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On the p-periodicity of arithmetic subgroups of general linear
groups

BarLz BURGISSER

1. Introduction

1.1. For a group G of virtually finite (cohomological) dimension let H(G, A),
ie Z, be the ith Farrell-Tate cohomology with coefficients in the G-module A
(see [4]). The groups H'(G, A) are always torsion-groups; they agree with the
usual cohomology H'(G, A) for dimensions i greater than the virtual (cohomolog-
ical) dimension of G.

The group G is called periodic if H'(G, A) is periodic for all G-modules A
(i.e., if there exists m €N, such that the functors H'(G, —) and H'*"(G, —) are
naturally equivalent for all i € Z). The smallest such number m is called the period
of G. The group G is called p-periodic for a prime p, if the p-primary component
of H'(G, A), written H'(G, A, p), is periodic for all A; the p-period is denoted by
m,.

G is periodic if and only if G is p-periodic for all primes p; the period of G is
then the greatest common multiple of the p-periods. If G is p-periodic, then
every subgroup U of G is p-periodic, and the p-period of U divides the p-period
of G.

1.2. In this paper, we consider linear groups G = GL(n, R) where R is a ring
of complex numbers containing Z. In several cases GL(n, R) is known to be
virtually of finite dimension. We determine then the primes p for which GL(n, R)
is p-periodic, and the p-period m, (Section 2). In Section 3 we consider, in
particular, the following situation: Let K be an (algebraic) number field, O(K) the
ring of algebraic integers in K and A(K) the discriminant of K. We then have:

THEOREM 1.1. Let p be a prime not dividing A(K).

(a) If p=(n/2)+1, then GL(n, O(K)) is not p-periodic.

(b) If (n/2)+1<p=n+1,then GL(n, O(K)) is p-periodic with p-period 2(p — 1).
(c) If p>n+1, then H(GL(n, O(K)), A, p)=0 for all ieZ and all A.
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500 BALZ BURGISSER

This theorem is established in Section 3 in a more general case including the
S-arithmetic groups GL(n, O4(K)); the p-periodicity of these groups depends
only on K, but not on the set S of valuations.

A further result (Theorem 2.1) can be used to decide, for primes p dividing
A(K), whether GL(n, O(K)) is p-periodic or not.

1.3. We also investigate the special linear groups G = SL(n, R), where R is a
ring of real numbers containing Z; their p-periodicity is examined in Section 4.
For a real number field K, we get

THEOREM 1.2. Let p be a prime not dividing A(K) and n=3.

(a) If p=(n/2)+1, then SL(n, O(K)) is not p-periodic.

(b) If (n/2)+1<p=n+1, then SL(n,O(K)) is p-periodic. For (n/2)+1<p<
n+1, the p-period is 2(p—1); forp=n+1, itis p—1.

(c) If p>n+1, then H(SL(n, O(K)), A, p)=0 for all ieZ and all A.

If we take K=0Q in Theorem 1.2, we obtain

COROLLARY 1.3. Let p be a primé and n=3.

(a) If p=(n/2)+1, then SL(n,Z) is not p-periodic.

(b) If (n/2)+1<p=n+1, then SL(n,Z) is p-periodic. For (n/2)+1<p<
n+1, the p-period is 2(p—1); forp=n+1, itis p—1.

(c) If p>n+1, then H(SL(n,Z), A, p)=0 for all ieZ and all A.

We note that SL(2,Z) is easily seen to be periodic with period 2.

Further applications and special cases are treated in Section 5.

1.4. This paper grew out of certain parts of the author’s Doctoral Thesis,
Chapter 3 of [2]. Like there, the method is based on a theorem of Brown-Venkov
[1, §14] combined with properties of characteristic classes of linear groups; the
results of the present paper are much more general than those of [2, Chapter 3].
The Brown—Venkov theorem states: If a € H™(G, Z) exists such that RésSGP(a) is a
maximal generator in H ™ (S,, Z) for every p-Sylow subgroup S, of G, then G is
p-periodic with p-period m, where m, divides m; more precisely, the cup-
product with a is an isomorphism H(G, A, p)=H"*""(G, A, p) for all i and A.
Such an element a is called a maximal p-generator of G. We will exhibit such
generators by means of certain characteristic classes.

