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Comment. Math. Helvetici 55 (198() 485-498 Birkhauser Verlag, Basel

Quasiconformal circles and Lipschitz classes

RammMo NAkk1' and BRuce PaLkA?

1. Introduction

A Jordan curve J in the extended complex plane C is termed a quasiconformal
circle if there exists a quasiconformal mapping of C onto itself which carries J
onto the unit circle in C. A purely geometric characterization of the class of
quasiconformal circles was provided by Ahlfors in [1]. In order to formulate his
result in the manner most convenient for our purposes we associate to an
arbitrary Jordan curve J in C a number k(J) in the interval [0,1] as follows:

‘Zl - zsl ‘Zz‘ z,]

k(J)=inf 3
|2, — 2, |Z3“Z4|+|21_ z,| lzz_z3|

(1)

where the infimum is extended over the set of ordered quadruples z,, z,, z3, z, of
finite points on J with the property that z, and z, separate z, and z, on J. Ahlfors
proved that J is a quasiconformal circle if and only if k(J)>0. Conforming to the
usage in [2], [3] and [5], we refer to a Jordan curve J as a k-circle if k(J)=k > 0.
The invariance of cross-ratios under Mobius transformations implies that the
image of a k-circle under a Mobius transformation is again a k-circle. It is not
difficult to verify that a 1-circle is either a euclidean circle or a straight line. An
arbitrary k-circle, on the other hand, can be quite an exotic curve. For example, a
k-circle in the finite plane C may fail to be rectifiable or even to contain a
rectifiable subarc, although it must be of 2-dimensional Lebesgue measure zero.

For k in (0, 1] the canonical example of a k-circle is supplied by the Jordan curve
J,

J={zeC:z=0,z=o, or |Argz|=arcsink}.

Indeed, an elementary calculation reveals that k(J) =k for this curve.

' This research was done while the author was visiting at The University of Texas in 1978-79.
* The author received support under NSF contract MCS76-06563.
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A complex-valued function f on a set A in C is said to belong to the class
Lip,(A), where 0 <a =1, if there is a number M such that

f(z) = f(w)|= M|z —wl

for all z and w in A. Suppose that D is a bounded Jordan domain in C and that f
is a K-quasiconformal mapping of D onto the open unit disk B in C. It has long
been known that f belongs to Lip,(A) for each compact subset A of D, with
a = 1/K. In general, however, f need not belong to Lip, (D) for any a. If, on the
other hand, dD is a quasiconformal circle, it is possible to extend f to a
quasiconformal mapping of C onto itself and this fact implies that f belongs to
Lip, (D) for some a in (0, 1/K]. How large can one expect this a to be? In this
paper we determine the largest Holder exponent « valid for all D in the class of
domains bounded by k-circles. We also consider the analogue of this problem for
K-quasiconformal mappings of B onto domains belonging to this class. We prove
the following theorems.

THEOREM 1. Let D be a bounded domain in C such.that oD is a k-circle and
let f be a K-quasiconformal mapping of D onto B. Then f belongs to Lip, (D) for

3 ™
2K(7r-arcsin k)

(41

(2)

This Holder exponent is the best possible.

THEOREM 2. Let D be a bounded domain in C such that oD is a k-circle and
let f be a K-quasiconformal mapping of B onto D. Then f belongs to Lipg(B) for

2 arcsin® k
B= (3)

~ wK(w-arcsin k)’

We are uncertain whether the Holder exponent 8 in Theorem 2 is the best
possible or whether it is subject to improvement. Theorem 1 has an interesting
corollary which is worth stating as a separate theorem. This result was obtained
independently by Lesley [7] using different methods.

THEOREM 3. Let D be a bounded domain in C such that dD is a quasi-
conformal circle and let f map D conformally onto B. Then f belongs to Lip, (D) for
some a greater than 1/2.
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The proofs of Theorems 1 and 2 are presented in Sections 2 and 3, respec-
tively, of this paper.

The genesis of the present paper is to be found in work of Warschawski [11,
12] concerning conformal mappings and boundary Holder continuity. (See also
[4], [7] and [13].) He established results reminiscent of Theorems 1 and 2 in the
conformal case for a class of domains included in, but less general than, the class
of domains which are bounded by quasiconformal circles. For example,
Warschawski considered, exclusively, domains with rectifiable boundaries. The
techniques he utilized are quite different from those which we employ.

