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Zerlegung von Distributionen, die unter einer unipotenten
Gruppenoperation invariant sind

RAINER FELIX

Einleitung

Im Jahre 1959 hat Dixmier [3] bewiesen, daB die Charaktere irreduzibler
Darstellungen einer nilpotenten einfach zusammenhangenden Liegruppe G zen-
trale temperierte Distributionen sind, die wir mit einigem Recht als die “elemen-
tarsten” zentralen temperierten Distributionen auf G verstehen dirfen. Von
Rothschild und Wolf [12] wurde im Jahre 1976 die Frage gestellt, inwieweit alle
zentralen temperierten Distributionen auf G durch diese elementarsten Dis-
tributionen ‘“‘beschrieben’” werden konnen - eine typische Frage der harmoni-
schen Analyse. Im Hinblick auf die Kirillov-Theorie tibertragt sich diese Frage
vermoge der Fouriertransformation auf das Problem, inwieweit alle unter der
koadjungierten Darstellung invarianten temperierten Distributionen auf dem
Dualraum g* der Liealgebra g von G durch die invarianten MaBe auf den
koadjungierten Bahnen ausgedriickt werden konnen. Rothschild und Wolf haben
diese Frage fiir den Fall der Heisenberg-Gruppe positiv entschieden, indem sie
unter Ausnutzung der speziellen geometrischen Lage der koadjungierten Bahnen
eine Zerlegung invarianter temperierter Distributionen auf g* iiber den invarian-
ten MaBen auf den Bahnen explizit angegeben haben ([12], Formel 3.20). Im Fall
der koadjungierten Darstellung einer beliebigen nilpotenten einfach
zusammenhangenden Liegruppe oder — allgemeiner — im Fall einer beliebigen uni-
potenten Darstellung einer lokalkompakten zusammenhiangenden Gruppe in
einem endlichdimensionalen reellen Vektorraum, wo wir eine solche explizite
Zerlegung kaum werden erhalten konnen, soll eine temperierte Distribution
zerlegbar heiflen, wenn sie durch Linearkombinationen invarianter Maf3e auf den
Bahnen approximiert werden kann. Hier hat Dixmier die Frage von Rothschild
und Wolf negativ entschieden, indem er ein Beispiel einer unipotenten Darstel-
lung und auch ein Beispiel des Spezialfalls der koadjungierten Darstellung einer
einfach zusammenhangenden nilpotenten Liegruppe angegeben hat, bei dem nicht
jede invariante temperierte Distribution zerlegbar ist ([4]).

In der vorliegenden Arbeit behandeln wir die Frage, welche invarianten
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Zerlegung von Distributionen 529

temperierten Distributionen bei einer beliebig vorgegebenen unipotenten Darstel-
lung U einer lokalkompakten zussammenhangenden Gruppe G in einem endlich-
dimensionalen reellen Vektorraum V zerlegbar sind. Wir konstruieren in §1 ein
U-invariantes Polynom Q auf V, so daf}3 alle Bahnen von U in V, auf denen Q
nicht verschwindet, Pukanszkys simultaner Parametrisierung ([10], S. 55) unter-
liegen; iiberdies wird Pukanszkys rationale Funktion, die diese Parametrisierung
leistet, durch Multiplikation mit einer geniigend hohen Potenz von Q zu einer
Polynomfunktion. (Ein Polynom Q mit solchen ‘“‘regularisierenden” Eigenschaf-
ten wurde bereits von Pukanszky in [11] fir den Spezialfall der koadjungierten
Darstellung einer nilpotenten einfach zusammenhangenden Liegruppe angege-
ben.) In §2 zeigen wir dann, dal jede U-invariante temperierte Distribution T
durch Multiplikation mit einer hindreichend hohen, von der Ordnung von T
abhangigen Potenz von Q zu einer zerlegbaren Distribution wird; wir konnen
sogar eine explizite Zerlegungsformel dhnlich der von Rotschild und Wolf ([12],
Formel 3.20) angeben. Daf3 die Potenz von Q nicht nur aus beweistechnischen
Grunden sondern notwendigerweise von der Ordnung von T abhangen muf, zeigt
Dixmiers Gegenbeispiel ([4], 1). SchlieBlich geben wir noch eine Interpretation
unseres Ergebnisses fir den Spezialfall der koadjungierten Darstellung einer
nilpotenten einfach zusammenhangenden Liegruppe.

In einer spateren Arbeit werden wir unter Anwendung unseres hiesigen
Ergebnisses neben der Heisenberg-Gruppe weitere nilpotente einfach
zusammenhangende Liegruppen angeben, fur die die Frage von Rotschild und
Wolf eine positive Antwort hat.

§1. Unipotente Darstellungen

1.1. Sei G eine lokalkompakte zusammenhangende Gruppe, V ein endlich-
dimensionaler reeller Vektorraum und U eine stetige unipotente Darstellung von
G in V. Dann existiert eine Basis {e,,..., ey} in V, so daB allen Darstellungs-
operatoren hinsichtlich dieser Basis eine untere Dreiecksmatrix entspricht, deren

samtliche Diagonalelemente gleich 1 sind ([1], chap. 111, §9, prop. 18, ii); d.h. es
ist

U(a)e;=¢(mod ey, ..., en)
fir alle ae G, j=1,..., N. Eine solche Basis heif3t Jordan-Holder-Basis fur U.

Die Faktorgruppe G/Kern (U) ist eine Liegruppe ([7], S. 88). Somit ist
U(G)=G/Kern U eine analytische Untergruppe von GL(V), also auch eine
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analytische Untergruppe der nilpotenten einfach zusammenhangenden Liegruppe,

bestehend aus denjenigen Transformationen, denen hinsichtlich der Basis

{ey, ..., ex} untere Dreiecksmatrizen mit Einsen in der Diagonale entsprechen.
Folglich ist U(G) eine einfach zusammenhangende nilpotente abgeschlossene

Lieuntergruppe von GL (V) ([7], S. 137).

1.2. Bekanntlich kann man die Bahnen von U in V durch Polynomfunktionen
beschreiben ([10], S. 50). Und zwar existieren zu einer Bahn B Indizes 1 <j, <
-+ -<j;=N und eine Polynomfunktion P®, definiert auf W®, dem von den
Basisvektoren ¢, , ..., ¢, erzeugten Unterraum von V, mit Werten in V, so da3
gilt:

(i) B=PB(W?").

(i) =B (P®(z))=z fur alle ze W?, wobei w2 die Projektion von V auf WZ®

bezeichne.

(iii) Die j-te Komponente von P®(z) beziiglich der Basis {e,, ..., ex} von V
hangt nur ab von den ersten k Komponenten von z beziglich der Basis
{e;,....e,} von W2 wobei k maximal ist fir j,<j (j=1,...,N).