In [2, Chapter 1], a different method is described to obtain p-periodicity for
SL(n,Z) and similar groups of virtually finite dimension; it uses finite factor
groups of the groups in question, and their p-periodicity.

I wrote my thesis [2] under the direction of Prof. B. Eckmann. I thank him for
his stimulating interest, his criticism and many helpful conversations.
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2. p-periodicity of GL(n, R)

2.1. Throughout this paper we use the following notations: Let n be a natural
number, R a ring of complex numbers containing Z and Q the quotient field of R.
For reN, C, denotes the cyclic group of order r; and ¢o(r) =dim, Q(£,), where
& € C is a primitive rth root of unity.

THEOREM 2.1. Let R be integrally closed and GL(n, R) virtually of finite
dimension, and let p be a prime.

(a) If ¢o(p)=(n/2), then GL(n, R) is not p-periodic.

(b) If (n/2)<e¢g(p)=n, then GL(n, R) is p-periodic, and the p-period divides
2¢0(p). )

(¢) If oo(p)>n, then H(GL(n, R), A,p)=0 for all ieZ and all A.

Proof. We write ¢ for ¢o(p).

(a) Let f be the irreducible polynomial of &, over Q and D the ¢ X ¢-diagonal
matrix with the ¢ complex roots of f(x) in the diagonal. Then D has order p in
GL(¢,C), and D is similar to the companion matrix B of xp(= characteristic

polynomial of D). Since xp(x)=f(x)e R[x] (because R is integrally closed), B is
in GL(¢, R), and its order is p.

We now consider the subgroup

B 0 0
U= (0 B O)‘Osk,i<p}
0 0 E

of GL(n, R), where E is the unit matrix; since ¢ =(n/2), we can form such
matrices. U is isomorphic to C,xC,, and therefore GL(n, R) cannot be p-
periodic.

(b) Let S, be any p-Sylow subgroup of GL(n, R). According to Lemma 2.2
below, every abelian subgroup of S, is cyclic. Hence [3, Chapter XII], S, is cyclic
or a generalized quaternion group. But S, cannot be a generalized quaternion
group (of order =8); for ¢o(2)=1 and the assumption implies n= 1, and
GL(1, R) is abelian. S, is therefore cyclic of order p*. Since ¢ =n and since R is
integrally closed, a =1 (see the proof of a) above). Let A be a generator of S,; A
is similar to a complex diagonal matrix D. Since the order of D e GL(n, C) is p®,
D contains a &, in the diagonal. Therefore the irreducible polynomial f(x) of &,
over Q divides xp(x) = xa(x) € Q[x]. Because n <2¢, f has degree ¢. It follows
that D contains ¢ primitive p*-th roots of unity in the diagonal; and since n <2¢
the other elements in the diagonal are 1.
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Let m be the canonical complex representation of GL(n, R), and c,(n)e
H?**(GL(n, R),Z) the ¢th Chern class of n. Then n|s =@/, n,, where the y;
are one-dimensional representations of S,. The above consideration about A and
D shows that ¢ out of these, say 7y, ..., n,, are just multiplication with some &,
and 1,.1,..., M, are trivial. ¢;(n;) has therefore order p* for 1=i=¢; and in
view of the structure of the cohomology ring H*(C,.,Z), the Chern class
¢,(n|s)=II¢f-1 ci(n;) has also order p®. This means that Resg"™*(c,(n)) is a
maximal generator in H**(S,, Z).