A number of authors have studied k-circles and the properties of conformal
and quasiconformal mappings of domains bounded by such curves. In addition to
the seminal paper of Ahlfors referred to earlier, we would like to cite, in
particular, the work of Blevins [2, 3] and of Rickman [9]. We wish also to
acknowledge the help afforded us by conversations with D. Blevins and with F.
W. Gehring.

2. Proof of Theorem 1

In matters regarding notation and terminology we will conform to the usage in
the book of Lehto and Virtanen [6], unless some explicit stipulation to the
contrary is made. We denote by B the open unit disk in C and by S(r) the circle in
C of radius r>0 centered at the origin. The diameter of a set A in C will be
denoted diam A.

The following simple observation permits us to deal exclusively with the
conformal case in carrying out the proofs of Theorems 1 and 2.

LEMMA 1. Let D be a bounded simply connected domain in C. If some
conformal mapping of D onto B belongs to Lip, (D), then each K-quasiconformal
mapping of D onto B belongs to Lip,,x(D); if some conformal mapping of B onto D
belongs to Lipg(B), then each K-quasiconformal mapping of B onto D belongs to
Lipgk (B).

Proof. We provide the details of the proof for the first assertion. The latter
assertion can be treated in a similar manner. Suppose that f is a conformal
mapping of D onto B which belongs to Lip,(D) and let g be an arbitrary
K-quasiconformal mapping of D onto B. Then h=g o f~' is a K-quasiconformal
self-mapping of B and, as such, h belongs to Lip;x(B). (See [6,8].) Conse-
quently, g=h o f belongs to Lip,, k(D).
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We record for use in the proof of Theorem 1 the following geometric property
of k-circles. Its elementary verification is included for the sake of completeness.

LEMMA 2. Let J be a k-circle in C. For any pair of points z and w on J the
arcs A and A’ into which J is divided by z and w satisfy

2
min {diam A, diam A’}_<_—k— |z —wl. (4)

Proof. Fix a pair of points z and w on J and set r = |z — w|. Suppose that the
corresponding arcs A and A’ contain points y and y’, respectively, such that
|lz—y|=|z—y'|=s>0. From (1) we infer

- lz—-wlly—y] rly—y'l r

<

Tlz=yllw=yl+z=ylly-w] slw—y|+sly-w|" s’

whence s <r/k. This implies that either A or A’ is contained in the closed disk of
radius r/k centered at z and (4) follows.

Proof of Theorem 1. Let f be a conformal mapping of D onto B. We verify
that f belongs to Lip, (D), with

v

(5)

B 2(mr-arcsin k)

Theorem 1 then follows from Lemma 1. The mapping f admits an extension to a
homeomorphism of D onto B. We retain the notation f for the extended
mapping.

Write d =dist (f~'(0), aD). Consider a pair of points z and w on dD, dividing
oD into two arcs, of which A will denote the one of minimal diameter. We
estimate the harmonic measures o= w(f '(0), A, D) and o' =w(0, f(A), B).
First, using a result of Blevins [2], we obtain

4 [(diam A)“] 4 (diam A>°‘
w =— arctan =— ;
T d T d

with a given by (5). In view of (4), we infer that

w<4 (a%;)a |z —w|*. (6)

v
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On the other hand, it is apparent that

w'zl—jt—(—z)—z_’lri(—ﬂ. (7)

Since f is conformal in D, w = »'. Combining this fact with (6) and (7), we arrive
at the conclusion that

f(z) = fw)|=M [z —w|" (8)

for all z and w on dD, where M = 8(2/dk)*. Theorem 10.1 in [10] allows us to

conclude that (8) is valid for all z and w in D. Therefore f belongs to Lip, (D), as
asserted.

The following example demonstrates that the Holder exponent in Theorem 1
is the best possible.

EXAMPLE 1. Let ke (0, 1], let Ke[1,») and let a be given by (2). There
exist a bounded domain D in € such that 0D is a k-circle and a K-quasiconformal

mapping of D onto B which does not belong to Lip, (D) for any «' greater than
a.

Proof. Consider the domains
G ={z€C: |Arg z| < mr-arcsin k}
and

G, = {zeC: |Arg z|<g}.

