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Comment Math Helvetici 55 (1980) 445-484 Birkhauser Verlag, Basel

Tangential homotopy équivalences

Ib Madsen, Laurence R Taylor*), and Bruce Williams*)

§1. Introduction

Two (topological) manifolds Mn and N" are called tangentially homotopy
équivalent if there exists a homotopy équivalence / (N, dN) —» (M, dM) such that
/*(tm) is stably équivalent to rN Let 6(m) dénote the set of homeomorphisms
types of manifolds which are tangentially homotopy équivalent to M In this paper
we study 6(M) In particular we give estimâtes of îts size for suitable classes of
manifolds

Given any set S we use |S| to dénote îts cardinahty

DEFINITION A manifold M is said to satisfy our basic estimate if

£ \H2 2(M,Z/2)|

where M M-(open dise) if M is closed and M M otherwise

Our first results give examples of classes of manifolds which satisfy our basic

estimate First we hâve

THEOREM A Let Mn be a closed manifold with n >5 and ttxM 0 Then, if
the group of stable isomorphism classes of vector bundles K°(M) is torsion free, M
satisfies our basic estimate

Examples of manifolds to which Theorem A apphes include simply-connected
Lie groups ([Ho]), homogeneous spaces G/H where H^G is a connected

subgroup of maximal rank ([P]), and closed manifolds Mn such that H*(M, Z) is

torsion free, 7TtM=0
We call a manifold, Mn, metastable if c max{i|7rl(M) 0}, the connectivity

of Mn, satisfies c>(rc + l)/3 Then we hâve

*)Partially supported by NSF Grant MCS 76 07158
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446 L MADSEN, L R TAYLOR AND B WILLIAMS

THEOREM B. Let M" be a closed metastable manifold with n>5. Then Mn
saîisfies our basic estimate.

It is not hard to see that if M is metastable than there is at most one i > 1 such

that H2'~2(M; Z/2) is non-trivial. In fact, for certain n there is no such i, and we
hâve

COROLLARY. If Mn is a closed, metastable manifold with n 3-2l-e for
e 3,4,5,6,7, i>2 then \0(M)\=l.

If ir1(Mn) 0and n 5, Barden [Ba] proves |0(M)| 1. If 7r,M 0, n 6, and

H2(M;Z) is torsion free, Jupp [J] proves |0(M)|=1. If M is 2-connected and
n 7, Wilkens [Wilk] has studied 0(M). Thus we shall often assume n>8.

For highly connected manifolds it is possible to refîne the estimate of 0(M).
We hâve

THEOREM C (i). Let M2n be closed and (n-i)-connected with n>3. Then

(ii). Let M2n+1 be closed and (n - \)-connected with n > 3. // n T - 2 assume
that Hn(M;Z) has no summands Z/2 or Z/4. Then |0(M)|= 1.

A hypersurface is a manifold Mn which admits a locally flat codimension 1

embedding in Sn+1. For hypersurfaces we make the

CONJECTURE D. If two metastable hypersurfaces of dimension at least 5

are homotopy équivalent than they are homeomorphic.

Given a hypersurface Mn, let X0(Mn)cze(Mn) be the subset realized by
hypersurfaces. Conjecture D is then équivalent to \X 0(Mn)\ 1 if Mn is metastable.

If MnczSn+l then Sn+1 N1UMN2 and H*{M) fPiNJQH*^). We

prove \S6(Mn)\ l if Mn is metastable and Hq(Nï;Z/2) 0 or Hq(N2; Z/2) 0

for the relevant q of the form 2l-2.
For spécifie manifolds the size of 0(M) dépends on results in "classical"

homotopy theory. Let et be the following function ([BaM]),

e, 2 if i=0(mod4)
3 if î 1 (mod 4)

4 if i^2,3(mod4)

THEOREM E. Let M be a connected sum of r copies of SpxSq,l<p<
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(i) If q — T — 2, 1 <p<q — 2i + ex — 1 and îhere exists an élément of Arf
invariant 1 in 7Tsq(S°), then |0(M)| 2.

(ii) Otherwise, |0(M)| 1.

By définition 0(M) is an invariant of the tangential homotopy type {M, tm}. In

gênerai, however, it is not an invariant of the homotopy type itself. Indeed, we
construct examples of homotopy équivalent manifolds Mx and M2 with |0(Mj)| —

|0(M2)| arbitrarily large. See (7.9) and (7.10).
The proofs of the above results are based on the theory of (simply-connected)

surgery. First we hâve 0(m)ç0(M) (equality if tm is stably fibre homotopically
trivial), (4.12).