We now recall that one has a commutative diagram

H?*(GL(n, R), Z) —> H**(S,, Z)

g™l =

H?*(GL(n, R), Z) —> H**(S,, Z)

where g* is the canonical map from cohomology to Farrell-Tate cohomology [2,
Lemma 6.3]. The theorem of Brown-Venkov quoted in the introduction then tells
us that GL(n, R) is p-periodic and that the p-period divides 2¢ (the element
g*(c,(n)) is a maximal p-generator of GL(n, R)).

¢) The above argument shows that if there exists A € GL(n, R) of order p,
then ¢ =n. Hence, if ¢ >n, GL(n, R) has no p-torsion; which implies that all
Farrell-Tate cohomology groups have no p-torsion [2, Theorem 2.3].

We now formulate and prove the lemma.

LEMMA 2.2. Let R be any ring of complex numbers containing Z and p a
prime such that (n/2) <@o(p)=<n. Then there is no injective homomorphism C, X
C, — GL(n, R).

Proof. Let p:C, X C,— GL(n, R) be an injective homomorphism; we may
regard p as a faithful complex representation of C, X C,. Therefore there is a
faithful representation 6:C, X C, — GL(n, C) such that 6 is equivalent to w and
6(a) is a diagonal matrix for all ae C, X C,. If a# 1€ C, X C,, then 6(a) contains
some ¢, in the diagonal. Since the characteristic polynomial xg, lies in Q[x], the
irreducible polynomial of &, over Q must divide xp,) Taking into account
n/2<e¢o(p) = ¢ one concludes:

(*) 6(a) contains ¢ primitive p-th roots of unity, and the other diagonal
elements are 1.
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Let M(a) be the set of those indices i, 1 <i=n, for which the diagonal element
0(a); is equal to 1. For each a#1, M(a) consists of n—¢ elements. If
M(a) # M(b) for certain a, b e C, X C, —{1}, one easily deduces a contradiction to
property (*). If M(a)= M(b) for all a, be C, x C,—{1}, then-because of property
(*)-6 induces an injective homomorphism 6: C, X C, = GL(¢, C) such that 6(a)
is a diagonal matix, which contains for a# 1 only primitive p-th roots of unity in
the diagonal. Let U, (1<i=¢) be the subgroup of those diagonal matrices in
GL (¢, C), which contain a p-th root of unity at the place (i, i) and the other
diagonal elements are 1. The group generated by U,,...,U,, written
(U,, ..., U,), has order p*~'. But 8(C, % C,)N(U,, ..., U,)={E}, which yields a
contradiction.

Remark 2.3. From the proof it is clear that statements b) and c) of Theorem
2.1 remain true without the assumption “R is integrally closed”. It is possible
then, however, that the Farrell-Tate cohomology is 0, for all i and A, also in case
b). (Take for example R =Z[V5]; then ¢,(5)=2 and GL(2, R) has no element of
order 5.)

For n=1, Theorem 2.1.(b) and (c) and Remark 2.3 imply that the group of
units of R, written U(R), if it is virtually of finite dimension, is periodic with
period 2. If R is the ring of algebraic integers in a number field, then this
statement follows also directly from the well-known structure of U(R) (Dirichlet’s
Unit Theorem).

2.2. We now look closer at the case where ¢o(p)=p—1: we then can
calculate the precise value of the p-period of GL(n, R) (provided this group is
p-periodic).

THEOREM 2.4. Let R be any ring of complex numbers containing Z, Q the
quotient field of R, p a prime such that ¢o(p)=p—1, and assume that GL(n, R) is
virtually of finite dimension.

(a) If p=(n/2)+1, then GL(n, R) is not p-periodic.

(b) If (n/2)+1<p=n+1, then GL(n, R) is p-periodic with p-period 2(p—1).

(c) If p>n+1, then H(GL(n, R), A, p)=0 for all ieZ and all A.

Proof. (a) If p—1=(n/2), the proof of Theorem 2.1.a) shows that there is a
subgroup U=C, X C, in GL(n,Z). Hence, GL(n, R) is not p-periodic.

