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Poincaré duality groups of dimension two
Beno Eckmann and HeEinz MULLER

In this paper we prove that 2-dimensional Poincaré duality groups with
positive first Betti number B, are surface groups. As a corollary it follows that a
connected Poincaré 2-complex with 8,>0 is homotopy equivalent to a closed
surface, and so is any finite connected Poincaré 2-complex.

1. Statement of algebraic results

1.1. A Poincaré duality group of dimension n, in short PD"-group, is a group
G acting on Z such that there are natural duality isomorphisms

H*(G;A)=H, (G;ZQA) (1)

for all integers k and all G-modules A (where G acts diagonally on ZQ A); the
isomorphisms (1) can be given by the cap-product e — with an element
e€ H,(G;Z) called fundamental class. If (1) holds, the ‘“formal dimension” n
(= cohomology dimension of G) and the G-module Z (=H"(G;ZG)) are
determined by G. A PD"-group G is called orientable or non-orientable accord-
ing to whether Z is a trivial G-module or not.

The fundamental group m(M") of a closed connected aspherical n-
dimensional manifold is a PD"-group. In particular, if M is a closed surface of
genus =1, then 7;(M?) is a PD*-group. We will call such a group m,(M?) a
“surface group’’; it admits a finite presentation of well-known canonical type. It
has been conjectured that these surface groups are the only PD?-groups. We will
show that this is so except in a very special case which remains open.

1.2. From general arguments [5], [2] it is known that PD"-groups are of type
(FP); this means that there exists a ZG-projective resolution of the trivial
G-module Z, of finite length and finitely generated over ZG. In particular, a
PD"-group G is finitely generated, and its Betti numbers B;(G) and the Euler
characteristic x(G)=Y"_,(—1)'8; are defined. Our main result is

THEOREM 1. Let G be a PD?*-group with 8,(G)>0. Then G is a surface
group.
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The condition B,(G)>0 means, in the orientable case, that 8,(G) is an even
integer =2; in the non-orientable case, an integer =1. Thus B;(G)>0 is
equivalent to x(G)=<0 (since x(G)=2— B,(G) in the orientable, 1—B,(G) in the
non-orientable case). If G is non-orientable, it contains an orientable PD?-group
G, as subgroup of index 2. By the multiplicative property of the Euler charac-
teristic (which holds for groups of type (FP), cf. [6]) one has x(G,)=2x(G);
hence B,(G)>0 if and only if B,(G;)>0.

1.3. A group G is said to be of type (FF) if it admits a ZG-free resolution of
finite length and finitely generated over ZG. Obviously surface groups are of type
(FF). It is not known whether there exist groups of type (FP) which are not of
type (FF).

COROLLARY 1. A PD*-group G of type (FF) is a surface group.

Proof. We first assume G orientable. Then the method of proof used by J.
Cohen [7] is valid for any (FF)-resolution and shows that the assumption
B:1(G)=0 (i.e. H,(G;Z)=0) leads to a contradiction. Hence B,(G)>0, and the
assertion follows from Theorem 1.

If G is non-orientable, let G, be the orientable subgroup of index 2; it is also

of type (FF), and thus 3,(G,)>0. The Euler characteristic argument above then
shows that B,(G)>0.

1.4. We thus see that the case B,(G)=0 not covered by Theorem 1 is
equivalent to the existence of a PD*-group G not of type (FF), but of course of
type (FP). We further note that, by Theorem 1, the condition 3,(G)>0 not only
implies type (FF) but also finite presentability.

1.5. A further corollary concerns the ““Nielsen conjecture” for surface groups.

COROLLARY 2. Let G be a torsion-free group containing a surface group G,
as a subgroup of finite index. Then G itself is a surface group.

Proof. Any torsion-free group G containing a PD?-group G, as subgroup of
finite index is itself a PD?-group (cf. [1], [2]). Since B,(G,)>0, i.e., x(G,) <0,
the multiplicative property of the Euler characteristic, x(G,)=|G:G,|x(G),
yields x(G)<0. Hence B,(G)>0, and the assertion follows from Theorem 1.