Nach Vorgabe der Jordan-Holder-Basis {e,, ..., ey} sind die Indizes j,,..., |,
und die Polynomfunktion P® eindeutig bestimmt durch (i), (ii), (iii). Wir nennen
W?® den Parameterraum und P® die parametrisierende Polynomfunktion von B.
Wegen (i) und (ii) ist B={x e V| PB(#w®(x)) = x}, also Zariski-abgeschlossen in V.
Da P® einen Homoomorphismus von W2 nach B definiert, induziert das Lebes-
guemaB auf W®, normiert gemalB der Basis {e, , . .., ¢,} von W?, ein MaB A®? auf
B, das invariant ist unter U(G) ([10], S. 54). Mit (ii) folgert man leicht, da3 A%,
als MafB auf ganz V betrachtet, temperiert ist. A® heiBt Projektionsmaf} auf B.

1.3. Die in 1.2 gegebene Parametrisierung einer einzigen Bahn von U in V
kann auch simultan fiir “fast alle” Bahnen durchgefiihrt werden ([10], S. 55), und
zwar im folgenden Sinne: Es gibt eine U-invariante Zariski-offene Teilmenge ¥
von V, so daf} alle in Z enthaltenen Bahnen denselben Parameterraum haben und
daBl die Abhingigkeit der parametrisierenden Polynomfunktion von der
jeweiligen Bahn in Z durch eine U-invariante rationale Funktion auf V be-
schrieben wird.

In [2] wird eine solche Zariski-offene Menge ¥ als Komplement der Nullstel-
lenmenge eines durch U bestimmten Polynoms auf V definiert; sodann wird die
Invarianz von #Z, nicht aber die Invarianz dieses Polynoms selbst bewiesen ([2],
Lemma 3.1). Pukanszky dagegen beweist die Invarianz eines solchen die Menge &
bestimmenden Polynoms, allerdings nur fiir den Spezialfall der koadjungierten
Darstellung einer einfach zusammenhéangenden nilpotenten Liegruppe ([11}], Re-
mark 2, S. 275). Dieses Polynom hangt eng zusammen mit den parametrisieren-
den Polynomfunktionen der Bahnen in ¥ ([11], Lemma 4, S. 276). Wir wollen
nun ein entsprechendes Ergebnis fiir unsere allgemeinere Situation beweisen.
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1.4. Sei n die Liealgebra von U(G), verstanden als Liealgebra von V-
Endomorphismen. Es ist klar, dafl den Elementen aus n hinsichtlich der Basis
{e\,...,ex} von V untere Dreiecksmatrizen entsprechen, deren samtliche
Diagonalelemente gleich 0 sind (siehe 1.1). Da n nilpotent ist, existiert eine Folge
von Idealen n=n,2n;2 :--2n,, ={0} mit dimn,=m—i und [n,n;]Jcn, ., i=
0,...,m—1.

Sei d:=max, ., dim nx. Wir konnen d >0 annehmen; denn fur d =0 liegt der
triviale Fall vor, daB U die Einsdarstellung ist. Sei i, :=min {i | max, .y dim nx =
d—k}, k=1,...,d. Dann ist 1=i;<i,<---<iz=m und max,., dimn, ;x=
d—k+1, k=1,...,d. Also ist fur k=1,....,d die Menge
{xe V|dimn, ,x=d—k+1} Zariski-offen in V, wie man mit einem Determin-
antenargument einsehen kann, und nichtleer; dann ist aber auch die Menge

Z':=(i.{xe V|dimwn,_,x =d—-k+ 1} Zariski-offen und nichtleer.

Fir x € V sei p;(x) die j-te Komponente von x beziiglich der Basis {e,, . .., ex}
und p;:=p,e;+---+pje die Projektion auf den von den Vektoren e,,..., ¢
erzeugten Unterraum, j=1,..., N. Sei j,:=min {j | max, ., dim p;(nx) =k}, k=
l,...,d Dannist 1<j,<---<j;=N und max,.y dimp, (nx)=k, k=1,...,d.

Es folgt wiederum, daB die Menge Z:= (\¢_, {xe V|dim p, (nx)=k} Zariski-
offen und nichtleer ist.

Wir fixieren nun ein Element x € ZN Z'. Dann ergibt sich aus n; _, X =nx die
Existenz eines Elementes X,en; _; mit p;, (X,;x)#0. Da n;, _;\n; in n;_; dicht
liegt, konnen wir X, ew; _,\n;, annehmen; dann ist n; _; =RX,;+n;, also nx =
RX,x +n,_,x. Folglich existiert ein X,en; _;, so da} p,(X,;x) und p; (X,x) linear
unabhangig sind. Wir konnen wieder X,ew,_,\n;, annehmen; dann ist nx =
RX,x +RX,x +n;, ;X. So gewinnen wir sukzessiv Elemente Xjen, ,\n;, l=
1,...,d, so da} die Vektoren p, (X %), ..., p;, (X,X) linear unabhangig sind fur
alle k=1, ..., d. Daraus folgert man ohne Schwierigkeiten durch Induktion nach
k, daB die Matrix (p; (X;X)| 1=1,i=<k) den Rang k hat fiir alle k =1, ..., d. Also
ist die Menge Z":= (-, {x € V| det (p,(Xix) | 1 =1, i =k) # 0} Zariski-offen und
nichtleer. Insbesondere ist das homogene Polynom Q(x):=det (p, (Xix)| 1=l i=
d), x eV, nicht das Nullpolynom, und Z':={xe V| Q(x)# 0} ist eine Zariski-
offene nichtleere Menge in V.

Fir xe %' und 1=k =d hat das Gleichungssystem Y;_; p,(Xx)y; =8, |=
1,...,d, genau eine Losung (y,, ..., yq) =: (¥ ), ..., vi’(x)); hierbei sei &
das Kronecker-Symbol. Nach der Cramerschen Regel sind die Funktionen
Q(x) - y(x) Polynome auf V fiir alle i, k=1,...,d. Fir xeZ' und 1=k=d
definieren wir X, (x):=Y%, v*(x)X;; dann sind die Funktionen Q(x) - X (x)
Polynomfunktionen auf V mit Werten in n fir alle k =1, ..., d. Wir zeigen jetzt:
Ist j<j,, 1=k=d, so ist p;(X,(x)x)=0 fiir alle x€Z’. Das ist zunéachst klar fur
alle je{j,,...,jx_1} nach Definition von X, (x). Nehmen wir nun j<j, minimal
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an, so daB p;(X,(x)x)# 0 wire fir ein x € Z’, und | minimal mit j <j. Dann gabe
es aber auch ein x e Z", mit p,(X,(x)x)# 0; fir x € Z" sind aber die Vektoren
pi—1(Xix), ..., pj—1(X;—;x) linear unabhingig. Wegen der Minimalitat von j ware
nun P (X (x)x) = p;(Xi(x)x)e;, also p;(Xi(x)x) linear unabhingig von
pi(Xix), ..., p(Xi-1x), da schon p;_(X,x),...,p,—1(X;_,x) linear unabhingig
sind. Damit wire p;(nx) mindestens /-dimensional im Widerspruch zu j <j. Also
muB p;(X, (x)x)=0 sein fir alle x € Z’' und alle j <j,. Daraus ergibt sich zusam-
men mit der Definition von X (x), daB3

X (xX)x=e, (mod e .y, ...,en) *
ist fur alle xe%’ und alle k=1,...,d. Dies hat insbesondere zur Folge, dal3
¥' < Z ist.

