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On multiple points of smooth immersions

FeLICE RoNGA

§1. Introduction

Let f: V" — W""" be a smooth immersion, where V" and W"*" are smooth
manifolds of dimension n and n+r respectively; we denote by V® the k-fold
product of V, Ay(k)={(x;,....x)eV®|i#j with x = X}, Owl(k)=
{(y,...,y)e W®} We shall say that f is regular if f*: V® — W% is transversal
to dw(k) outside Ay (k). This means that if f(x,)=---=f(x)=y, x;#x;, the
vector spaces Im (df, ), ...,Im(df, ) are in general position in TW,.

The following theorem has been proved by Ralph J. Herbert in his thesis [3]:

1.1 THEOREM. Let f: V" — W"' be a regular proper immersion and set
N . ={ye W|#(f '(y)) =k}, M, =f"'(N,). Then M, and N, carry fundamental
classes over the integers modulo two; denoting by m, and n, their Poincaré duals in
V and W respectively and by e = e(N;) the Euler class of the normal bundle N; of f,
we have:

my :f*(nk~l)_e My (*)

If r is even and V and W oriented, M, and N, carry fundamental classes over
the integers, and the above formula is valid in integral cohomology.

The fundamental classes are meant as in [2], §2.2.

Remarks.

(i) If r is even and N; only is oriented, we still have integral dual classes, for
which (*) stays valid.

(ii) In proving (*) we will exhibit minimal desingularisations of M, and N,
which provide fundamental classes in bordism theory (oriented bordism if r is
even and N; oriented, complex bordism if N; has a stable complex structure,
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522 FELICE RONGA

unoriented bordism otherwise). In the corresponding cobordism theories (*) still
holds

(iii) From (*) we deduce:
me= ) (- De'f*(n_,-;)
j -1

In particular if W=R""", m, =(—1)*"'e*!. This recovers the formula for triple
points of immersed surfaces in R? given in [1].

(iv) When r is even and N; oriented, the orientations we shall give for the dual
classes to M, and N, are such that film,) =k - n,, where f,: H*(V) — H*(W) is
the Gysin homomorphism associated to f. Defining ¢, : H*(V)— H*(V) by
on(a)=f*f(a)—h(e - a), we deduce from (*):

(k"l)!mkz@k~1 L2 T, ¢,(1)

Herbert’s theorem corrects a formula given in [4]. The purpose of this note is
to give a simple proof of (*). My contribution is the idea of proving (*) using
Proposition 2.2 below, which is a generalization of a proposition of D. Quillen
([5], prop. 3.3).

Particular cases of (*) were known before Herbert’s thesis. In [7], p. 131, H.
Whitney shows that m, = f*f,(1)— e; Herbert’s method for proving (*) appears to
be a generalisation of Whitney’s method, which also inspired our approach. By
different methods, the case of triple points of surfaces in R® is treated in [1] and
[6] deals with the number of triple points of an immersion V*" — R®".

§2. Proofs

We adopt the following notations: a smooth map «: A — X means a C* map
between C~ manifolds. TA denotes the tangent bundle of A, N, = a™(TX)— TA
the virtual normal bundle of «; if « is an immersion, N, denotes the genuine
normal bundle of «, namely a*(TX)/da(TA), where da: TA — a*TX denotes
the derivative of a.

Let f: V" — W"™" be a smooth regular proper immersion. We set:

- N(H={yeW|#([F =k}, MJH=f"(N)

~ M (f)={(x1, ..., x)e VE=A (k) | £(x) = f(x)}



On multiple points of smooth immersions 523

The group of permutations of k objects S, acts fixed-point free on M, (f) in
the obvious way.

— Nk(f) =Mk/sk, Mk(f):Mk/Sk—b

where S, _; acts on the last k — 1 coordinates.

We write [x,, . .., ], resp. (x;,[%,. ..., x.]) for the class of (x, ..., x.)eM,
in N, resp. M,. We define f, :M, = V, f.(x,,[x5 ..., %) =x, and g : N, = W,
g ([x1, ..., x ) =f(x) (=f(xx) =" =f(x)). We set M;Z:fil(Mk), N =g '(Ny).

Recall that N{ denotes the k-fold product of N;.

2.1 LEMMA.

(i) f, and g, are proper immersions with normal bundles N, = (N | M, )/S, and
N, = (OX NV | M)/S, .

(ii) MY and N are open dense in M, and N, respectively, f, | My: MY — M, and
g. | NV: N — N, are diffeomorphisms.