(b) According to Theorem 2.1.b) and Remark 2.3, GL(n, R) is p-periodic, the
p-period m, dividing 2(p—1).

To get the precise value of m,, it suffices to find a subgroup U of GL(n,Z)
whose p-period is 2(p—1). If (n/2)+1<p<n+1, we take for U the image of S,
(the symmetric group of n letters) under the standard faithful permutation
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representation S, — GL(n,Z). An easy calculation using [7, Theorem 3] shows
that the p-period of S, is 2(p—1). If p=n+1, we let U be the group generated
by the following matrices A and B in GL(p—1,Z): A is the companion matrix of
the p-th cyclotomic polynomial; B is defined as follows: Let (Z/pZ)* be the cyclic
multiplicative group of non-zero residue classes modulo p; and let g€ Z be such
that the residue class of g, written [g], is a generator of (Z/pZ)*. Take for B the
matrix which is 1 at the places ([i], [q] - [i]) and O otherwise. A has order p and B
order p—1in GL(p—1,Z),and A - B=B - A% Infact, (A, B) is isomorphic to the
group {a,b|a’=1, b*"'=1, a-b=>b- a?). The p-period of the latter group is
2(p—1) (for details see [2, Theorem 5.6.(c)]).
(c) The assertion follows immediately from Theorem 2.1.(c) and Remark 2.3.

3. The number field case

3.1. We assume in this section that R is contained in a number field (i.e., a
finite dimensional field extension of Q). Then the quotient field of R is a number
field which we denote by K.

We recall the definition of the discriminant of K, written A(K): Let x,, ..., x,,
be a base of K over Q; as usual, A(x,,...,x,)=det{T(xyx;)} (one takes the
determinant of that matrix, whose (i, j)-entry is the trace of x;x;). The ring of
algebraic integers in K, written O(K), is a free Z-module; let w,,..., w,, be a
base. Then A(K)=A(w,,..., w,,), and this integer is independent of the choice
of the base wy, ..., w,. We further recall that p - O(K) has a ramified prime ideal
factor if and only if p|A(K).

LEMMA 3.1. Let p be any prime. If p - O(K) has an unramified factor, then
ex(p)=p—1.

Proof. There is a prime ideal P in O(K), such that P|p-O(K) but
P? [ p- O(K). Let @,(x) € Z[x] be the p-th cyclotomic polynomial. It follows that
&, (x+1)=YF_; )x*"! is an Eisenstein polynomial over O(K),, hence irreducible
over K. Therefore @, is irreducible over K, which means ¢x(p)=p—1.

3.2. It is convenient to introduce the following definition:

DEFINITION 3.2. We denote by 8(K) the product of those primes p, for
which p - O(K) has only ramified factors (i.e., p - O(K)=[[;-, P, P, different
prime ideals in O(K), o; >1 for 1=i=<3s).

Remark 3.3. 8§(K)| A(K).
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If K is Galois over Q, then 8(K) and A(K) contain the same prime factors.

Otherwise it is possible that 8(K) contains less different primes than A(K) (see
example 5.3).

Theorem 2.4 and Lemma 3.1 imply:

THEOREM 3.4. Let R be a ring containing Z and contained in a number field
and K the quotient field of R. Let p be a prime not dividing 8(K) and assume that
GL(n, R) is virtually of finite dimension.

(a) If p=(n/2)+1, then GL(n, R) is not p-periodic.

(b) If (n/2)+1<p=n+1, then GL(n, R) is p-periodic with p-period 2(p —1).

(c) If p>n+1, then H(GL(n, R), A, p)=0 for all ieZ and all A.

3.3. According to Serre [6] the group GL(n, R) is virtually of finite dimension
for the following type of rings R: Let 3 be the set of equivalence classes [v] of
valuations v on a number field K, and 3~ the subset of 3 consisting of all the
classes of archimedian valuations; 3% is finite. Let S be a finite subset of 3
containing 3. The valuation ring of a nonarchimedian valuation v is denoted by
O(v), and Og(K)= [[yjes-s O(v). This ring Os(K) is a Dedekind ring with
quotient field K. Serre proved [6, Theorem 4] that GL(n, O4(K)) is virtually of
finite dimension.