1.6. The relative analogue of a PD"-group is a PD"-pair, cf. Bieri-Eckmann
[3]. A group pair (G;S,, S;,...,S,,) consists of a group G and a family of
subgroups S =(Sy, Sy, ..., S.), m=0; it is called a PD"-pair if for some G-action
on Z there are duality isomorphisms between the cohomology of G and the
relative homology of (G; S), analogous to (1) and also given by the cap product
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eN — with a fundamental class ee H,(G, S;Z). The duality is, of course, of
exactly the same form as that of compact manifolds-with-boundary. Examples of
PD?-pairs are obtained by taking for G the fundamental group of a closed surface
with m +1 discs removed (m =0, and m =1 if the surface is the sphere) together
with the family of infinite cyclic subgroups generated by the circles bounding the
discs. These PD?-pairs of groups are called ‘“‘geometric”.

THEOREM 2. All PD*-pairs of groups are geometric.

This result is actually a consequence of Corollary 1. Indeed it is shown in [3]
that it is implied by the assertion that one-relator PD*-groups are surface groups.
Since one-relator PD?-groups are of type (FF), Corollary 1 tells that this is the
case.

However, Theorem 2 will be used in the proof of Theorem 1 and therefore
requires a direct proof.

1.7. The proof of Theorem 2 will be given in Section 4, of Theorem 1 in
Section 5. In Section 3 we describe the procedure of proof and list some auxiliary
results, in particular the ‘“decomposition theorems for group pairs” (H. Miiller
[10]). Section 2 deals with the topological aspect.

2. Topological application: Poincaré 2-complexes

2.1. A Poincaré n-complex is a CW-complex X dominated by a finite
complex and fulfilling Poincaré duality for arbitrary local coefficients, with respect
to a dualizing 7;(X)-module Z and a formal dimension n. We will always assume
here that it is connected.

The study of Poincaré complexes was initiated by Wall in the 60-s. In [15]
Wall proved, in particular, that if X is a Poincaré 2-complex with m(X) finite,
then X is homotopy equivalent to S*> or RP?; if 7,(X) is infinite, then X is
aspherical, i.e., it is an Eilenberg-Mac Lane complex K(G, 1) for G = m,(X). In
the latter case the investigation is thus reduced to the study of finitely presented
PD?-groups. Later J. Cohen [7] showed that if X is a finite Poincaré 2-complex
with B,(X)=0 then the conclusion is the same as for 7,(X) finite; and that a
Poincaré 2-complex X with B,(X)=1 or 2 is homotopy equivalent to the
appropriate closed surface.

2.2. As a consequence of Theorem 1 we obtain

COROLLARY 3. Let X be a Poincaré 2-complex with B,(X)>0. Then X is
homotopy equivalent to a closed surface (of genus=1).
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Indeed, since B,(X)>0 implies that 7 (X) is infinite, G = 7,(X) is a PD?-
group with 8,(G)>0 and thus isomorphic to m,(Y), where Y is a closed surface

of genus =1. The isomorphism provides a homotopy equivalence between
X=K(G,1) and Y.

COROLLARY 4. A finite Poincaré 2-complex X is homotopy equivalent to a
closed surface.

Proof. If m(X) is finite, one applies Wall’s result mentioned above. If 7,(X) =
G is infinite, then G is a PD*-group of type (FF), hence isomorphic to a surface
group by Corollary 1. Thus X = K(G, 1) is homotopy equivalent to a closed
surface.

2.3. Thus all Poincaré 2-complexes X are homotopy equivalent to closed
surfaces, except possibly if (a) 7r;(X) is infinite and B,(X)=0, and (b) X is not
homotopy equivalent to a finite complex. Note that each of properties (a) and (b)
implies the other. Except for finite presentability of G = m;(X) this exceptional
possibility is exactly the same as the case not covered by Theorem 1, cf. 1.4.

