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da8 /(gr) =QR - ç ist. Mit Lemma 2.6 erhalten wir jetzt

QR • T(<p) T(/(;}) S(g) (S, QiyTg^iz, y)>

<S, Q(y)ng?(z, y)) S(h) T(/(Hr))

<Tx,Q(x)Ry(7r(x))Àx(<p)>. ¦
Bemerkung. (a) Die Aussage des Satzes gilt auch fur das in 1.7 betrachtete

Polynom Ô.

(b) Ist die parametrisierende rationale Funktion P(z, x) von U eine Polynom-
funktion, so gehôrt die Funktion Q{x)y(ir(x))\x(ç) zu 5^(V), und die Aussage des

Satzes gilt wegen Bemerkung 2.4 und Bemerkung 2.5 sogar mit R 1.

2.8. KOROLLAR. Isf O regularisierendes Polynom von U, so existiert zu jeder
U-invarianten temperierten Distribution T auf V eine natùrliche Zahl R (abhângig
von der Ordnung von T), so daB die Distribution QR • T zerlegbar ist fur U.

Bemerkung. Nach Satz 2.7 sind die (7-invarianten temperierten Dis-
tributionen der Form QR • T nicht nur zerlegbar fur [/, sondern sogar zerlegbar
ùber der Menge der invarianten MaBe auf den regulàren (d.h. auf den im
Regularitâtsbereich 2t enthaltenen) Bahnen von U in V. Ûberdies liefert Satz 2.7
eine explizite Zerlegungsformel, also eine Formel, mit deren Hilfe sich dièse

Distributionen durch die invarianten MaBe auf den (regulàren) Bahnen von U in

V ausdrùcken lassen, gerade in dem Sinne, wie es von Rothschild und Wolf im
Spezialfall der koadjungierten Darstellung einer Heisenberg-Gruppe fur beliebige
invariante temperierte Distributionen durchgefûhrt wurde.

2.9. BEISPIEL. Sei U die von Dixmier in [4], 1, angegebene unipotente
Darstellung von R in V R3. Wie man leicht sieht, ist Q(xu x2, x3) xx

regularisierendes Polynom von U. Aus Dixmiers Beweis von prop. 1 in [4]
geht hervor, daB fur die dort definierten invarianten temperierten Distributionen
Tn, neN, auf V die Distributionen Qn~1 • Tn nicht zerlegbar sind. Damit ist klar,
daB die Abhângigkeit des Exponenten R von der Ordnung von T in Satz 2.7
und Korollar 2.8 nicht nur beweistechnische Grûnde hat, sondern sich notwendig
aus dem Problem selbst ergibt.

Der Begriff "zerlegbar" ist nicht nur fur numerische temperierte
Distributionen sinnvoll, sondern offenbar auch fur temperierte Distributionen mit
Werten in einem beliebigen vollstândigen lokalkonvexen Vektorraum E, also fur
stetige lineare Abbildungen von Sf(V) nach E. Aber die Aussage von Korollar 2.8
ist fur eine E-wertige invariante temperierte Distribution T im allgemeinen falsch,
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da T jetzt nicht mehr endliche Ordnung zu haben braucht. Ist nâmlich E das

kartesische Produkt llneNCn, Cn C fur aile rceN, versehen mit der Produkt-
topologie, so wird durch T(<p):= (Tn(<p) | neN), çeSf(V), eine E-wertige tem-
perierte Distribution auf V definiert, fur die die Aussage von Korollar 2.8 nicht
gilt.

2.10. Bemerkung. Jede invariante temperierte Distribution T auf V, fur die eine

positive Zahl s existiert, so daB \Q(x)\ > e ist fur aile Elemente x des Tràgers von T,
ist zerlegbar; insbesondere ist T zerlegbar, wenn der Trâger von T im
Regularitàtsbereich 2[ von U enthalten und modulo U(G) kompakt ist.

Zum Beweis wâhlen wir eine unendlich oft differenzierbare Funktion ae auf
R, die auf einer Nullumgebung identisch verschwindet und auBerhalb der e-
Umgebung des Nullpunktes identisch gleich 1 ist. Durch x »-» Q(x)~Rae(Q(x)),
xeV, sind dann fur aile ganzen Zahlen R>0 unendlich oft differenzierbare
Funktionen langsamen Wachstums auf V definiert; denn die Ableitungen dieser
Funktionen von der Ordnung n haben die Form Q(x)~R~n £,% P](x)a(^)(Q(x))
mit Polynomen P,(x) auf V, werden also majorisiert durch ein von n abhângiges
Vielfaches von e~R~n £,% |P,U)|, da a(FJ) fur />0 kompakten Tràger hat und
demnach beschrânkt ist. Aufgrund unserer Voraussetzung ist ae(Q(x)) • TX T,
und wegen der Invarianz von Q wird mit der Funktion <p(x)e6^(V) auch die
Funktion Q(x)~Rae(Q(x))(p(x)eïf(V) von den invarianten MaBen auf den
Bahnen von U in V annulliert; mit Korollar 2.8 folgt

T(ç) (Tx,ae(Q(x))ç(x)) (Q(x)R • Tx9 Q(x)'Rae(Q(x))ç(x)) 0.