1.5. LEMMA. Das Polynom Q ist U-invariant.

Beweis. Seien x € Z" und A € U(G) fest vorgegeben. Fir einen Endomorphis-
mus X von V setzen wir X:=(p,(Xx), ..., p,,(Xx))e R%. Wegen xeZ" ist dann
{Xi, ..., X,} eine Basis von R%. Also wird durch die Vorschrift X, > AX, A™",
k=1,...,d, eine lineare Abbildung f von R? in sich definiert. Nun wollen wir
einsehen, daB sich die lineare Abbildung X+~ A~'X von n nach R? zu einer
linearen Abbildung g: X ~> A~'X von R in sich faktorisieren 1dBt. Dazu geniigt
es zu zeigen, daB Xx =0 ist, falls X =0 ist. Wir argumentieren ahnlich wie am
SchluB von 1.4: Wire X =0 und Xx# 0, so wihlen wir j minimal mit pi(Xx)# 0
und | minimal mit j<j; jé{j. ..., .} wegen X =0. Wegen x € %" wiire dann
p;(Xx) = p;(Xx)e; linear unabhéngig von p;(X;x), ..., p;(X;-;x), also p;(nx) min-
destens l-dimensional im Widerspruch zu j<j. Die Abbildung g ist also wohl-
definiert.

Wegen 1.4 (*) und wegen der Unipotenz von Al _A”" gehort zu der Abbildung g
von R? in sich hinsichtlich der Basis {X,(x), . Xd(x)} eine untere Dreiecksma-
trix mit Einsen in der Diagonale; also hat g d1e Determinate 1. Zum Nachwesis,
daB auch f die Determinante 1 hat, zeigen wir, dafl die Matrix von f hinsichtlich
der Basis {Xj, . .., X,;} von R? ebenfalls eine untere Dreiecksmatrix mit Einsen in
der Diagonale ist. Wir bezeichnen mit Ad die adjungierte Darstellung von U(G)
in n und sehen zunéchst durch Differentiation der Gleichung A(Exp tX)A™'=
Exp (t Ad(A)X), X en, teR, nach t im Punkte t =0 ein, daB AXA™'= Ad(A)X
ist. Fuir k=1, ..., d gilt nun Ad(A)Xk X, + Y, mit Y, en, aufgrund der Wahl
der Idealfolge n=ng2m=2---2n,={0}. Da wegen x eEZ’ " die Vektoren
X +1%, . . ., Xgx €y x linear unabhéngig sind, bilden sie nach Definition von i, aus
Dlmensmnsgrunden eine Basis von m, X. Folglich liegt Y, x im linearen Erzeugnis
der Vektoren X, .., ..., Xyx, also Y, im Erzeugnis von {X,.., ..., X4}.
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Mit det f=det g =1 folgt nun:

Q(A 'x)=det (p (XA 'x) | Lk=1,...,d)

=det (A"'AX,A7Y), ..., AT (AX,A7Y))
=det(gof(X,),...,g°f(X)))
=det (X, ..., Xy)= Q(x).

Da Z" in V dicht liegt, ergibt sich die Giiltigkeit der Gleichung Q(A'x) = Q(x)
fur alle x € V durch Stetigkeit.

Bemerkung. Die sorgfaltige Wahl, die wir in 1.4 fiir die Elemente X, ..., X}
getroffen haben, war fur die Invarianz von Q wesentlich. Es gibt namlich einfache
Beispiele unipotenter Darstellungen, auch Beispiele fiir den Spezialfall der koad-
jungierten Darstellung einer einfach zusammenhéangenden nilpotenten Liegruppe,

in denen Elemente X, ..., X; €en so gewahlt werden konnen, da3 das Polynom
det (p;(Xi)x | Lk=1,...,d), xe V, nicht U-invariant ist. Es hatte auch nicht
genugt, fur k=1, ..., d das Element X, beliebig aus n; _;\n; zu wiahlen, da sonst

das Polynom det(p,(X,x)|Lk=1,...,d) das Nullpolynom hitte werden
konnen.

1.6. Wir beweisen nun unter Verwendung der Methoden von Pukanszky
([10], part. II, chap. I, §§3, 5) den folgenden

SATZ. In V sei eine Jordan-Holder-Basis {e,, ..., ey} fir U vorgegeben.
Dann existiert ein U-invariantes homogenes Polynom Q#0 auf V, so daB3 gilt:

(i) Alle Bahnen von U in V, auf denen Q nicht verschwindet, haben denselben
Parameterraum W; die Dimension von W stimmt mit dem Grad von Q tuberein.

(i) Fir xeV mit Q(x)#0 sei z+> P(z,x), z€ W, die parametrisierende
Polynomfunktion der Bahn von x; dann gibt es eine ganze Zahl r =0, so daf} die
Funktion (z, x)— Q(x)" - P(z, x) eine Polynomfunktion auf WXV mit Werten in
V ist.

Beweis. Ist U die Einsdarstellung, so ist die Aussage des Satzes mit Q=1,
W ={0} und P(z, x) = x trivialerweise erfullt. Wir nehmen also an, daf3 U nichttri-
vial ist, und zeigen nun, daB unser in 1.4 definiertes Polynom Q die Aussage des
Satzes erfiillt.

Wir behalten die Bezeichnungen von 1.4 bei und setzen Y, (x):= Q(x) - X, (x),
k=1,...,d Da diese Funktionen Polynomfunktionen auf V sind (1.4) und da
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die Exponentialreihe wegen der Nilpotenz von n abbricht, werden durch die
Gleichung

N
(Exp t; Yy(x) - - - Exp ty Yy (x)x =: ). Qi(F, x)e,

i=1

Polynome Q,(f, x), f =(t,,...,t;)eR? x eV, definiert.