Therefore Theorem 3.4 can be applied to investigate p-periodicity of
GL(n, O4(K)). If S= 37, then O4(K) = O(K); taking Remark 3.3 into account we
get Theorem 1.1.

4. p-periodicity of SL(n, R)
4.1. In all of Section 4, we assume that R consists of real numbers.

THEOREM 4.1. Let R be integrally closed, p a prime, n=3 and assume that
SL(n, R) is virtually of finite dimension.

(a) If oo(p)=(n/2), then SL(n, R) is not p-periodic.

(b) If (n/2)<@qo(p)=n, then SL(n, R) is p-periodic with p-period m,; where
m, ‘ 2¢0(p) for (n/2)<(PQ(P)<'1, m, ' @a(p) for eo(p)=n.

(¢) If eo(p)>n, then H'(SL(n, R), A, p)=0 for all ieZ and all A.

Proof. We write ¢ for ¢n(p).
(a) We look at the proof of Theorem 2.1.(a): f has now real coefficients.

Therefore, if p>2, the product of all the roots of f(x) is 1; hence D is in
SL(¢, C). Therefore U < SL(n, R), which implies that SL(n, R) is not p-periodic.



506 BALZ BURGISSER

The case p=12: it is easy to see that SL(3,Z) contains a subgroup isomorphic
to C,x C;; since n=3, SL(n, R) is not 2-periodic.

(b) Like in the proof of Theorem 2.1.(b), it follows from Lemma 2.2 that any
p-Sylow subgroup S, of SL(n, R) is cyclic; say of order p*, where a =1, because
R is integrally closed. '

Let n be the canonical complex representation of SL(n, R). Like in the proof
of Theorem 2.1 we get: g*(c,(n)) is a maximal p-generator of SL(n, R). There-
fore SL(n, R) is p-periodic, the p-period dividing 2¢. If ¢ =n, we look at the
Euler class of the canonical real representation ng of SL(n, R), written &(ng).
Since

cn(n I sp) = (= Hrn-hz. £*(ng l s,,)

and since c,(n | s,) has order p®, the Euler class e(ng | s,) has also order p“*.
Therefore g*(e(ng)) € H"(SL(n, R),Z) is a maximal p-generator, hence the p-
period of SL(n, R) divides n = ¢.

(c¢) If ¢ > n, then there exists no element of order p in SL(n, R), which implies
statement c).

The assumption “R integrally closed’ is not necessary for statements (b) and
(c) of Theorem 4.1 (cf. Remark 2.3).

The method used above can also be applied to SL(2, R); this group turns out
to be periodic.

4.2. We again look closer at the case where ¢,(p)=p—1; we then can give
the precise value of the p-period of SL(n, R) (provided this group is p-periodic).

THEOREM 4.2. Let R be any ring of real numbers containing Z, Q the
quotient field of R, p a prime such that ¢o(p)=p—1, n=3 and assume that
SL(n, R) is virtually of finite dimension.

(a) If p=(n/2)+1, then SL(n, R) is not p-periodic.

(b) If (n/2)+1<p=n+1, then SL(n, R) is p-periodic with p-period m,; where
m,=2(p—1) for (n/2)+1<p<n+1, m,=p—1 forp=n+1.

(c) If p>n+1, then H (SL(n, R), A, p)=0 for all ieZ and all A.

Proof. We apply Theorem 4.1. The proof is completely analogous to the proof
of Theorem 2.4.

4.3. We now assume that R is contained in a number field. Lemma 3.1 and
Theorem 4.2 imply:
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THEOREM 4.3. Let R be a ring containing Z and contained in a real number
field and K the quotient field of R. Let p be a prime not dividing 8(K),n =3 and
assume that SL(n, R) is virtually of finite dimension.