Mittels einer einfachen Modifikation der Uberlegungen von 2.5, 2.6 und 2.7

(man ersetzt im wesentlichen Q(x) durch ae(Q(x))) kann man auch zeigen, daB

jede invariante, nicht notwendig temperierte Distribution T (also Te2>'(V), dem
Dualraum von Sfc(V)), auf deren Tràger Q>e ist fur ein e >0, und folglich dann
auch jede invariante Distribution Te ®'(V), deren Trâger in H£ enthalten ist, jede
Funktion <pe3)(V) annulliert, die von den invarianten MaBen auf den Bahnen

von U in V annulliert wird.
Ist nun <p eine Funktion aus ®(V), deren Trâger enthalten ist in 2£ (wir

schreiben einfach: <pe2d(2£)), so wird durch <p: W->C

1= <p(P(z,y))dz

eine Funktion aus 9)(W) definiert. Die Abbildung (p>-*<p von 3)(SE) nach 3>(W)
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ist offenbar stetig. Sie ist aber auch surjektiv, da die Funktion if/e 2>( W) Bild der
Funktion <p€.3)(2E) ist, definiert durch <p(x):= y(7r(x))il/(cr(x)), xef, wobei ye
3)(W) mit $wj(z) dz-\ gewâhlt sei. Nach dem Satz von der offenen Abbildung
(siehe z.B. [13], Ch. III, 2.2) ist demnach <p *~*<p offen. Offenbar existiert zu jeder
Funktion <p g 2(3t) ein e >0 mit <p(x) ae(Q(x)) • <p(jc); fiir jede invariante, nicht
notwendig temperierte Distribution T auf V ist also aufgrund der obigen Bemer-
kung T(<p) 0, falls <p 0 ist. Folglich existiert zu jeder invarianten Distribution
TeQ)r(V) (sogar zu Te®'(30) genau eine Distribution Te3}'(W) mit T(<p)

T'(<p) <T;,Ày(<p)> fur aile <pe2)(&). (Vgl. [9], §4; vgl. auch [5], Th. 2, und [6],
Part V, §3.)

2.11. AbschlieBend wollen wir uns noch ùberlegen, was Korollar 2.8 im
Spezialfall der koadjungierten Darstellung einer einfach zusammenhângenden
nilpotenten Liegruppe G besagt. Eine temperierte Distribution auf dem Dual-
raum g* der Liealgebra g von G ist genau dann invariant unter der koadjungierten

Darstellung von G in g*, wenn ihre Fouriertransformierte als temperierte
Distribution auf g invariant ist unter der adjungierten Darstellung von G in g.

Dabei sei fiir eine Funktion fe^(q) die Fouriertransformierte &feSf(Q*)
definiert durch ^/(f): Jfl/(X)el|(X) dX, £€g*, und die Fouriertransformation
von Sf'(g*) nach ïf'io) sei die zu & adjungierte Abbildung und werde ebenfalls mit
& bezeichnet. Identifizieren wir G mit g vermôge der Exponentialabbildung, so
ist eine temperierte Distribution auf g geliau dann invariant unter der adjungierten

Darstellung, wenn sie als Distribution auf G zentral ist, d.h. invariant unter
den inneren Automorphismen.

Nach [11], Lemma 4 und Prop. 3, ist das Quadrat desjenigen (invarianten)
Polynoms auf g*, welches das PlancherelmaB bestimmt, ein regularisierendes
Polynom Q fiir die koadjungierte Darstellung. Die Fouriertransformierte C von
Q ist eine homogène Distribution auf g G. Wegen O ^ 0 ist C als Distribution
auf g positiv définit und folglich nach dem Satz von Schiffmann ([14]) auch als

Distribution auf G. Ist {Xu XN} eine Basis von g und {X?, • • •, X*} die dazu
duale Basis von g*, so gilt fiir den Differentialoperator

die Formel

also folgt ^(P(D)/)(f P(i)&(f)($\ D (D,,..., DN), fur jedes Polynom P auf
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g*, wobei

Pi. <Pn

definiert sei fur

unsere Gleichung zeigt, daB P(D) nicht von den speziell gewâhlten Koordinaten
abhàngt. Beachten wir noch, daB die maximale Dimension der koadjungierten
Bahnen geradzahlig ist und demnach das homogène Polynom Q einen gerad-
zahligen Grad hat, so erhalten wir

C Q(D)8,

wobei 8 das DiracmaB im Ursprung bezeichne. Denken wir uns die universelle
einhùllende Algebra ll(g) von g durch die Algebra der vom Ursprung getragenen
Distributionen auf G realisiert, so liegt C als zentrale Distribution im Zentrum
von U(g).

Nun ist eine zentrale temperierte Distribution T auf G Fouriertransformierte
einer temperierten Distribution S auf g*, die invariant ist unter der koadjungierten

Darstellung. Nach Korollar 2.8 ist die Distribution QR • S fur geniigend
groBes R zerlegbar fur die koadjungierte Darstellung. Also ist deren
Fouriertransformierte zerlegbar uber der Menge der Fouriertransformierten der invarian-
ten MaBe auf den koadjungierten Bahnen in g*. Das ist aber bei geeigneter
Normierung dieser MaBe aufgrund von Kirillovs Charakterformel genau die
Menge der Charaktere irreduzibler Darstellungen von G, und die Fouriertransformierte

von QR • S ist die Distribution C(R) * T Q(D)RT mit C(R) := C*-*C
(R Faktoren), wobei die Faltung * als additive Faltung auf der Liealgebra g G
zu verstehen ist. Damit haben wir bewiesen:

KOROLLAR. Ist G eine einfach zusammenhàngende nilpotente Liegruppe und
ist Q regularisierendes Polynom der koadjungierten Darstellung von G, so existiert zu
jeder zentralen temperierten Distribution T auf G eine natùrliche Zahl R, so dafi die
Distribution Q(D)RT zerlegbar ist ûber der Menge der Charaktere irreduzibler
Darstellungen von G.
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