Wegen Z'< Z (1.4) ist p, (nx) fiir xe Z' und 1 =<k <d k-dimensional, also der
Kern der Abbildung X > p; (Xx), X en, (m — k)-dimensional. Dieser bildet eine
Lieunteralgebra von n, die aus Dimensionsgriinden von Y, ,,(x),..., Y ;(x) und
dem (m — d)-dimensionalen Annullator n, von x erzeugt wird. Also ist U(G) =
ExpRY (x) - - - ExpRY,(x) - Expn, (siche etwa [10], S. 85), und folglich
durchlauft YL, Q,(7, x)e; mit € R* die ganze Bahn von x.

Sei nun W der von den Vektoren ¢ ,...,¢;, erzeugte Unterraum von V.
Wegen 1.4 (*) hat Q, (f, x) die Form p, (x)+Q(x) - (t +fi(t;, ..., &4, x)) fiir
k=1,...,d, wobei die Funktionen f, Polynome sind. Offenbar laf3t sich fir
zeW, z=Y%_,ze,, das Gleichungssystem & +fi(t;,..., 4 1,xX)=2, k=
1,...,d, sukzessivnach t,,...,t, auflosen, also t, = F.(z,x), k=1, ...,d, oderin
Vektorschreibweise t = F(z, x) mit einer Polynomfunktion F. Da F(z, x) mit
ze W ganz R? durchlduft, durchlduft P'(z, x):=Y, Q;(F(z, x), x)¢; mit ze W
die ganze Bahn von x fur alle x € ¥'. Ferner gilt

p, (P'(z, x)) = Q; (F(z, x), x)
=p;, (X)+Q(x) - (F(z, x)+ fi (Fi(z, x), . . ., Fi_4(z, x), x))
= pjk(x)+ Q(x) : (zk —__fk(Fl(Z’ X), ) Fk(Z, x)’ x)
+fk(F1(Z9 X), e ey Fk—-l(z, X), x))
=p, (x)+Q(x) -z fur k=1,...,d
Sei m:=Y¢_, p,e, die Projektion von V auf W. Da P'(z, x) eine Polynom-
funktion ist, ist der Satz bewiesen, wenn wir zeigen, daf} fir alle x€ %' der
Unterraum W und die Polynomfunktion z+—> P'((1/Q(x)) - (z — w(x)), x) die Aus-

sagen (i), (i), (iii) von 1.2 beziiglich der Bahn von x erfiilllen. Da P'(z, x) mit
z € W die Bahn von x durchlauft, folgt (i). Aus der obigen Rechnung ergibt sich

(ii). SchlieBlich héangt p,(P'(z, x)) fir festes xe€Z' nur ab von z,,...,z mit
maximalem k fiir j, <j, da Q;(f, x) nur von t,...,t und F(z, x) fir 1=I1=d
nur von z,, ...,z abhangt. W

Bemerkung. Sei W+ der von den Vektoren e, j# ji, ..., js erzeugte Unter-

raum von V. Wegen der Invarianz von Z' ist P(0, x)e W*NZ' fir alle z € Z'; also
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ist WrNZ' eine nichtleere Zariski-offene Menge in W*. Fir ze W und ye
W-NZ ist P(Q(y) - z, y)=P'(z, y). Demnach ist die Funktion

(z, y) = P(Q(y) - z, )
eine Polynomfunktion auf Wx W+,

1.7. Der nach Vorgabe einer Jordan-Holder-Basis eindeutig bestimmte Un-
terraum W von V soll Parameterraum und die Funktion P(z, x) parametrisierende
rationale Funktion von U heilen. Ein U-invariantes Polynom Q%0 der Form
Q(x)=det (p,(Xix)|1=Li=d), X,,..., X, €n, nennen wir wegen seiner in Satz
1.6 angefuhrten Eigenschaften regularisierendes Polynom von U. Im allgemeinen
sind weder Q noch die Nullstellenmenge von Q eindeutig bestimmt, wohl aber
der Durchschnitt der Nullstellenmengen aller solcher Polynome Q; diesen nennen
wir den Singularitatsbereich, dessen Komplement ¥ den Regularitdtsbereich von
U. Offenbar gibt es regularisierende Polynome Q,, ..., Q, von U, so dal} & =
{xe V] Q,(x)*+- - -+ Q,(x)*# 0} ist. Es ist klar, dap das Polynom Q:= Q3+ - -+
Q? ebenfalls die Aussage von Satz 1.6 erfiillt (natiirlich abgesehen von der
Aussage iiber den Grad von Q). Insbesondere ist die parametrisierende rationale
Funktion P(z, x) von U fiir alle x € ¥ wohldefiniert. Die Funktion o: x — P(0, x)
von & nach W':= W'N ¥ ist U-invariant, wie man sofort einsieht ([10], S. 58),
liefert also einen stetigen Schnitt fiir die Menge aller Bahnen in Z. Und zwar wird
jeder Bahn in ¥ ihr Schnittpunkt mit W* zugeordnet. Man kann leicht zeigen,
daB diese Abbildung ein Homoomorphismus ist zwischen der Menge aller Bahnen
in Z und der Zariski-offenen Menge W' in W+, Ferner ist die Abbildung

WXW - %
(z,y)— P(z,y)

ein Homoomorphismus, dessen Umkehrung durch x — (7 (x), o(x)) gegeben ist.
Dieser Homoomorphismus ist im allgemeinen nicht zu einem Homoomorphismus
von Wx W+ nach V fortsetzbar. Das bringt eine Schwierigkeit mit sich, die uns
noch beschaftigen wird.

§2. Zerlegbare Distributionen

2.1. Ist V ein endlichdimensionaler reeller Vektorraum, so bezeichnen wir mit
#(V) den Raum der Schwartz-Funktionen auf V und mit ¥'(V) seinen Dual-
raum, den Raum der temperierten Distributionen auf V, versehen mit der starken
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Topologie. Ist Ml = ¥'(V) eine beliebige Menge temperierter Distributionen auf
V, so nennen wir eine temperierte Distribution T auf V zerlegbar iiber M, wenn
jede Funktion ¢ € ¥#(V), die von allen Distributionen aus . annulliert wird, auch
von T annulliert wird oder, was dasselbe ist, wenn T in dem von M erzeugten
abgeschlossenen Unterraum von ¥'(V) liegt. Der Name ‘‘zerlegbar’” motiviert
sich durch folgende Uberlegung:
Definieren wir zu jeder Funktion ¢ € ¥(V) die Funktion ¢: M — C
S— S(e),

dann 148t sich T iiber den Raum P(M):={¢ | ¢ € P(V)} faktorisieren; d.h. es gibt
ein lineares Funktional T auf P(#) mit T(¢)= T($) fir alle ¢ € $(V). Da T ein
lineares Funktional auf einem Funktionenraum ist, ist die symbolische Schreib-
weise

T(f):=§ f(5)dT(s),  fe ),

M

naheliegend. Dann konnen wir fir alle ¢ e ¥(V) schreiben: T(¢)= T(¢)=
$, 3(S)dT(S)=6, S(¢)dT(S); T kann also interpretiert werden als ‘‘Schwer-
punkt” eines verallgemeinerten Integrals uber /(.