Let Q be a manifold representing a class xeO(M). Then there is a normal

map

where / is a homotopy équivalence of pairs and / is a map of the topological
normal bundles which cover /. The normal invariant of (/, /),

N(/,/) g [M, G/TOP]

lies in the image of [M, G] —> [M, G/TOP], or equivalently in

Cok J(M) cokernel ([M, TOP] -» [M, G])

Let et(M) dénote the set of tangential self-homotopy équivalences of (M,dM).
There is an action

e,(M) x Cok J(M) -> Cok J(M)

given by a • x N(a) + (a*)~1(x); N(a) N(a, â), where â covers a.
If TTi(dM) 7Ti(M) and dim M> 5 then the theory of surgery gives a bijection

0(M) Cok J(M)/et (M).

This is proved in §2.

The space G (of stable self homotopy équivalences of the sphère) has finite
homotopy groups, so Cok J{M) is a finite group. In §3 we use deep results about
the map G —> G/TOP to reduce the size of Cok J(M) as much as possible.
Theorem A foliows from this work.
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Theorem B requires more work. It is not hard to find examples of metastable
manifolds for which Cok J(M) is quite large. Thus to prove Theorem B we must
construct sufficiently many tangential self-homotopy équivalences. We do this in
§4 where to each deirn(M) we associate a map fdeet(M). Taking normal
invariants we obtain a homomorphism irn (M) —» Cok J(M) and the quotient
group V(M) majorizes 0(M), |0(M)|<|V(M)|. Theorem B is then derived from
known results about the classical suspension 2°°: 7rn(M)—» tt^(M).

In §5 we use a formula of Barratt-Hanks and Thomeier's results about the
first unstable stems in homotopy groups of sphères to prove Theorem C.

Section 6 is a discussion of Conjecture D and in §7 we calculate some
examples, e.g. Theorem E.

The basic outline of the paper also works in the PL- and smooth catégories.
The PL and the topological cases are quite similar. But in the smooth case, G/O is

such a complicated space that explicit calculations are usually impossible. One

example though that the reader can work out from the enclosed theory is that
|0diff(M)|= 1 if M is metastable with H*(M; Z/2) 0. Also, see Theorem 5.10.

We would like to thank M. Barratt, M. Mahowald and R. J. Milgram for
several useful conversations.

§2. Tangential normal maps

Let Pn be a manifold with boundary dPn^ 0. A tangential normal map over P
is a pair (/,/).

/: (O, 50) -* (P, dP), /: vo -> vP (2.1)

where Q is a manifold of the same dimension as P, / is any map of pairs, and / is

a bundle map of stable normal bundles which covers /.
Let 5^f(P) dénote the set of tangential homotopy manifold structures of P: an

élément of 5^(P) is represented by a tangential normal map (/,/) with / a

homotopy équivalence of pairs. Two pairs f0: Qo^> P and fA:Q1-*P (with
bundle maps f0 and /J represent the same élément in 5^f(P) iff there exists a

homeomorphism h : Qo -» Oi with difïerential dh : vQo -* vQl such that f1oh is

homotopic as a map of pairs to /0 and such that fx ° dh is the same bundle map as

L
Let e\P) dénote the group of tangential normal maps (a, a) with a: (P, dP) —>

(P, dP) a homotopy équivalence of pairs. Clearly ef(P) acts on #"(P) via composition.

The forgetful map 5^(P)—»0(P) induces a bijection of the orbit space
and 0(P),

^ (2.2)
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Surgery theory relates #"(P) to the set O°(P, dP) of tangential normal bordism
classes of tangential normal maps over P. In addition, there is a well-known
isomorphism (the normal invariant)

For our use in subséquent sections we briefly recall the définition of Nr and refer
the reader to [B] for further détails.

Let (/,/) in (2.1) represent an élément of O°(P,dP) and let
c: (Dn"\ Sn+k"I)-»(T(i/o), T(vQ \dQ)) be the natural collapse map. The S-dual
of T(vp)/T(vp \dP) is P+( P with a disjoint base point added) so the S-dual of the

composite

is a stable (based) map Pf —» S°. Its adjoint is the élément

N'(/,/)e[P,frS30] (2.3)

We let il'S00 dénote the component of B'S" consisting of maps of degree i

(degree: <ir{)(n~Sx) ^> Z). Then

iff /: (Q,dQ)-> (P,dP) has degree i. In particular, for normal maps of degree
±1, N'(/,/)e[P, G] where we follow the usual convention and write G
f2!:1S00U.f27S- Under composition G is an H-space.

If we vary (2.1) slightly by replacing vp with £ vp©i>/, where ^ is some fibre
homotopy trivialized TOP-bundle, then there is a bijection between the resulting
set of normal bordism classes, (l°N(P, dP), and [P, fl^S^/TOP], where f2°°S"/TOP
fits into a fibration n°°Sx-» (1™S°°/TO?-> BTOP, cf. [BM].

Restricting further to bordism classes of pairs (/,/) with deg(/) ±l, we get
[P, G/TOP] instead of [P, •fTS'VTOP]. The H-space structure on G/TOP coming
from Whitney sum corresponds to multiplication of normal maps.