The Mobius transformation ¢ which satisfies ¢(1)=0, ¢(0)=1 and ¢(—1)=
maps G, onto B. Moreover, D = ¢(G) is a bounded domain in C and, since G is
a k-circle, oD 1is a k-circle as well. There exists a constant C such that

C'|z|=]o(2)-1|=C|z] ©)

for all z in some neighborhood of the origin. Let g and h designate the
homeomorphisms defined on G, and G, respectively, by

g(Z) =z lzl(l/K)—l’ h(Z) — Z1T/2(7T-arcsin k)
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for z# 0, o, while g(0)=h(0)=0 and g()=h()=0. The mapping f defined on
D by

f(z)=¢ogeoheod(z)

is a homeomorphism which maps D K-quasiconformally onto B. Obviously
f(1)=1. It is a consequence of (9) that, for z in D sufficiently close to 1,

C?lz—1]"=|fz)-1|=C*|z -1~

This implies that f cannot belong to Lip,. (D) when a’ exceeds «a.

3. Proof of Theorem 2

The proof of Theorem 2 is a good deal more complicated than that of
Theorem 1 and will require several preparatory results. In these results G will
denote a domain whose boundary is a k-circle passing through 0 and «. We use
the terminology cross-cut of G to indicate an open arc in G with two endpoints in
dG. For r>0 each component of GNS(r) is a cross-cut of G. Furthermore, it
follows from elementary plane topology that GN S(r) has a component whose
endpoints separate 0 and « on 4G.

Our first result will be needed to establish a subsequent modulus estimate.

LEMMA 3. Let y be a rectifiable cross-cut of G whose endpoints separate 0
and © on dG. Then

d
j —522arcsin k. (10)
v 12l

Proof. Replacing, if necessary, G by ¢(G) and y by ¢(y), where ¢ is a
mapping either of the form ¢(z)= az or of the form ¢(z)= az, we are free to
assume that y has endpoints z; =1 and z, = re®’, where r=1 and where 0= 6 =< .
Choose a cross-cut y* of the domain G* complementary to G so that y* has
endpoints 0 and «. Let L designate the branch of the logarithm in the domain
C\¥* which satisfies L(1)=0. Parametrizing the arc y by arc length with initial
point z,, we find that

J, {—SZ J' _d—ZE =|L(z,) — L(z,)| = (log® r+[Im L(z,) )"
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If |[Im L(z,)|=2 arcsin k, (10) is clearly valid. This is certainly the case for k=1,
when G is simply an open half-plane in C. In what follows, therefore, we assume
that 0 <k <1 and that |Im L(z,)| <2 arcsin k. Since the complex number z, has a
unique argument in the interval (—, 7], we conclude that Im L(z,)= 6. Conse-
quently, 0= 6 <2 arcsin k and

ds

J —=(log” r+ 6%)'". (11)
v Izl

It follows from (1) that

|z - w|
2]+ |w|

=k, (12)

whenever the points z and w separate 0 and © on dG. This fact, applied to the
endpoints of v, yields

lre' —1|=k(1+7r).

To complete the proof of Lemma 3 it is sufficient to verify that for k in (0,1) the
function @,

d(r, 0)=log’ r+ 62,
satisfies
®(r, ) =4 arcsin® k, (13)

when (r 6) is constrained to lie in the set E described by the conditions:
r=1, 0=6=<22arcsink, |re®—1|=k(1+r).

Elementary considerations reveal that the minimum of @ on E is attained at some
point of the arc A,

1+k
A——{(r, 0) 13?‘5‘]—-—-?, 0—0(")}
Here

6(r) = arccos [% 1- kz)(r-l——i—\)— kz].
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The minimum of @ on A can be computed, albeit with some effort, using
standard calculus techniques. We spare the reader the details: the minimum of @
on A is 4 arcsin® k and is attained when r=1 and 6 =2 arcsin k. Consequently,
(13) holds and (10) follows from (11) and (13).

We remind the reader that the modulus M(I') of a family I' of arcs in C is
defined by

M(I') = inf J p*dm,

C

where m is 2-dimensional Lebesgue measure and where the infimum is taken over
the collection F(I') of Borel functions p: C— [0, ] such that

J pds=1
Y

for each rectifiable arc y in I'. If f is a conformal mapping, then
MIf(I"]= M) (14)

for each family I' of arcs in the domain of f.