2.2. Ist U eine stetige unipotente Darstellung einer lokalkompakten
zusammenhidngenden Gruppe G in V, so ist mit der Menge # der invarianten
MaBe auf den Bahnen von U in V (siehe 1.2) auf natiirliche Weise eine Klasse
U-invarianter temperierter Distributionen auf V ausgezeichnet. Wie man weif3,
ist im allgemeinen nicht jede U-invariante temperierte Distribution zerlegbar
uiber M [4]. Es stellt sich also die Frage, welche Distributionen zerlegbar sind
uber M oder, wie wir auch sagen werden, zerlegbar fir U (oder einfach:
zerlegbar). Es wird sich zeigen, daf3 sich die nichtzerlegbaren U-invarianten
temperierten Distributionen im wesentlichen auf den Singularitatsbereich von U
“konzentrieren”. Wir werden namlich sehen, dal3 jede U-invariante temperierte
Distribution durch Multiplikation mit einer hindreichend hohen Potenz eines
regularisierenden Polynoms von U zu einer zerlegbaren Distribution wird.

2.3. Zuniachst mussen wir etwas distributionstheoretische Arbeit leisten:

Sind m und b nichtnegative ganze Zahlen, so bezeichnen wir mit C™°(R") die
Menge aller m-mal stetig differenzierbaren Funktionen f auf RN, fur die die
Funktionen x — (1+|x[?)®?3f(x), x e R, im Unendlichen verschwinden fiir alle
Ableitungen 9 der Ordnung =<m. Wir versehen C™?(R"™) mit der Topologie der
gleichmiBigen Konvergenz aller dieser Funktionen (1+|x|?)®?df(x). Fur alle m
und b liegt der Raum @ (R") der Testfunktionen auf RY (und damit ‘a fortiori”
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auch der Raum ¥(R")) dicht in C™°*(R"); ferner ergibt sich mit [15], chap. VII,
§4, th. VI, daB jede temperierte Distribution auf RY eine stetige Linearform auf
C™®?(R") definiert, wenn nur m und b geniigend groB3 gewahlt werden.

Sei nun R eine rationale Funktion von RN nach R™ und p ein Polynom #0
auf R™, so daB3 p - R eine Polynomfunktion von R™ nach R" ist. Wir nehmen an,
daB fur alle x€ RY mit p(x)#0 der Ausdruck |p(x)|-|x| beschriankt ist durch
einen Ausdruck der Form ¢ - (1+|R(x)|*)¥?, wobei s eine natiirliche Zahl und ¢
eine positive Zahl sei. Naturlich 1a3t sich dann durch etwaige Vergrof3erung von ¢
erreichen, daB auch |p(x)|=e - (1+|R(x)[*)¥? ist. Dann gilt fiir alle m =0:

LEMMA. Zu jedem c=0 existiert ein b=0 und eine natiurliche Zahl r=
2m+1, so daB fur fe C™?(RN) die Funktion g{”:RY — C

x = p(x)f(R(x))

zu C™<(RN) gehért. Uberdies ist die Abbildung C™°(RY)— C™(RN) stetig.
Q)

fr g5

Beweis. Durch Induktion nach n zeigt man, daB fiir fe C™°(RY) und fiir jede
Ableitung 9 der Ordnung n=m die Funktion dg{’(x) die Form
p(x) " - ¥, pi(x)f,(R(x)) hat. wobei die Funktionen f; Ableitungen von f der
Ordnung =n und die Funktionen p;(x) Polynome sind, beschrankt durch & - (1+
|x|*)*/? mit Zahlen § >0 und k €N, die lediglich von p, R, m und r, nicht aber von
f abhangen, wahrend die Anzahl der Summanden durch eine nur von N und m
abhangige Zahl beschrankt ist; man beachte dabei, da} fur eine Ableitung 9 erster

Ordnung p(x)* dR(x) eine Polynomfunktion ist. Nun setzen wir r=2m+k+c+1
und schatzen ab:

(1+[x2) 2 - |ag(x)| <& - (1+]x[)*+e* D2 |p(x)| 72" - Z fi(R(x))
=5 (1+]|xP)22(p(x)P) 2" - Z If,(R(x))|
=8 - (Ip(x)P+(p(x)| x> - Z If,(R(x))
=& - (2e2(1+|R(x)[P)*) -7 . 2}: If.(R(x))]

=8 (V2e) " (1+[RMP)™ - LIHRE)L,  xeRY mit p(x) #0.



538 RAINER FELIX

Setzen wir nun b=sr, so ist (1+|x[)“""?-|agi”(x)|, xRN, fiir fe C™*(R"N)
offensichtlich beschrinkt und geht uberdies gleichmafBlig gegen 0, wenn f in
C™?(R"™) gegen 0 geht. Folglich verschwindet die Funktion (1+|x|*)*? ag{"”(x) fiir
fe C™*(RYN) im Unendlichen und geht gleichmaBig gegen 0, wenn f in C™*(RY)
gegen 0 geht. W

2.4. In der Notation von 1.7 wird durch x — (7 (x), o(x)) bzw. (z, y) — P(z, y)
eine rationale Funktion von V nach WX W* bzw. von WX W™ nach V definiert.
Nach Satz 1.6 gibt es eine ganze Zahl r=0, so daf} fur das Polynom
p(x):=Q(x) =:Qy(x) auf V bzw. p(z, y):= Q(y) = Qy(y) auf W x W+ die Funk-
tion p(x) - (w(x), o(x)) bzw. p(z, y)P(z, y) eine Polynomfunktion von V nach
WX W' bzw. von WX W* nach V ist. Nun gilt fir xe V mit p(x)#0 die
Gleichung

p(x) - x = Qy(x) - P(m(x), o(x)) = Qo (x)) - P(m(x), o(x)).

Der letzte Ausdruck ist aber eine Polynomfunktion in (7 (x), o(x)), und folglich
erhalten wir eine Abschitzung der Form |p(x)| - |x|=e - (1+|(7(x), o(x))|?)*%
Ebenso gilt fir alle (z, y)e WX W* mit p(z, y)# 0 die Gleichung

p(z,y)  (z,¥) = Qo(y) - (w(P(z, y)), o(P(z, y)))
= Qy(P(z,y)) - (w(P(z, y)), o(P(z, y))).