If we remove ail normal bundle information from the définition of 5^r(P) we

get the ordinary set of homotopy manifold structures £f(P).
Let /: Q—» P be a homotopy équivalence representing an élément of Sf(P).

Set f (/~1)*(^o) and let /: vQ ~» f be the canonical map over /. The uniqueness
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theorem for Spivak normal bundles (see e.g. [B], ch. 1) implies a fibre homotopy

équivalence vp —> £ such that

gn+k fs
?T(vo)/T(vQ|ôQ)

Ttf)

is commutative (k large). Hère cp, cQ are the natural collapse maps. Thus

Ç=vp®vj where Vf is homotopy trivialized. Moreover, équivalence classes of
triples (vp, £, t) as above are classified by G/TOP (and by il^S'/TOP if there is no
condition on t). In particular (vp, f, t) détermines an élément in [P, G/TOP]. This
defines the usual normal invariant

N: Sf(P) -> [P, G/TOP].

If we start with a tangential homotopy équivalence (/, /) we get £ vp so our
triple become (vp, vp, t) where t: vp-+ vp is a fibre homotopy équivalence. Such

triples are classified by éléments of [P, G]. It is direct to check from the définition
of S-duality that we hâve recovered the élément N'(/, /) from (2.3). In particular,
we hâve a commutative diagram

U (2.4)

U[P, G/TOP]

If e(P) dénotes the group of homotopy automorphisms of (P,dP), then e(P)
acts via composition on $f(P). We wish to relate the géométrie actions of el(P) on

Sf\P) and e(P) on 5^(P) with the obvious action of e(P) on [P, SG] and

[P, G/TOP].
What we need is the following resuit (see also [Bru], Proposition 2.2)

LEMMA 2.5. Let f: (Q, dQ) -> (P, dP), f:vo^Çbe a normal map (of degree

1) and g: (P, dP) -> (P1? dPj) a homotopy équivalence. Let g: f -» £i, C\-
(g *) * (0 be the canonical map. Then
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where + refers to the group structure in [P, G/TOP] induced from the Whitney sum

opérations in G/TOP.

PROOF. Let èi (g~T(^P), Ci (g-1)*(C) and let g:^-^ be the canoni-
cal map which covers g. We hâve a commutative diagram in the S-category

Sn+k-^T(vo)

\T(i)

T(g) T(g)

where tx (g l)*(t). By définition, (vPï, Çl9 s) represents N(g) and (£1, £1, *i)

represents (g~l)*N(f, /), so (vPi, £l9 t^s) represents the sum. The outer part of
the commutative diagram shows that (vpi, £l5 tx ° s) also represents N(g° /, g °/).

COROLLARY 2.6.
(i) If (a,a)G£f(F) and (/,/)e

Nf((a, a) o (/, /)) N<(a, a)-(a*)"^(Z,

(ii) 1/ a e e(P) and fe&(P), then

N(a o f) N(a) + (a*l

Using 2.6 and surgery theory we can identify 0(P) with a more tractible
object. We let Cok J(P) a [P, G/TOP] be the cokernel of [P,TOP]-^ [P, G].
Furthermore we identify [P, TOP] with the group of bundle automorphisms of vp

covering the identity and let ef(P)<=e(P) be the cokernel of [P,TOP]-* e'(P).

THEOREM 2.7. Let aeet(P) act on x e Cok J(P) via the formula

(2.7.1)

Then, if P and dP are connected; ir^dP)-* tti(P) is an isomorphism; and

dimP>6, there is a bijection between 0(P) and the orbit space Cok J(P)/et(P).
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PROOF. Standard surgery theory (cf. [W3], ch. 4 and ch. 9) implies that

Nt:9"(P)-*[P,SG] is a bijection. Corollary 2.6 shows S?f(P)/e'(P)-»
CokJ(P)/et(P) is a bijection, and 2.2 concludes the proof.

We next introduce a set midway between Sf"(P) and 0(P). Let eo(P)c:e(P)
dénote the normal subgroup of e(P) for which a e eo(P) iff a|P is homotopic to
the identity, nor necessarily as a map of pairs. Note 60(P)c e,(P).

Since [P,TOP]-» e'(P)-> et(P)-> 0 is exact, we can define e°(P) to make
[P, TOP] -> e°(P) -> eo(P) -* 0 exact.

DEFINITION 2.8. V(P) is the orbit space Sf>t(P)/e°(P).

Given /: (Q, dQ)-+ (P, dP),f: vQ —» i/p, a tangential normal map, we write
tj(/)g V(P) for the image of (/,/)€S^(P) in the orbit space. The image is easily
seen to dépend only on /, and hence tj(/) is defined for any homotopy équivalence
of pairs f:(Q,dQ)^>(P,dP) such that f*vp is équivalent to vQ: we need not
specify the bundle équivalence.