3. Splitting of groups and group pairs

3.1. A group G is said to split over a subgroup H if it is either (a) an
amalgamated free product G = G,*y4 G,, G, # H#¥ G, or () an HNN-extension
G = G, * g ,. Cases where H is finitely generated or even finite will be of special
importance.

If G is a PD*-group with B8,(G)>0 then G admits an infinite cyclic factor
group (infinite cyclic groups will be denoted by C in the following, or by C(g) if
we want to emphasize a generator g). Since G is of type (FP), it is “almost finitely
presented”’. By a theorem of Bieri-Strebel [4], any almost finitely presented group
admitting a factor group C splits over a finitely generated group L (by a splitting
(B)). Thus Theorem 1 is a consequence of

THEOREM 1'. Let G be a PD?-group which splits over a finitely generated
subgroup L. Then G is a surface group.

If one confines attention to finitely presented PD?-groups only (e.g., in the
context of Poincaré 2-complexes or of the Nielsen conjecture), the Bieri-Strebel
argument can be replaced by a somewhat simpler one which is just a modification
of Moldavanskii’s method [9]; cf. Eckmann-Miiller [8].
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3.2. The proof of Theorem 1’ will proceed as follows. By Strebel’s theorem
[13] the subgroup L, being of infinite index in G, is free. If the rank of L is >1,
the splitting can be changed so as to become a splitting of G over a subgroup of
smaller rank. One is thus reduced to the case where L = C is infinite cyclic. Then
the group pairs (G,; C) and (G,; C) in case (a), or (Gy; C, p~'Cp) in case (B), are
PD?-pairs; this follows from general results on PD"-groups and -pairs (Bieri—
Eckmann [3]). By our Theorem 2 these PD?-pairs are geometric, which easily
implies that G = G, *cG,, or G = G, *¢, respectively, is a surface group.

3.3. Both the reduction process above and the proof of Theorem 2 are based
on ‘“decomposition theorems for group pairs” (H. Miiller [10]). For the conveni-
ence of the reader we summarize the appropriate definitions and those results
which are needed.

In this context, a splitting of G is understood to be over a finite subgroup K. A
group pair (G;S,,S,,...,S,.), m=0, and a splitting (a) G= G,;* G, or (B)
G = G, *g, are said to be adapted to each other if each S;, j=1,...,m is
conjugate to a subgroup of G, or G,. If for (G; S, S,, ..., S,.) such a splitting of
G exists we simply say that the pair is adapted. If G is finitely generated, the pair
(G; Sy, ...,S,) is adapted if and only if ()2, N,# 0, where N, is the kernel of the
restriction map res;: H(G; ZG)— H‘(S,.; Z.G). This is just a restatement of
Swarup’s relative version of Stallings’ structure theorem for finitely generated
groups with more than one end.

In the following we assume that (G; Sy, ..., S,,) is an adapted pair and that G
is finitely generated. With respect to the pair (G;S,,...,S,,) a number n(T),
called weight of T, is associated with every subgroup T of G. The definition uses
the restriction map

res: HY(G; ZG)— HY(T; ZG).

For simplicity we only consider the case where T is finitely generated. We regard
H'(T;ZT) as T-submodule of the (right) G-module H'(T; ZG) (the embedding
is induced by the inclusion ZT—ZG). Since T is finitely generated, we have a
decomposition (as abelian group)

HNT;ZG)= & H\YT;ZT)x

x.e€G/T

(see, e.g., [2] Proposition 5.3).

DEFINITION. The weight n(T) is the minimal number of non-trivial compo-
nents of res(c)e @, .qr H'(T; ZT)x; for all ce L, N, ¢#0.
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3.4. For different values of n(T) various types of a simultaneous splitting of G
and a graph-decomposition of T are obtained. We describe here only two special
cases (Corollaire 2 and Corollaire 5 of [11]). In the statements the splitting
G =G,*#G, or G=G,*,, written G *(p), is always meant to be adapted to the
pair (G;S,,...,S,.).