Der letzte Ausdruck ist eine Polynomfunktion in P(z,y), und wir erhalten
wiederum eine Abschitzung der Form |p(z, y)|-l(z, y)|=e - (1 +|P(z, y))*>.
Somit sind fiir unsere beiden rationalen Funktionen die Voraussetzungen von
Lemma 2.3 erfiillt, und wir erhalten fur alle m =0 die folgenden Aussagen:
(a) Zu jedem ¢ =0 existiert ein b=0 und eine ganze Zahl s=0, so daf} fur
fe C™?(V) die Funktion g{¥: WxW*—>C
(z, y)— Q(y)f(P(z, y))

zu C™°(W x W) gehort. Die Abbildung f+—> gf® ist stetig.
(b) Zu jedem c =0 existiert ein b=0 und eine ganze Zahl r=0, so daf} fur
ge C™*(Wx W) die Funktion f":V—C

x = Q(x)'g(w(x), o(x))

zu C™°(V) gehort. Die Abbildung g+ fU ist stetig.

Bemerkung. Ist die parametrisierende rationale Funktion P(z, x) von U eine
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Polynomfunktion, so kann Q,=1 gewihlt werden (siche Satz 1.6); d.h. die
Aussagen (a) und (b) sind mit s =0 bzw. r =0 erfulit.

2.5. Sei jetzt T eine U-invariante temperierte Distribution auf V. Wie bereits
erwahnt, existieren naturliche Zahlen m und ¢, so dafl T eine stetige Linearform
auf C™ '7!(V) definiert. Nach 2.4 (b) existieren dann nichtnegative ganze
Zahlen b und r, so daB die Abbildung g+ f’ von C™®(W x W*) nach C™(V)
stetig ist. Also wird durch S(g):= T(f\’) eine stetige Linearform auf C™"(W x
W+) und damit eine temperierte Distribution auf W x W* definiert.

Ist n die Liealgebra von U(G), verstanden als Liealgebra von V-
Endomorphismen, so konnen wir die U-Invarianz von T infinitesimal for-
mulieren, indem wir die Gleichung (T,, f((Exp tX)x))=(T, f), fe F(V), Xen,
teR, nach t im Punkte t=0 differenzieren; wir erhalten (T,, df(x)(Xx))=0,
wobei df das Differential von f bezeichne. Beachten wir nun, da die Funktion
x > df (x)(Xx) fir fe C™(V) zu C™ "<"1(V) gehort und stetig von f abhangt, so
ergibt sich die Giltigkeit der Gleichung (T,, df (x)(Xx))=0 fur alle fe C™<(V).
Nun identifizieren wir V mit RN, W mit R* und W* mit RY"¢ vermoge der

Vektoren ey, ..., ey und setzen m.:=p;,, k=1,...,d (siche 1.6); d.h. m(x) ist
die k-te Komponente von 7(x) in W=R? Fir ye W* mit Q(y) # 0 hangen nach
1.2 (iii) die ersten j, —1 Komponenten von P(z, y) nur von z,,..., z_;, nicht

aber von z; ab, 1 =k =d; also ist m (X(Q,(y)P(z, y))) unabhangig von z, fur alle
ye W' und alle Xen Fir ge (WX W) und Xen erhalten wir dann mit
h(z, y):= Qu(y)g(z, y) unter Beachtung der U-Invarianz von Q, Q, und o:

L (- mX@uPG ez )
5.3 m(XQuP Y 22 (2, )

T., Q(x)" Z Wk(X(Qo(x)x))—(W(x) o(x))

T, < Q(rh(r(Exp iX)x), olx)l—o )

2 0 (Exp )

-
-
- (1. 00y § mx0 2 (n(0), 0(a)
- (T3
--(r.
<

= —(T,, dfi’(x)(Xx))=0.
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Nun seien X, ..., X; die das Polynom Q bestimmenden Elemente von n (siehe
1.7), und fir xe V bezeichnen wir mit A;;(x), 1=[ i=d, die Adjunkte von
m(X;x) beziiglich der Matrix (m(X;x)|l,i=1,..., d). Nach Definition von Q gilt
dann T4, m (Xx)Au(x) = 8. - Q(x), 1=k, I=d. Da A (Qu(y)P(z y)), I =1, i=
d, ein Polynom auf Wx W* ist, folgt fiir alle ge $(Wx W*) und fir alle
l=1,...,d unter Anwendung der obigen Gleichung

0= % (2, ¥ mX(QuIPG YDALQUIPG gz v))

k=1 V9Z, =1

d /a8
= k; <5z:’ &1 - Q(Qo(y)P(z, y))g(z, y)>

- (22 o memee ).

821
Da Q, eine Potenz von Q ist, ergibt sich das folgende
LEMMA. Es existiert eine (von T unabhdngige) naturliche Zahl n, so daB3

n, 08 _
Q(y) azk—O

ist fur alle k=1, ...,d.

Bemerkung. Ist die parametrisierende rationale Funktion P(z, x) von U eine
Polynomfunktion, so kann im Lemma n =1 gewahlt werden.

2.6. Durch Routineiiberlegungen beweist man die beiden folgenden Aussagen:

(a) Ist b’ hinreichend groB, so liegt fiir eine Funktion ge C™* (W x W*) die
Funktion Q(y)"g(z, y) in C™"(W X W*) und héngt stetig von g ab.

(b) Ist ye (W) mit fyw v(z) dz=1 und ist b’ hinreichend groB3, so liegt fiir
eine Funktion ge C™"(W x W) die Funktion g(z, y):=v(2) " [w g(w, y)dw in
C™®(W x W*) und hingt stetig von g ab.

LEMMA. Ist b' hinreichend groB3, so liegen fiir eine Funktion ge
C™Y' (W x W*) die Funktionen Q(y)"g(z, y) und Q(y)"g(z,y) in C™*(Wx W1),
und es gilt: (S, Q(y)"g(z, y))=(S, Q(y)"g(z, y)).

Beweis. Aus Stetigkeitsgriinden gentigt es, die Gleichung fir ge (W x W)
zu beweisen. Da [y (g—g)(z, y) dz =0 ist fiir alle ye€ W*, existieren Funktionen
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Ui,y g € D(WX W) mit

(g-8)z, y)= ). Whe (. y),

k=190Zk

wie man durch Induktion nach d leicht zeigt. Mit Lemma 2.5 ist also
n je=d d n aS
(S, Q(y)"(g— )z, y))=— 2. {Q(y) — (zy)=0. W
k=1 k

2.7. SATZ. Sei U ceine stetige unipotente Darstellung einer lokalkompakten
zusammenhdngenden Gruppe G in einem endlichdimensionalen reellen Vektorraum
V. Sei Q regularisierendes Polynom von U und 7 die kanonische Projektion von V
auf den Parameterraum W von U. Fiur x €V sei A, das ProjektionsmalB3 auf der
Bahn von x.