The set V(P) arose aposteriori: it is what we spend most of the paper
calculating. It does, however, hâve some géométrie significance. Given

/,: (O,, dQ,)—> (P, dP), i 1, 2, which are homotopy équivalences of pairs with
ffvp vQi, then tj(/i) 17 (/2) iff /21 °/i- Oi ~^ O2 is homotopic nof re/ 5, to a

homeomorphism.
We can summarize our results so far in

COROLLARY 2.9 (i). The normal invariant defines a homomorphism
N:e0(P)-^CokJ(P).

(ii) If P and dP are connected, rr^dP)—* tt\(P) is an isomorphism and dim P^
6 then V(P) is the cokernel of N, V(P) Cok J(P)/eo(P).

(iii) The group et(P) acts on V(P) uia fhe formula in 2.7.1 and 0(P)
V(P)/ef(P).

The set V(P) is much easier to calculate than d(P). With the assumptions of
2.9 (ii) it is a finite group and thus amenable to analysis one prime at a time. From
2.9 (ii) we also hâve that V(P) is an invariant of the homotopy type of (P, dP). In
section 7 we give examples which show that 0(P) is not a homotopy invariant. See

7.5.
We close the section with a couple of remarks concerning et(P) and its action

on V(P). First,

LEMMA 2.10. Let f: (Q, dQ) -> (P, dP) be a homotopy équivalence of pairs. If
aest(P) thenf-lafeet{Q) iff a*N(f) N(f) modulo Cok J(P).
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Proof. Given gee(Q), then geet(Q) precisely when N(g) e Cok J(Q).
But we can compute N(f laf) from 2.5,

and 0 N(id) N(/) + (/*) JN(/ *) Hence

(a*) lN(f)-N(f))

Since /* Cok J(P) -* Cok J(Q) and smce N(a) g Cok J(P), Nif-'af) e Cok J(O)
îflF (a*) * N(/) - N(f) e Cok J(P).

Remark 2.11. With the notation above, suppose that a*N(/)-N(/)e
Cok J(F). It need not follow that

/*(«.*) (/ laf)-f*(x)

where /*: V(P)-> V(Q), so /* does not necessanly pass to a map of orbit spaces,
/*:0(P)->0(Q)

§3. The group Cok J(P)

We first study the p-pnmary part of Cok J(P) at odd primes p. Recall the

space Jp îs the fibre of the map i//q -1: BO(p)—> BO(p), where q îs a positive
integer which projects to a generator of (Z/p2)*. Also recall that Sullivan deflned a

map G/TOP —» BO(p) which îs a p-local équivalence The next resuit îs well-
known, see e.g. [MM2] ch. 5 for a proof.

THEOREM 3.1. For p an odd prime, the Sullivan orientation identifies
Cok J(P\p) wirh the image of [P, Jp] m KO°(P)(p)

The well known structures of Jp and the map Jp -> BO(p) give nse to two
obvious corollanes.

COROLLARY 3.2. Let dp(P) be the smallest integer such that Hl(P, Z/p) 0

for ail i > dp(P). Then for ail primes p such that 2(p - 2) > dp(P), Cok J(P)(p) 0.

Note if n dim P, and if 2p > n + 4, Cok /(P)(p) 0.

COROLLARY 3.3. 1/ KO°(P) (or equwalently, KU°(P)) has no> p-torsion, p
an odd prime, then Cok /(P)(p) 0.
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Thèse corollaries apply to show that Cok J(P) has no p-torsion in any of the

following situations
(i) if P(p) is an H-space ([L])
(ii) if P(p) (G/H)(p), G connectée! Lie group and H a closed connectée

subgroup of maximal rank ([P])
(iii) if H4l(P;Z(p)) is torsion free for ail i.

We next turn our attention to the 2-primary component of Cok J(P). Since

G/TOP is a product of Eilenberg-Mac Lane spaces at 2 we hâve

Cok J(P)i2) ç fi H4l(P; Z(2)) x H4l2(P', Z/2)

This is true even as groups. Indeed, let

k4n_2 g H4n-2(G/TOP; Z/2), Ln g H4n(G/TOP; Z(2)) (3.4)

be the cohomology classes constructed in [RS] and [MS] respectively. (An
alternative set of classes Kn eH4n(G/TOP; Z(2)) was defined in [Mi] but thèse
classes are not suitable for our purpose; cf. [M2].)

The k4n_2 are primitive; the Ln are not. But 1 + 8XLn is a genus, and we set

where sn dénotes the Newton polynormal. Then ln is a Z(2) intégral polynomial in

L1?..., Ln and defînes a primitive cohomology class in H4n(G/TOP; Z(2)).

Moreover, the classes k4n_2 and ln give rise to a map of H-spaces

G/TOP-> fi K(Z/2,4n-2)xK(Z(2),4n) (3.5)

which is a 2-local équivalence.
Let tt: SG-> G/TOP be the natural map. It is completely described at 2 by

the classes 7r*(k4n_2) and 7r*(Zn) which were calculated in [BMM] and [M2]
respectively. From [BMM] we hâve

THEOREM 3.6. 7r*(k4n_2) 0 unless n 2l (in which case it is not 0).