THEOREM A. Assume that T is torsion-free and n(T) = 1. Then we have one
of the following cases

1) G=G,*G,, T=T*T,, T,< Gy, T,= Gy,
2) G=G;*(p), T=T,xpT,p ", T,, T, < Gy;
3) G={(p), T = C(p), S;=---=8§,,=e or m=0.

THEOREM B. Assume that G is torsion-free, T infinite cyclic and n(T) = 2.
Then we have one of the following cases

1) G=G,*G,, T=C(g, 2), e* g €G, i=1,2;
2) G=G,*(p), T=C(pg,p~'8). e¥ g1, §2€ Gy;
3) G={(p), T = C(p?), S;=---=S,=e or m=0.

4. Proof of Theorem 2

4.1. Let (G; Sy, S;,....S,), m=0, in short (G; S), be a PD*-pair. G acts on
Z, and there is a fundamental class e € H,(G, S; Z) such that

eN—:H*(G; A)»H,_ (G, $;Z®A) (2)

is an isomorphism for all k and A. The geometric PD*-pairs (cf. 1.6) are as
follows:
Orientable case
(3) G is freely generated by t;,..., t,, X1, Y1, ..., X Ve m+g>0,
S.,...,S,, are generated by conjugates to t,,...,t, and S, is generated
by ;- b, 1 [, yil-

Non-orientable case
(4) G is freely generated by t;,..., L, Zo,..., 2, m=0, g=0,
S.,...,S,, are generated by conjugates to t,,...,t, and S, is generated

by ARIRIR MRS ) 1 Z:iz‘
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4.2. By Theorem 4.2 and 9.3 of [3] we know that a PD?-pair
(G; So, S15- -+, S,,) consists of a finitely generated free group G and a family
S=(S,,S,,...,S,,) of cyclic subgroups. Moreover, the fundamental class e e
H,(G; S;Z) determines fundamental classes e, for the PD'-groups S,,..., S,
namely the components of de € H,(S;Z)= D, H,(S;; Z), where 9 is the connect-
ing homomorphism in the exact homology sequence of G modulo S. By [3],
Theorem 2.1 one has the following commutative diagram

0= HYG: ZG)—> @& H\(S,;;ZG) —— H*(G, §;ZG)—0

i=0

El{e‘n*} = l(eﬂ*)

@ Hy(S,: ZOZG)>>H,(G: ZRZG) 5)
i=0

| |
D (Z® ZG) — z

i=0
where the top row is exact and p(1®sy)=1-y for ye G.

4.3. We now prove, by induction on the rank rk(G), that (G;S) has a
presentation (3) or (4) and thus is geometric.

If rk(G)=1 then ®L,(ZQg ZG) is free Abelian of rank 2, by (5). This is
possible only if either m=1 and S,=S,=G; or if m=0 and S,= C(a’) where
G =(a). Thus we either have a presentation (3) with m =1, g=0, or a presenta-
tion (4) with m=0, g=0.

If rk(G)=2 we put T= S, and determine the weight n(T) with respect to the
pair (G;S,,...,S,.), which is adapted by (5). We consider elements res, (c),
0#ce(jLi N, (ie., elements (d,0,...,0)eim/{res;},d#0) and count the
number of components of d in H(T; ZG)=®, .gr H(T; ZT)x,. From (5) we
see that im {res;}=ker § =ker pj{e; =}, and pj{e, N —} restricted to any
H'(T;ZT)x, is bijective. Thus the minimal number of components of elements
d# 0 is two, i.e., the weight of T= S, is 2. By Theorem B we therefore have one
of the two following cases:

1) G=G,*G,; S4=C(g,2,), e# g € G, i =1,2, and the subgroups S, ..., S
are conjugate to subgroups of G;, while S, ., ..., S, are conjugate to subgroups
of G,, for some k, 0<k=m.

2) G=G,*{p); So=C(pg:p '8, e# g1, 8<€Gy, and S,,..., S, are conju-
gate to subgroups of G;.
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Since hypothesis and assertion are invariant under conjugation we may assume
that S,,...,S,, are actually subgroups of G, or G, respectively.