In the next lemma the notation A(a, b) designates the annulus {z € C: a <|z|<
b}, where 0<a<b <,

LEMMA 4. Let I be a family of cross-cuts of G which lie in A(a, b) and which
have endpoints separating 0 and * on 0G. Then

Tr-arcsin k b
MM = ———log—.
) 2arcsin’ k Pa (15)
Proof. Define a Borel function p on C by

1
2|z| arcsin k

p(z)=
for z in GN A(a, b) and p(z) =0 otherwise. Lemma 3 implies that

J' pds=1
Y
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for each rectifiable y in I. We conclude that p belongs to F(I'). Hence

M(F)SJ p’ dmz——}——jb(J d(~))£l-f (16)
- 4 arcsin® kJ, \Jg r’
where E, ={0¢[0,2m]: re*’ € G}.

Let G* denote the domain complementary to G. For each r>0, G*N S(r) has
a component y* whose endpoints separate 0 and % on dG* = 9G. The application
of Lemma 3 to y* shows that the length of y* is at least 2r arcsin k. We can thus
assert that

j d6 <27 —2 arcsin k
E,

for each r>0. In conjunction with (16) this implies (15).

REMARK. Lemmas 3 and 4 make only weak use of the hypothesis that dG
is a k-circle. Indeed, it is condition (12) which is crucial for their proofs, to wit, that

IZ_ id =k,
|z|+|w]

whenever z and w separate 0 and © on dG. This condition does not even imply
that 9G is a quasiconformal circle, much less a k-circle. Examples suggest that, in
fact, the conclusion of Lemma 4 might be strengthened to

b

MIN<=s —— log—
(= 2 arcsin k lOga’ (17)

if full use were to be made of the assumption that dG is a k-circle. When
G ={zeC: |Arg z|<arcsin k} and when T is the family of cross-cuts of G in
A(a, b) which join the components of dG N A(a, b), the modulus estimate (17)
holds with equality. It can be argued on purely heuristic grounds that this
configuration is extremal in estimating M(I'). At this juncture, however, we are
unable to fashion a rigorous proof for such an assertion.

The next result contains the heart of the proof of Theorem 2. In it, H denotes
the open upper half-plane in C.

LEMMA 5. There exists a constant ¢ =1 depending only on k such that, if g is



494 R. NAKKI AND B. PALKA

a homeomorphism of H onto G which is conformal in H and which is normalized by
g(0) =0 and g(x)=oc, then

g(2)[=c |g(D)]|z[° (18)
for all z in BN H, where

2 arcsin® k
_ _ 19
B ar(7r-arcsin k) (19)

Proof. Theorem 1 in [1] implies that the k-circle dG admits a K™-quasi-
conformal reflection, where K* depends only on k. It then follows that g has a
K*-quasiconformal extension g* to C. For r>0 set

L(r)=max|g*(z)|

lzl=r

and

I(r) = min |g*(z)|.

lz|=r
Because g*(x) =, we are assured that

L(r)=bl(r) (20)
for all r>0, with bzgxp(fn'K*). (See [6, p. 111].)

Now fix z in BN H, z#0, and set r=|z|. Consider the family I" of cross-cuts

of H which lie in A(r, 1) and which join the components of 9HN A(r, 1). A simple
calculation gives

1 1
M(I)=—log~. (21)

It is apparent that
glHNA(r, 1)]= A(l L),

where [=1(r) and L=L(1). The family g(I') consists of cross-cuts of G in
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G N A(l, L) whose endpoints separate 0 and « on dG. We apply Lemma 4 to g(I')
and conclude that

mr-arcsin k L 1 L

— log T (22)

Mig(lN]=————log—=
Le( )]<2arcsin2k %87 3

with B8 given by (19). Since g is conformal in H, we can invoke (14), together with
(21) and (22), and infer that

lo 1<lo £

In combination with (20) this implies
|g(z)|=L(r)=bl=bLr®* =b?I(1)r® =b?|g(1)||2]?,

establishing (18) for z in BN H with ¢ = exp (2wK¥). By continuity, (18) is valid
throughout BN H.