We need some preparational remarks before we can state the resuit for 7r*(/n).
Basic to our description is the following commutative diagram
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SGt(2)

(2) (3.7)

>BSO (2)

The columns are ail fibrations of infinité loop spaces; BSO® and BSO® dénote
the space BSO with its two natural infinité loop space structures; the maps e, ê

and pR and ail vertical maps in 3.7 are infinité loop maps [MST]. The maps A and

A are implied by the affirmed Adams conjecture, but they are not even H-maps.
The composites e ° A and ê ° A are however infinité loop maps since, for
example, e ° A p^.

The common homotopy fibre of e and ê is the space usually denoted Cok /,
and since p^ is a 2-local équivalence we hâve homotopy équivalences

SG(2)sj®xCokJ

BSOf2)xCokJ

Next, we need some notations and results from [A]. Given an arbitrary space
X, we let k: X[i, oo]--> X be the fibration such that k: tt}(X[ï, »])-> tt^X) is an

isomorphism for j>i and 7r}(X[i^]) 0 for /<î. In this notation B8l(BSO(B)

2,œ] and B2l(BU<B) BL/[2i + 2, oo].

Adams constructs 2-local cohomology classes

c\n g H2l+2n(BU[2i, oo]; Z(2))

with rational réduction 2nfc*(chI+n) and Z/2 réduction *(Sq2n)(u2i) where u2l is

the bottom cohomology class. They are stable in the sensé that chin and cht_1>n

are connected by the double suspension, a2(chin) chl^l n.

Complexication defines a map

C: BSO® -> BSU® Bl/[4, oo]

and we hâve
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THEOREM 3.9. The cohomology class 7r*(/n) is the composition

^22n *
> K(Z(2), 4n)

Proof. This is proved in [M2] based on previous work in [MMt]. The proof
used information on the Bockstein spectral séquence of Cok J which was stated
without proof in [M2], Lemma 3.5 (ii). Since the writeup of [M2], J. P. May has

published similar calculations on the Bockstein spectral séquence for B Cok J
from which it is easy to deduce Lemma 3.5 of [M2]. See [CLM], p. 191-203.

COROLLARY 3.10. // either KO°(P)(2), KSU°(P)(2) KU°(P\2) or ©
H4l{P; Z(2)) is torsion-free, then Cok /(P)(2) <= © H22(P; Z/2). lSl

Proof. By 3.6 it is enough to show that [P, SG]-»H4n(P; Z(2)) is trivial. The

map factors through KO°(P)(2) and KSU°(P){2) by 3.9. If KU°(P\2) is torsion-
free, so is KSU°(P)i2). Since [P, SG] is a torsion group, if any of the listed groups
is torsion-free we are done.

Remark 3.11. Theorem A of the introduction follows easily from 3.3 and
3.10.

The next theorem is one of the main ingrédients of the proof of Theorem B of
the introduction. The other ingrédient is given in the next section.

THEOREM 3.12. Let ev: S2O2SG-+ SG be the évaluation map and f the

composite S2n2(SG[3,™])-^ S2O2SG-* SG; then /*7r*(Zn) 0.

We postpone the proof of 3.12 to discuss its applications. First, as the

assignment X»-»S2f22X[3, °°] is a functor we hâve that Cok J{P){2) is contained in
the kernel of

(g H*-2(P; Z/2)©H4l(P; Z(2)) ^ ©H4'(S2O2P[3, oo]; Z(2)) (3.13)

To employ 3.13 usefully we observe

LEMMA 3.14. (i) If X is the double suspension of a connected space,
H*(X;Z(2))^H*(S2f22X[3,oo];Z(2)) is monic.
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(ii) If tt1(X) 0 and H1(X;Z/2) 0 for i<r,
Hl(S2H2X[3,œ];Z(2)) is monic for i<2r.

Proof. (i) Clearly X[3, oo]-> x is an équivalence, and if X= S2 Y, S2O2S2Y-^
S2Y has a section: double suspend Y'—> f!2S2Y. This proves (i).

(ii) By naturality we may assume X is a 2r dimensional CW complex. If r= 1

the resuit is trivial to prove, so assume r>2. If Y dénotes the 2-localization of X,
then Y is 2-connected, so !72X[3, <»]-» il2 Y[3, °°] is a 2-local équivalence. Hence
it suffices to prove the resuit for Y. But Y is an r-connected, 2r-complex, and
hence a double suspension of a connected space by the Freudenthal suspension
theorem. Lemma 3.14(i) applies.

COROLLARY 3.15. Let M be an n-manifold whose connectivity is at least

(n - l)/3 (e.g. metastable). Then Cok J(M)(2) c: H2'~2(M; Z/2) for the unique i such

that (n - l)/3 < T - 2 < (2n + 5)/3.

Remark 3.16. If M is a 2-connected 7 or 8 manifold, 3.13 and 3.14 show
Cok J(M)(2) 0.