Case 1). We can write G as G =(G,* C(g,)) * (g, G2. The subgroups S,=
C(g,g,) and S,,...,S, are in G,*C(g,), and the S.,,...,S, in G, If
G, # C(g,), Theorem 8.1 of [3] tells that (G,; C(g,), Sk+1,- .., S,) is a PD*-pair.
We claim that this is also true if G, = C(g,); namely, that pair is then
(C(g,); C(g2), C(g2))-

To prove this we note that quite generally, in Case 1), diagram (5) implies
that res:H'(G;ZG)—>®",,, H'(S;;ZG) is surjective, and so is
res: H'(G,; ZG,) > ®" ., (Si; ZG,). If G,=C(g), then H'(G,;Z2G,)=1Z, so
this is possible only if k=m, or k=m—1 and §,, = G, = C(g,). Assume k=m;
then all subgroups S,,...,S,. are in G;, hence H‘(G S;Z)#0, since G=
G,*C(g,) = G, *C(g,g,) = G,*S,. However, for a PD*-pair H'(G, S$;ZG) =0, so
k=m is not possible and we are left with k=m-1 and
(Gy; C(g2), Sks1s - -+, Sm) =(C(g,); C(g,), C(g,)), which is a PD?*-pair.

Thus (G,; C(g,), Sci1s- - -5 S,,) is a PD?-pair, and so is (G,; C(g;), Sy, . . ., Si).
By induction hypothesis they have presentations of the type (3) or (4). It follows
immediately that (G; S) has a presentation (3) or (4): This is obvious if both
above pairs have a presentation (3), or both a presentation (4). Otherwise one
gets a presentation (4), i.e. non-orientable, by using transformations of the form

a’[b, c]=a*b*¢*; a=a’bca™'!, b=ac'b'alca’!, ¢=ac™! (6)

Case 2). Write G as G =(G,*C(a))* c(ae;n, With p~'(agz)p=g,. The
subgroups S,=C(a) and S,,...,S,, are in G,* C(a). By [3], Theorem 8.3,
(G, * C(a); C(a), S,, . .., S,.,, C(ag;"), C(g,)) is a PD*-pair. By the method used
in Case 1) it follows that (G,;S,,...,S,, C(g,), C(g,) is a PD*-pair; the
induction hypothesis tells that it has a presentation of the type (3) or (4). We may
assume that this presentation is as follows.

G, is freely generated by ¢, t;,...,t, and some x, y; (orientable case (3)) or
some z; (non-orientable case (4)); and S, is conjugate to C(t,), i=1,..., m, C(g,)
to C(t,), i.e., g; is conjugate to t, or ty'; and g, =1t, - *  t,.,r where r =[] [x;, y;] or
[1 z3 respectively. S, is generated by pg,p~'t, ... t,r. By changing p if necessary
we may assume g, = t5'. Using transformations of the form

pp~tt=p*t* p=pp 't 'p~', T=pt (7)

and of the form (6), we get a presentation (3) or (4) for the pair
(G;SO’Sh""Sm)'
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The passage from the two geometric pairs (G,;...) and (G,;...) to (G; S) in
Case 1), or from (G;;...) to (G; S) in Case 2) can, of course, be replaced by a
geometric procedure on the corresponding surfaces-with-boundary.

5. Proof of Theorem 1’

5.1. We recall that surface groups have canonical presentations

g
G:<x1, Yis > Xg Vg .]_[l [x; y’.]=1>, g=1 (8)
o=
in the orientable, and
g
G=<zo,...,zgﬂzf=1>, g=1 9)
i=0

in the non-orientable case.

Let G be a PD?*-group which splits over a finitely generated group L as ()
G=G,*.G,,G#L#¥G, or (B)G=G,;*., Since L has infinite index in G it
is free [13].

If rk(L)=1, L = C, we consider the pairs (G,; C) and (G,; C) in case («), or
(G,; C, p~'Cp) in case (B). By [3], Theorem 8.1 and 8.3 these pairs are PD*-pairs
and hence geometric; they have presentations (3) or (4), and by amalgamation or
HNN-extension these yield presentations of the form (8) or (9) (by using, if
necessary, transformations (6) and (7)). Thus G is a surface group.