Ist T eine U-univariante temperierte Distribution auf V, dann existiert eine
natiirliche Zahl R (abhangig von der Ordnung von T), so daB fur alle Funktionen
¢ € (V) der Ausdruck {T,, Q(x)®y(mw(x))A. (¢)) wohldefiniert ist, wobei y € F(W)
sei mit fwy(z)dz =1, und es gilt: QF - T(¢)=(T,, Q(x)Ry(m(x))A, (¢)).

Beweis. Wir wihlen m, ¢, b, r, S und n gemaf3 2.5. Nach 2.4 (a) existiert eine
ganze Zahl s =0, so daB fiir ¢ € $(V) die Funktion g&’ e C™* (W x W") ist, wobei

b’ gemaB Lemma 2.6 gewiahlt sei. Die Funktion h(z, y):= Q(y)"g¥(z,y), (z, y) €
W x W+, liegt nach Lemma 2.6 in C™"(W x W*), die Funktion f{” folglich in
C™<(V), so daB (T,,f"(x)) wohldefiniert ist. Unter Beachtung der U-Invarianz

von Q berechnen wir fur x € V mit Q(x) #0:
fiP(x) = Q(x)Q(x)"gP(m(x), o(x))

= QU () | 8w, o(x) dw

= Q) Q) Y (m(x)) - j o(P(w, (x))) dw

w

= Q) Ry(m(x)A,(¢) mit R:=r+n+seN;

fir xe V mit Q(x)=0 gilt die Gleichung f{”(x)= Q(x)®y(7(x))A(¢) trivialer-
weise, da beide Seiten verschwinden. Also ist (T, Q(x)®y(w(x))A, (¢)) wohl-
definiert. Nun betrachten wir die Funktion g(z,y):=Q(y)"g¥(z,y), (z,y)e

W x W, aus C™®(W x W), bilden die Funktion f’e C™°(V) und rechnen aus,
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daBB f’= QR - ¢ ist. Mit Lemma 2.6 erhalten wir jetzt

QF - T(¢) = T(f) = S(g) =<S, Q()"g (2, y))

=(S, Q(Y)"g¥(z, y)y=S(h) = T(fy)
=(T,, Qx)Ry(m(x)A(¢)). W

Bemerkung. (a) Die Aussage des Satzes gilt auch fiir das in 1.7 betrachtete
Polynom Q.

(b) Ist die parametrisierende rationale Funktion P(z, x) von U eine Polynom-
funktion, so gehort die Funktion Q(x)y(m(x))A (¢) zu F(V), und die Aussage des
Satzes gilt wegen Bemerkung 2.4 und Bemerkung 2.5 sogar mit R = 1.

2.8. KOROLLAR. Ist Q regularisierendes Polynom von U, so existiert zu jeder
U-invarianten temperierten Distribution T auf V eine natiirliche Zahl R (abhdngig
von der Ordnung von T), so daB die Distribution QF - T zerlegbar ist fiir U.

Bemerkung. Nach Satz 2.7 sind die U-invarianten temperierten Dis-
tributionen der Form QR - T nicht nur zerlegbar fiir U, sondern sogar zerlegbar
iiber der Menge der invarianten Maf3e auf den reguldren (d.h. auf den im
Regularititsbereich ¥ enthaltenen) Bahnen von U in V. Uberdies liefert Satz 2.7
eine explizite Zerlegungsformel, also eine Formel, mit deren Hilfe sich diese
Distributionen durch die invarianten Maf3e auf den (regularen) Bahnen von U in
V ausdriicken lassen, gerade in dem Sinne, wie es von Rothschild und Wolf im
Spezialfall der koadjungierten Darstellung einer Heisenberg-Gruppe fiir beliebige
invariante temperierte Distributionen durchgefiuhrt wurde.

2.9. BEISPIEL. Sei U die von Dixmier in [4], 1, angegebene unipotente
Darstellung von R in V=R>. Wie man leicht sieht, ist Q(x,, x,, x3)=x,
regularisierendes Polynom von U. Aus Dixmiers Beweis von prop. 1 in [4]
geht hervor, daB fiir die dort definierten invarianten temperierten Distributionen
T,, neN, auf V die Distributionen Q"' - T, nicht zerlegbar sind. Damit ist klar,
daB die Abhangigkeit des Exponenten R von der Ordnung von T in Satz 2.7
und Korollar 2.8 nicht nur beweistechnische Griinde hat, sondern sich notwendig
aus dem Problem selbst ergibt.

Der Begriff ‘“zerlegbar” ist nicht nur fir numerische temperierte Dis-
tributionen sinnvoll, sondern offenbar auch fiir temperierte Distributionen mit
Werten in einem beliebigen vollstandigen lokalkonvexen Vektorraum E, also fur
stetige lineare Abbildungen von #(V) nach E. Aber die Aussage von Korollar 2.8
ist fiir eine E-wertige invariante temperierte Distribution T im allgemeinen falsch,
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da T jetzt nicht mehr endliche Ordnung zu haben braucht. Ist nimlich E das
kartesische Produkt [[,.nC,,C, =C fur alle neN, verschen mit der Produkt-
topologie, so wird durch T(¢):= (T, (¢)| neN), ¢ € $(V), eine E-wertige tem-
perierte Distribution auf V definiert, fur die die Aussage von Korollar 2.8 nicht
gilt.

2.10. Bemerkung. Jede invariante temperierte Distribution T auf V, fiir die eine
positive Zahl € existiert, so da3 |Q(x)|> ¢ ist fiir alle Elemente x des Trigers von T,
ist zerlegbar; insbesondere ist T zerlegbar, wenn der Triger von T im
Regularitatsbereich % von U enthalten und modulo U(G) kompakt ist.

Zum Beweis wahlen wir eine unendlich oft differenzierbare Funktion «, auf
R, die auf einer Nullumgebung identisch verschwindet und auflerhalb der -
Umgebung des Nullpunktes identisch gleich 1 ist. Durch x — Q(x) Re, (Q(x)),
x €V, sind dann fur alle ganzen Zahlen R =0 unendlich oft differenzierbare
Funktionen langsamen Wachstums auf V definiert; denn die Ableitungen dieser
Funktionen von der Ordnung n haben die Form Q(x) ® ™ Y, P.(x)a®(Q(x))
mit Polynomen P;(x) auf V, werden also majorisiert durch ein von n abhéngiges
Vielfaches von ¢ ®™ Y (|P(x)|, da a¥ fiir j>0 kompakten Trager hat und
demnach beschrankt ist. Aufgrund unserer Voraussetzung ist a (Q(x) - T.=T,
und wegen der Invarianz von Q wird mit der Funktion ¢(x)e $(V) auch die
Funktion Q(x) Ra (Q(x)e(x)e L(V) von -den invarianten MaBen auf den
Bahnen von U in V annulliert; mit Korollar 2.8 folgt

T(e) =(T, . (Q(x)¢(x))=(Q(x)" - T, Q(x) Re, (Q(x))¢(x))=0.