Now both Cok J(X) and H*(X) are defined and natural in the stable category.
Our mapCok/(X)(2)-^eH2l"2(X;Z/2)eH4l(X;Z(2)) is not stable. However,
results of Madsen and Milgram [MMJ give

COROLLARY 3.17. If f: S2X-+ S2Y is a map. Then

Cok J(Y)(2) -> 0H2'-2(Y; Z/2)0H41 (Y; Z(2))

r r
Cok J(X)(2) -> ©H2-2(X; Z/2)0H4l(X; Z(2))

commutes.

Proof This is just a reformulation of the fact that B2(G/TOP)(2) is a product of

Eilenberg-MacLane spaces.

Corollary 3.17 can profitably be applied to hypersurfaces. A hypersurface M is

an n-manifold which can be embedded in Sn+1 in a locally flat fashion. The

sphère is then the union of two manifolds with boundary, Wx and W2. Moreover
%M XWxvXW2 so we can use 3.17 and analyse the maps

Cok J(Wt)(2)-> etf^W,; Z/2)®H4l(W,; Z(2))

instead of the map for M.
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As an example, RP2 embeds in S4, and hence X2RP2 embeds in S6. Let W\ be

a regular neighbourhood of 22RP2; let W2 be S6- W1; and let M a\¥1. Then
3.17 and 3.14 imply Cok /(M)(2)<= Z/2 even though

We conclude this section with

Proof of 3.12. The map

S2Q2SG[3,oo]U >,4n)

can by 3.9 be identifiée! with the double suspension of the composite

Q2SG[3, oo] -> f22J®[3, oo] _» n2BSOf2)[4, oo] -»

:>,4n)

followed by the évaluation ev: S2O2K(Zi2), An) -» K(Z(2), An)
When we make the identifications and /22BSO®[4,oo]3=

SO/U promised us by Bott periodicity we hâve il2ch2,2n-2 chlt2n-2- Moreover,

/22JBSOe[4, oo]^^ n

SO/U -+BU

commutes, where SO/U^> BU^ BSO is a fibration.

Let <p: (SO/U)i2)-*(SO/U)i2) be the map such that

ft2BSOf2)[A, oo]
°2(<f>3-

(SO/LO.(2)
" (SO/U)(2)

commutes. Hence we hâve a fibration (SO/U)(2)^ (SO/U){2).

The intégral cohomology H*(SO/U; Z) is a polynomial algebra on generators,

4n-2> in dimensions congruent to 2 modulo 4.
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Moreover,

i)~2g4n 2

(see e g [DL])
Hence

i*(ch12n 2) /*(22" 2s2n

where ueZf2) and a(n) îs the number of ones in the dyadic expansion of n We
hâve hère used that the 2-adic valuation of (2n)' îs 2n-a(n)

We prove below that 2g4n 2 g Image (<p*) It follows that ;*(ch! 2n 2)e
Image (<p*) Using 3 7 it follows that the composition 3 19 îs zéro This will prove
the resuit

Hence we need only understand ç (SO/l/)(2)—» (SO/U)(2) Now

(SO/U)(2)- (2)i2)
<p n2(^ i)

(SO/U)(2)-> BU(2)^ft2BSU(2)

certainly commutes Under the identification BU{2) O2BSU(2), the map
fl2({\f2 - 1) becomes 3(i^3 - 1) BU{2) -» BUi2) On primitive cohomology classes of
dimension 2n, 3(i//3-l) induces multiplication by 3(3" -1) Hence ç*g4n 2

3(32n !-l)g4n 2 2u1g4n 2, where uxeX%

§4. The map so(P) -> Cok J(P)

Following Novikov [N] we next construct a homomorphism <p tt^(P, 5P) —>

e°(P), where tt°(P, dP) c 7rn(P, dP) are the éléments of degree 0 Note, if dP
Sn r then TT°n(P, dP) îs the image of 7rn(P) under the natural map 7rn(P)-^
TTn(P,dP)

Let aDn Sn l Dn+ lUDn * Embed Dn m Pn such that aP H Dn Dn If
we pinch D" J to a point, we get a map

p (P,dP)-*(P\/Dn,dPvSn *)
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Moreover, there is a bundle map covering

p: vp-*vpvek

where vpw ek is the obvious bundle over PvDn and k dim vp.

Given Ô€7r°(P,dP) we also use 8 to dénote a représentative 8: (Dn, Sn~~l)-^>

(P,dP). There is a unique bundle map 8: ek —» vp covering 8. The normal map
<p(8) is defined to be the composite

covered by the bundle map

It is clear that (p(8) is homotopic to the identity since there is an embedding
c: P-+ P such that c is homotopic to the identity and c(P) misses the dise we
embedded in P. Hence we hâve a map <p: tt°(P, dP)—> e°(P).