Of course, the appropriate surface can also be obtained geometrically from the
surfaces-with-boundary corresponding to the group pairs.

5.2. If rk(L)=2, we will obtain from Theorem A a new splitting of G over a
subgroup M with rk(M)<rk(L). This reduces the problem to the case rk(L)=1
above.

(@) Assume first that G = G, *; G,. We consider the Mayer-Vietoris sequence

(res,;, —res,)

- >0 H'G,; ZG)®H'(G,; ZG) ——
H'(L;ZG)—> H¥G;ZG)— - -

and show the following:
(10) If the weight of L with respect to both (G,;; &) and (G,; &) is greater
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than one, then H'(L; ZL)Nim (res,, —res,) = 0. (Here we consider H'(L;ZL) as
submodule of H'(L;ZG).)

Proof. Let C; denote H'(L;ZL) and C = H'(G;; ZG,), i=1,2. Choose sets
{x;;iel} and {y,; jeJ} of representatives of the (right) cosetse G,/L and G,/L
(both sets containing e). We then have the following sets of representatives:

Elz{e}U{lexiz' e QY;'[% e?éxil} for G/Gy;
3 ={etU{x,y, "y, Fe#Fx} for G/Gy;
ZL = 21 U 22 for G/L

Hence we get decompositions

H' (G,;ZG)= & Cgz, i=1,2;

zel,

H'(L;ZG)= & C,z.

ZEEL

The “length” of a summand Cz or C, z is defined as the number of representa-
tives x,y;#e occurring in z. Consider now O0%#(c,,c,)e H(G;ZG)®
H'(G,; ZG). We want to show that res, (c,)—res, (c,) ¢ C, . For this we consider a
non-trivial component d of (c;, ¢,) lying in a summand (of the above decomposi-
tions) of maximal length; say d = cz, in C,z, of length L Let res, (c) be Y, ; b:x;,
b; € C,. Because the weight of L with respect to (G,; J) is greater than one, there
is at least one i, with x; # e, b, # 0. So res, (cz,) contains the summand b, x; z, in
C.x,z, of length [+1, and because of the maximality of | there is no other
contribution in res, (c;)—res, (c,) to the component C, x; z,. So indeed res, (¢;) —
res, (c,) ¢ C,, which proves (10).

By assumption, H?*(G; ZG) is free abelian of rank one and L has infinitely
many ends. Therefore the restriction of 8 to H'(L;ZL) cannot be injective.
Because of the exactness of the Mayer—Vietoris sequence, H'(L;ZL)N
im (res,, —res,) # 0. By (10), L has weight one with respect to (G,; &) or (G,; J),
say (G,; ). (Note that L cannot have weight 0, since res; and res, are injective.)
By Theorem A, we have one of the following two cases:

1) G,=H,;*H,, L=L,*L,, e# L, < H, i=1,2;

2) G, =H,*(1), L=L,*tL,t", e#L,, L, H,.
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In Case 1), we have G=H,*; (H,*, G,). If L,#H,, G splits over L,; if
L,=H,, then L,# H, and G = H,*,, G, splits over L,.

In Case 2), G =(H,* G,)* - splits over L,.

So in both cases we have a splitting of G over a group M with rk(M) <rk(L).

(B) The case G= G, *,, is treated similarly. If L is not cyclic, one can show
that (by changing the notation if necessary) n(L) =1 with respect to (G,; p 'Lp);
to prove that the pair is adapted and to compute the weight one proceeds by
methods analogous to those in the proof of (10). By Theorem A we have again
the cases 1) or 2) above, where moreover p~'Lp is conjugate to a subgroup of H,.
By changing the stable letter p we can get p~'Lp < H,.

In Case 1), G =(H,* _)*, H, splits over L, if L, # H,; or else over L,.

In Case 2), G=(H;*, )%, splits over L,. This completes the proof of
Theorem 1'.
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