(iii) fk(Mk) =M, = Un=k My, & (Nk) = Ni = Un=k Nu-

Proof. Since M, = (f*)'(6w(k))— Ay (k). we deduce from the transversality
of f* to 8w(k) outside Ay(k) that T(Mx, =101 ...,0)€
T(V)&) o)l df. (v) = df, (v))}. So, v, =0 implies v,="- =1, =0. Hence f, and
g, are immersions; it is easily seen that their normal bundles are as stated.

Let us check that M, is closed in V®: if not, there are sequences {x"},
{xBlc V, f(x") =f(xh), x}+# x5, with lim,_ . (x}) =1lim,_. (x5) = x. We write f in
local coordinates as a map f:R" — R"""; we can assume that x%— x5/||x%— x5|
tends to veR", ||v||=1. But then df (v)=0 and f is no longer an immersion.
Hence M, and N, are closed in V®/S,_, and V®/S, respectively and since f is
proper we deduce that f, and g, are proper. This proves (i). The assertions (ii)
and (iii) follow from the fact that f, and g, are proper and, using the implicit
function theorem, by writing f locally as a linear map.

We digress now to sub-cartesian diagrams; they generalize the notion of clean
intersection of Quillen ([5], §3), which concerns the case when a and 8 below are
embeddings.

DEFINITION. The diagram of smooth proper immersions:

fa
Z—> B

fAl la

A—> X
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is said to be sub-cartesian if:

(i) faxXfg:Z—AxXxB is an embedding onto AX.B={(a, b)e
A xB|a(a)=pB(b)}.

(ii) the following sequence is exact:

d(f, xf) (do,~dB)
0— TZ 227 (ATA X fATB =220 o TX

where (da, —dp) is meant to send (v, w)e (f5TA x fXTB), to da(v)— dB(w). The
vector bundle E = fXa*TX/Im (d(fs X fs)) over Z is called the excess vector
bundle.

Remarks.

(1) The above diagram is cartesian if and only if E is the zero bundle.

(i) We have not assumed Z to have constant dimension, hence E won’t have
constant rank in general.

(iii) The above condition (ii) is equivalent to say that if for ac A and be B we
choose open neighbourhoods A’ and B’ respectively such that a | A’ and 8 | B’
are embeddings, then a(A')NB(B’) is a sub-manifold of X and T(a(A")N
B(B))=T(a(A") N T(B(B')). This is to say that a(A’) and B(B’) intersect cleanly
in X in the terminology of [5].

2.2 PROPOSITION. For c e H*(B) we have:

a*Bs(C) = fai(e(E) - fg(c))

where e denotes the Euler class, B, and fa, are the Gysin homomorphisms
associated to those maps. The cohomology is taken over the integers whenever N,
and E are oriented, the integers modulo two otherwise. (The proposition and its
proof remain valid in any generalized cohomology theory in which N; and E have
orientations.)

Proof. We replace Z by its image in A X B, still denoted by Z. We provide TX
with a metric and identify E with the orthogonal to Im (d(f4 X fg|2)) in fha™*TX.
Let e: TX — X be the exponential mapping associated to the metric; for x € X
there is an open neighbourhood U, of 0e TX, such that e, =e|U, is a
diffeomorphism onto an open neighbourhood of x in X. Let (2 be a closed tubular
neighbourhood of Z in A X B; it is a manifold with boundary (2. If (2 is small
enough, for (a, b) e 2 we have b € €,4)(Uy,())- Let v:Z — E be a section trans-
versal to the zero section and denote by E and ¢ extensions of E and v to (2, with
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E still a sub-bundle of TX'=p%a*(TX)| {2, where p,:02 — A denotes the
obvious projection. Define the section w:Q — TX' by w(a, b) = e_(,,(B(b)), and
the section w: Q2 — TX' by w=w+0. If  is small enough, w(a, b)¢ E"(a,b) for
(a,b)¢ Z and hence, setting Z"={(a,b)eQ|w(a,b)=0}, we have z"=
{(a, b)e Z | v(a, b) = 0}.

It follows from the exact sequence (ii) of the definition of a sub-cartesian
diagram that w is transversal to the zero section in TX'. Hence the map
F:0Q — Xx X, F(a, b)= (e, (W(a, b)), B(b)) is transversal to Ay and F '(Ax) =
Z" if v has been chosen near enough the zero section in E.