(a) If p=(n/2)+1, then SL(n, R) is not p-periodic.

(b) If (n/2)+1<p=n+1, then SL(n, R) is p-periodic with p-period m,; where
m,=2(p—1) for (n/2)+1<p<n+1, m,=p—1 forp=n+1.

(c) If p>n+1, then H(SL(n, R), A, p)=0 for all ieZ and all A.

In particular, R can be taken to be Og4(K) in this theorem; and we thus get the
S-arithmetic version of Theorem 1.2 (cf. Section 3.3).

5. Examples

5.1. K=Q(0), where 0 is any root of x"—q (reN, gqeZ). Let m be the
dimension of K over Q. Then A(K) divides A(1,6,...,0™ ') [5, Lemma 7.2]. It

is well-known that A(1,6,...,0™ ") = i[]f":l f/(8,), where f is the irreducible

polynomial of 6 over Q, and 6,,...,6, are all the roots of f(x). Clearly
f(x)eZ[x]. Let be x"—q=f(x)-g(x), where g(x)eZ[x]. Let 6,,...,80,,
0, 41,-..,0, be all the roots of x"—q. We have

r

) Tlr-e7'=T1re6)-T1g@)- T r-6"

i=m+1

An easy calculation shows that
[Ir-o'=xr-q".
i=1

Formula (*) shows that [[™, g(6,) - [[i—m+: 7 - ;' is rational, hence an integer
(being an algebraic integer). Therefore [[2; f'(6,) | r" - q" ', hence A(K)|r - q" ",
Since Z[0] < O(K), the group GL(n, Z[0]) is virtually of finite dimension; and we
conclude from Theorem 3.4:

THEOREM 5.1. Let 6 be any root of x"—q (reN, qeZ) and p a prime not
dividing r - q.
(a) If p=(n/2)+1, then GL(n,Z[0)) is not p-periodic.
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(b) If (n/2)+1<p=n+1, then GL(n, Z[0)) is p-periodic with p-period 2(p — 1).
(c) If p>n+1, then H(GL(n,Z[6]), A, p)=0 for all icZ and all A.

From Theorem 4.3 we obtain an analogous theorem for SL(n, Z['Vq]), q€N.

Remark (without proof): If we assume that x"—q is irreducible and r odd,
then statements a)-c) of Theorem 5.1 are true for every prime p.

5.2. K=Q(60), where 0 is a root of x>+ ax+b (a, b€Z). With the technique
mentioned above one easily shows that A(K)|27b*+4a>. From Theorem 4.3 we
get

THEOREM 5.2. Let 0 be a real root of x>+ax+b (a,beZ), p a prime not
dividing 27b*+4a> and n=3.

(a) If p=(n/2)+ 1, then SL(n,Z[6}) is not p-periodic.

(b) If (n/2)+1<p=n+1, then SL(n,Z[6]) is p-periodic with p-period m,;
where m,=2(p—1) for (n/2)+1<p<n+1, m,=p—1 forp=n+1.

(c) If p>n+1, then H'(SL(n, Z[6]), A, p)=0 for all ieZ and all A.

We add the followingremark: For any (real) field extension K = Q(68) of dimension
<3 there is at most one prime p such that ¢x(p)<p—1. Taking into account
Theorem 4.2 we conclude, that there is at most one prime p, for which statements
a)—c) of Theorem 5.2 are not true.

5.3. K=Q(0), where 0 is any root of x>—x—1. It is known, that A(K)=
19 - 151, and that 19- O(K)=P?- P, and 151 O(K)= P3- P, - Ps, where all the
P, are prime ideals in O(K). Therefore §(K)= 1. Hence Theorem 3.4 answers, for
every prime p, the question whether GL(n,Z[6]) is p-periodic or not.

Remark to 5.1-5.3. Instead of R=7Z[0], we could as well take the ring
R=7Z[6,(1/m)] for any meN (cf. Theorem 3.4 and the remarks following that
theorem).
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