The following trick shows <p is a homomorphism. We divide Dn into two dises

Dl and D2 as in the following picture

Now if ô, e 7rn(P, 5P)i 1,2, we can assume without loss of generality that
5,10,=*. With this assumption

Idvô, p IdvS_UpPD"

commutes, where /: D" —> DnvDn pinches Dx CI D2 to a point., Thus

as claimed.
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Let <J>: 7rJÎ(P, dP)—» eo(P) dénote <p composed with the homomorphism

LEMMA 4.1. If P M, where M is closed, then <£> is onto.

Proof. Let /g eo(M). Corresponding to / there is a map f: M -> M since we

may assume /|dM=Id. Moreover, / Id in eo(M) in* / 1S homotopic to the

identity. But clearly / has the form M^> MvSn —» M, where 8errn(M) is

constructed from the restriction to dM of a homotopy ft\M-> M from / to Id.
Hence / is équivalent in eo(M) to M A MvDn Idv8*>Mwhere 6a is an élément of
7rn(M) which hits ô (which can always be found since 7rn(M)-> 7rn(M) is onto).

Recall from section 2 that the tangential normal invariant Nf: ef(P)^[P, G]
induces a map Nf: er(P)^ Cok J(P) which is a homomorphism on the subset

eo(P)c= ef(P). Thus Lemma 4.1 and Corollary 2.9 gives

COROLLARY 4.2. Suppose M is a closed, simply connected manifold of
dimension at least 5. There is an exact séquence of abelian groups

J(M) -* V(M) -> 0

where ip

We proceed to give a convenient alternate description of \p. Any Ô g tt^(P, dP)

gives nse to a degree 0 tangential normal map 8: (Dn, S""1)^ (P, dP). From 2.3

we hâve a homomorphism

where the addition in [P, X2o5°°] js induced from loop sum (denoted *).
The loop sum yields a transitive action of [P, QqS00] on [P, SG], and we hâve:

LEMMA 4.4. The diagram below is commutaîwe.

7T°(P, dP) X SP'(P)-^ C°(P)

N'xN*

[P, /2ÔS"]x[P, SG] »[P, SG]
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Proof. Since éléments in 5^f(P) are représentée! by degrée 1 maps, any élément
has a représentative f: Q-+ P such that we can find embedded dises Dn <=

O, Dnc:P with dQDDn DTl; dPHDn Dr1 such that f\Dn is a

homeomorphism. Then / commutes with the pinch maps and, for any 8 e

TT°n(P,dP) <p(8)'(fj) is represented by Q±>QvDn-^>P with the obvious
bundle map over it. Thus Nf(<p(ô) •(/,/)) is represented by

Sn+k^T(vQ)/T(vQ\dQ)^T(vQ)/T(vQ\dQ)yT(eK)/T(ek\Sn~1)

The S-dual of T(8) represents N'(ô) and the lemma follows since loop sum is

adjoint to addition of stable maps.

COROLLARY 4.5. The homomorphism if/ of 4.2 is the composite

7Tn(P) - 7T°n(P, dP)^*[P, QoS-] -21U 1[P, SG] -> Cok J(P),

where P M.

Remark. The bijection *[1] is not necessarily a homomorphism. Nevertheless,
it is induced by an équivalence of spaces, and hence induces a bijection from
[P, Oq S°°](P) to [P, SG](p). Hence we can prove ifr is onto the p-torsion in Cok J(P)
by proving Nr is onto the p-torsion in [P, QqS00].

We next recall the twisted suspension. Suppose (Y,B) is a pair of CW
complexes and r| is an oriented spherical fibration over Y with fibre Sk~\ The
twisted suspension,

^ : 7rn(Y, B) -> 7rn+k(T(î,)/T(î, |B)) (4.6)

is defined as follows: /: (Dn, S""1)-* (Y, B) is covered by a unique bundle map
/:ek->rî and £„(/) is the induced map T(/): T(ek)/T(ek IS"-1)-» T(tï)/T(tj|B)
where we use the orientation to identify T(ek)/T(ek \Sn~l) with Sn+\

In the spécial case (Y,B) (M,*), *€^M, and r| v^ we know that
|*) is S-dual to M and it is direct from the définitions to prove
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Theorem 4.7. The composition

is equal to the tangential normal invariant N*. Hère D is the S-duality isomorphism.

(Note in 4.7 that [M, OqS~] dénotes the homotopy set of based maps;
however, as OqS°° is an abelian H-space this is equal to the homotopy set of free
maps).

In gênerai it seems hard to calculate Xv and we shall only consider the case

where Y is a suspension and B is a single point (the base point).
Let Y=SX and consider the characteristic map for tj, X—» SG(k). Hère

SG(k) is the space of oriented homotopy équivalences of Sk~l in the compact
open topology, i.e. the structure monoid for tj. Let c: XxSk~1 -^ Sk'1 be the

adjointed map and let

be its Hopf construction: h(t, x, s) (c(x, s), t) where t is the suspension coordi-
nate, xeX, and seSk^1.