Let a': A — X be near a such that o’ X 3: A X B — X x X is transversal to Ay
and set Z'=(a'x B) '(Ax). The following diagram is cartesian:

fa
7 B
f;\l l
A Z, X

where f’, and f} are the obvious projections; hence a'*B,(c) = fx . f5™(c). If a' is
near enough to a, F' = (a’'x 8) | 2 and F are homotopic through maps transversal
to Ax and sending d{2 into X X X — Ay. Hence there is an isotopy of (2 leaving {2
fixed and sending Z' onto Z".

Consider the inclusions i: Z< , i'":Z'<, i":Z"< (), j:Z" < Z, the projec-
tion p,:2—> A and the associated Gysin homomorphisms i,: H*(Z)—
H*(, 30), similarly for i} and i}, and pa,: H*(€2, 82) - H*(A). Since Z' and Z"
are isotopic in {2 rel. 382, i\f5f=i"(fgj)*. Also, since Z" is the set of zeroes of
v:Z — E which is transversal to the zero section, j,(1) = e(E). Hence, using that
fia=pai’, i"=ij, fa=pai and j(*(x))=j(1) - x:a*Bi(c) = a*Bi(c) = fa,f5(c) =
pA!i;ﬂ;*(C) = PA!i’!'].*ngc(C) = PA!i!f!f*fﬁ(C) = (pai)(ju(1) - fﬁ(c)) = far(e(E) - fﬁ(C))

Proof of 1.1. Consider the diagram:

Mk UMk——l — Nk—l

fkufk—ll lgk_l

f
Ve—e——--—os W

where p(x;,[Xs, ..., xD=0x0..., %], PO [x20 - X D =[x0, ..o Xy ] Tt
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follows from the transversality of f*: V& — A, (k) — W% to 8y (k) that the above
diagram is sub-cartesian, the excess bundle being zero on M, and fE¥_1(N;) on
M, _,. From 2.1 we deduce that f.«([M,]) and g,«([N,]), where [ ] denotes the
fundamental class, are fundamental classes for M, and N, respectively, for which
my = fi(1), ne = g, (1). Applying 2.2 to the above diagram with ¢ =1 we get:

f*(nk~1) = f*(gk—l!(l)) = fi(1) +fkm1!(fz<~1(e(Nf))) =mte-m_,.

If r is even and N; oriented, the induced orientation on N | MY is invariant
by the action of S, and 2.1 (i) shows that N .  and N,  are oriented. The
above calculations hold in integral cohomology. If W is not orientable, m, and n,
can be interpreted as follows. Let 60y, denote the sheaf of orientations of W; then
f*(6w) = 6y since N; is oriented, and also f¥(0y) = Oy, gi(6w)= 0x,. Letting [ ]
denote the fundamental class with twisted coefficients, we have that f, «([M,]) and
g.+(N.]) are fundamental classes for M, and N, respectively with twisted
coeflicients, whose Poincaré duals are m, = f,,(1) and n, = gx,(1).

In the terminology of [7], the above considerations amount roughly to say that
the homological intersection of f(V) and N,_, in W consists of the ““far intersec-
tion” (that is M, ) plus the “near intersection” (that is the set of zeroes of a section
of the non-zero part of the excess bundle).

§3. Divisibility conditions

3.1 PROPOSITION. If the compact oriented manifold V*" immerses in
R+ P (V)P is divisible by 2p + 1, where P.(V) denotes the r-th Pontriagin class
of the stable normal bundle of V.

Proof. Let f:V*" — R*"*2" be an immersion; after perturbing it slightly we
can assume it to be regular. Then M, consists of isolated points whose number
equals m,, ., evaluated on [V]; since e(N;)>=P, by 1.1 m,,,,=(—1)>*"" - P(V).
If xy,...,%x5,41€V are distinct and f(x;)="--= f(x,,,1) =y, the orientation we
have given to N(f,,.,) shows that they are all counted with the same sign, say &,.
Hence (—1)?**!- P (V) evaluated on [V] equals Qyeny,., &) - 2p+1).

For example, if V*" immerses in R***2, P7 is divisible by 2n+1. (The case
n=1 was considered by J. H. White in [6]). If V'?> immerses in R'®, P;=
P3—2P,P,+ P, is divisible by 3. If V'® immerses in R*°, (P?— P,)? is divisible by
5.

In fact 3.1 is probably a consequence of the integrality of the L-genus, taking
inaccount that P, =0 for i >r.
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