Mittels einer einfachen Modifikation der Uberlegungen von 2.5, 2.6 und 2.7
(man ersetzt im wesentlichen Q(x) durch a,(Q(x))) kann man auch zeigen, da3
jede invariante, nicht notwendig temperierte Distribution T (also T € @'(V), dem
Dualraum von @%(V)), auf deren Trager Q> ¢ ist fiir ein € >0, und folglich dann
auch jede invariante Distribution T € &@'(V), deren Trager in Z enthalten ist, jede
Funktion ¢ € 2(V) annulliert, die von den invarianten MaB3en auf den Bahnen
von U in V annulliert wird.

Ist nun ¢ eine Funktion aus %(V), deren Trager enthalten ist in & (wir
schreiben einfach: ¢ € 2(%)), so wird durch ¢: W' —- C

y o> A, (0) = L o(P(z, y)) dz

eine Funktion aus 2 (W’) definiert. Die Abbildung ¢ — ¢ von %(%) nach @(W')
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ist offenbar stetig. Sie ist aber auch surjektiv, da die Funktion ¢ € 2(W’) Bild der
Funktion ¢ € @(%) ist, definiert durch ¢(x):= y(w(x))yY(o(x)), x € %, wobei ye
P (W) mit [y y(z) dz = 1 gewihlt sei. Nach dem Satz von der offenen Abbildung
(siehe z.B. [13], Ch. III, 2.2) ist demnach ¢ — ¢ offen. Offenbar existiert zu jeder
Funktion ¢ € (%) ein £ >0 mit ¢(x) = a, (Q(x)) - ¢(x); fiir jede invariante, nicht
notwendig temperierte Distribution T auf V ist also aufgrund der obigen Bemer-
kung T(¢)=0, falls & =0 ist. Folglich existiert zu jeder invarianten Distribution
TeD'(V) (sogar zu TeD'(¥)) genau eine Distribution T' € D'(W') mit T(¢)=
T () =(T%, A, (¢)) fiir alle ¢ € D(Z). (Vgl. [9], §4; vgl. auch [5], Th. 2, und [6],
Part V, §3.)

2.11. AbschlieBend wollen wir uns noch uberlegen, was Korollar 2.8 im
Spezialfall der koadjungierten Darstellung einer einfach zusammenhangenden
nilpotenten Liegruppe G besagt. Eine temperierte Distribution auf dem Dual-
raum g* der Liealgebra g von G ist genau dann invariant unter der koadjungier-
ten Darstellung von G in g*, wenn ihre Fouriertransformierte als temperierte
Distribution auf g invariant ist unter der adjungierten Darstellung von G in g.
Dabei sei fir eine Funktion fe ¥(g) die Fouriertransformierte %fec ¥(g*)
definiert durch Ff(&):={, f(X)e*™ dX, ¢€g™, und die Fouriertransformation
von ¥'(g*) nach ¥'(g) sei die zu  adjungierte Abbildung und werde ebenfalls mit
% bezeichnet. Identifizieren wir G mit g vermoge der Exponentialabbildung, so
ist eine temperierte Distribution auf g gehau dann invariant unter der adjungier-
ten Darstellung, wenn sie als Distribution auf G zentral ist, d.h. invariant unter
den inneren Automorphismen.

Nach [11], Lemma 4 und Prop. 3, ist das Quadrat desjenigen (invarianten)
Polynoms auf g*, welches das PlancherelmaB bestimmt, ein regularisierendes
Polynom Q fiir die koadjungierte Darstellung. Die Fouriertransformierte C von
Q ist eine homogene Distribution auf g = G. Wegen Q =0 ist C als Distribution
auf g positiv definit und folglich nach dem Satz von Schiffmann ([14]) auch als
Distribution auf G. Ist {X,, ..., Xy} eine Basis von g und {X¥, ..., X7} die dazu
duale Basis von g*, so gilt fiir den Differentialoperator

Diif'—*i(;“, i=\/:—i,f(i ’9&)69(9),

X i=1

die Formel

F(Df) (&)= £F()NE), &£=) £XFegh

i=1

also folgt #(P(D)f)(&) = P(&)F(f)(&), D =(D,, ..., Dy), fir jedes Polynom P auf
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P(&)= ) a, &0 &

unsere Gleichung zeigt, da3 P(D) nicht von den speziell gewahlten Koordinaten
abhangt. Beachten wir noch, da3 die maximale Dimension der koadjungierten
Bahnen geradzahlig ist und demnach das homogene Polynom Q einen gerad-
zahligen Grad hat, so erhalten wir

C=Q(D)s,

wobei 6 das Diracmall im Ursprung bezeichne. Denken wir uns die universelle
einhiillende Algebra ll(g) von g durch die Algebra der vom Ursprung getragenen
Distributionen auf G realisiert, so liegt C als zentrale Distribution im Zentrum
von U(g).

Nun ist eine zentrale temperierte Distribution T auf G Fouriertransformierte
einer temperierten Distribution S auf g*, die invariant ist unter der koadjungier-
ten Darstellung. Nach Korollar 2.8 ist die Distribution QR - S fur genugend
groles R zerlegbar fur die koadjungierte Darstellung. Also ist deren Fourier-
transformierte zerlegbar uiber der Menge der Fouriertransformierten der invarian-
ten MaBe auf den koadjungierten Bahnen in g*. Das ist aber bei geeigneter
Normierung dieser MaBle aufgrund von Kirillovs Charakterformel genau die
Menge der Charaktere irreduzibler Darstellungen von G, und die Fouriertransfor-
mierte von QF - S ist die Distribution C® * T= Q(D)RT mit C®:=C=*---%C
(R Faktoren), wobei die Faltung * als additive Faltung auf der Liealgebra ¢ = G
zu verstehen ist. Damit haben wir bewiesen:

KOROLLAR. Ist G eine einfach zusammenhdngende nilpotente Liegruppe und
ist Q regularisierendes Polynom der koadjungierten Darstellung von G, so existiert zu
jeder zentralen temperierten Distribution T auf G eine natiirliche Zahl R, so daf} die
Distribution Q(D)RT zerlegbar ist iiber der Menge der Charaktere irreduzibler
Darstellungen von G.
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