Having completed all preparations, we turn to the proof of Theorem 2.

Proof of Theorem 2. Let f be a conformal mapping of B onto D. We show that
f belongs to Lipg(B), where B is given by (19). Theorem 2 then follows frorrl
Lemma 1. It will be assumed that f has been extended to a homeomorphism of B
onto D, which we continue to denote by f.

Write & =diam D. For points w and w’ in B satisfying |[w—w’|=1 we can
apply (8) to f~! and observe that

1<|w—w|<M |f(w) - f(w)]",

where « is given by (5) and where M is a constant which depends only on k and
d = dist (f(0), aD). It follows, for such w and w’, that

M=) <|f(w)— f(w')| < 8. (23)

We next fix a point z of dB and introduce auxiliary MObius transformations ¢,
and ¢,,

w—2z _ w—f(z)
wt+z’ d)z(w)”w—f(—z)'

b (w)=—i (24)
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Then ¢, maps B onto the open upper half-plane H with

bi(2)=0, P(-2)=», ¢ (iz)=1. (25)

Furthermore, ¢, maps the closed semi-circle A ={zw: we€dB, Rew=0} onto
BNoH and satisfies

1 , ,

> lw—w'|=|d,(w)— ¢, (W)|=2|w—w| (26)
for all w and w' in A. A straightforward calculation using (23) reveals that

1 ! ! 2/a) '

glw“wlsld’z(w)“d)z(w )‘SSM “ IW_W‘, (27)

whenever w and w’ belong to f(A). The domain G = ¢,(D) is bounded by a
k-circle which passes through 0 and <. In view of (24) and (25), Lemma 5 can be
applied to the mapping g defined on H by

gw)=¢,ofeo o7 (w).
With the aid of (18), (25), (26) and (27) we obtain

£(2)~ FW)| =8 | o f(w)| =5 |g © by(w)
<8 |g(1)] |1 (W)]P <28’ M@ |z — wl?

for all win A, where ¢ =1 depends only on k and where 8 is given by (19). For w
in 9B\ A we have |z—w|>1 and, as a consequence,

f(2)~ f(w)|=8=8|z— w|® <2c6° M |z — wl°.
We have succeeded, therefore, in demonstrating that

If(z)~f(wll=M, |z—wl|® (28)

for all points z and w in 8B, with M, =2¢8°M®*. Invoking Theorem 10.1 in
[10], we can assert that (28) holds for all z and w in B. This establishes that f
belongs to Lip, (B), as maintained. The proof of Theorem 2 is complete.
Examples indicate that the Holder exponent in Theorem 2 might be subject to
improvement. Indeed, should the modulus estimate (17) be established, an
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improvement in Theorem 2 would result, without change in the proof: the
exponent (3 could be replaced by the larger exponent 3,

_ 2 arcsin k

Bo= K (29)

The next example shows that no further improvement of the exponent in
Theorem 2 would then be possible.

EXAMPLE 2. Let ke(0, 1), let Ke[1, ) and let B, be given by (29). There
exist a bounded domain D in C such that dD is a k-circle and a K-quasiconformal
mapping of B onto D which does not belong to Lipg (B) for any B’ greater than
Bo-

Proof. The present example is a simple variation on the theme of Example 1.

Rather than the domain G used there, we consider its complementary domain
G*,

G*={zeC: |Arg z|<arcsin k},

along with the domain G,,

G, = {z eC: |Arg z[<—;—7}.

Again we let ¢ be the MoObius transformation which satisfies ¢(1)=0, ¢(0)=1
and ¢(—1)=c. The domain D = ¢(G¥) is contained in B and is bounded by a
k -circle. Homeomorphisms g and h are defined on G, by

g(z)__,z‘zt(l/K)—l, h(z):z(2arcsin k)/ T

for z# 0, o, while g(0)=h(0)=0 and g(~)= h()=. The mapping f defined on
B by
f(z)=¢dogehed '(2)

is a homeomorphism which maps B K-quasiconformally onto D and which
satisfies f(1)=1. It follows from (9) without difficulty that

C 21 =|f(z)-1|= C* |z 1]

for z in B sufficiently close to 1. From this we infer that f does not belong to
Lipg (B), if B’ is larger than B,.
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