It is well-known that the cofibre of h is the Thom space of tj so we get

T(r,)/T(T,|*) Sk+lX

Hence the twisted suspension in this case is a map

but Xv is not always the ordinary suspension. Of course if r\ is trivial, Xv is just
the Freudenthal suspension and in gênerai Barratt and Hanks [H] hâve calculated
X^ in terms of more classical opérations in homotopy theory (cf. §5). For the
moment however we will be satisfied with the following simple resuit.

LEMMA 4.8. The composition

^(X, *) ^ 7rn(SX, *)-^-> 7Tn+k(Sk+1X, *)

is the (k 4- l)5t suspension.



464 L MADSEN, L R TAYLOR AND B WILLIAMS

Proof. Let f:Sn *-» X represent an arbitrary élément of tt^^X, *) and let
X—> SG(k) be the characteristic map for 17. Their composite is the characteristic

map for r\f (X/)*(t]), so we hâve a commutative ladder of cofibrations

22(fAl)

But the right hand vertical map is by définition.

We can interpret the composition in 4.3 as the map induced by the inclusion

X-* nk+1Sk + 1X and we will pass to the limit QX=nxS°°X. We first consider the
case where X itself is a suspension, say X SY. The study of X—»QX in

homotopy becomes équivalent with the study of QSY-* QY. We hâve (see also

Williams [Will2])

THEOREM 4.9. Suppose X=SY is (q-l)-connectée. Then

is onto for m < 3q - 2.

Proof. There are well-known "models" for OkSkY, l<k<oo (See e.g. [May]).
In particular there is a map

YU(Sk~1xTYxY)-*nkSkY

inducing isomorphism on homotopy in dimensions less than 3q-3. (In the

domain, we hâve made the identifications (w, y, *) (w,*, y) y). Thus in the

same range we hâve a diagram of cofibrations

Y->OSY ^YaY

i S°°x T Ya Y/RPX

Calculations with the Serre spectral séquence show that the homotopy fibres of
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the two h2 agrée through dimension 3q -3. Thus it suffices to show that ï induces
a surjection in homotopy in the stated range.

First note by Freudenthal's suspension theorem that tt*( Ya Y) and tt*(S°°xt Y a
Y/RP0*) are stable groups in our range. Thus it is enough to show that

O(YaY)-^0(S0CxtYaY/RPoc)

has a section in the p-local category when p is odd. The section is given as

follows. The cofibration

RP*-+ SxxT Y a Y-» S°°xT Y a Y/RP~

stably splits to give a map from Q(S~xTYa Y/RP") to Q(S°°xtYaY). The
transfer gives a map Q(S°°xtYa Y)-» Q(Sxx Ya Y)- O(Ya Y).

THEOREM 4.10. If M is a closed simply connected manifold such that M(p) is

c-connected for c>(n + l)/3, tfierc if n > 5

V(M)(p) {0} /or p an odd prime.

Proof. Theorem 4.7, Lemma 4.8, Corollary 4.5 and Corollary 4.2 reduce the
problem to showing that tt^^X)-» tt^^X) is onto, when M(p) 2X. Since

M(p) X2 Y, Theorem 4.9 applies to X= 2Y; m n - 1; q c.

Remark 4.11. Theorem B now follows easily from 4.10 and 3.15.

We next examine the inclusions 0(M) c: 0(M) for closed manifolds M.

THEOREM 4.12. Let M be a closed, simply-connected manifold of dimension
at least 5. Then, if the normal bundle of M is fibre homotopically trivial, 6(M)
0(M).

Proof. It is easy to see that 0(M) 0(M) iff given any élément in [M, SG] it
cornes from an élément in [M, SG] on which the surgery obstruction is zéro.

Since the normal bundle of M is fibre homotopically trivial, the top cell of M
stably splits ofï, so [M, SG] —» [M, SG] is onto. If M is odd dimensional there is

no surgery obstruction so we are done. If the dimension of M is 4r, the
Hirzebruch signature formula shows that the obstruction is again zéro.

If the dimension of M is 4r-2, Sullivan's formula for the surgery obstruction
(e.g. [BMM], (2.6)) and the fact that M has vanishing Wu classes, shows that the

surgery obstruction is zéro unless the (4r-2)-Kervaire class fc4r_2G
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H4r2(G/TOP; Z/2), pulls back non-zero to M under the map M-> SG. By 3.6
this can happen only if r 2'.

So suppose we hâve our map M—» SG pulling k4r_2 back non-zero. If there is

a map S4r~2 —» SG pulling k4r_2 back non-zero, then it is easy to change our map
and get a new map M^SG pulling Jc4r_2 back to zéro and still giving our
élément in [M, SG]. We finish the proof by showing

Claim. There exists an élément of Arf invariant 1 in TTsn(S°) ifï there exists a

manifold Mn with fibre homotopically trivial normal bundle and a map M -> SG

pulling kn back non-zero.

Proof of Claim. It follows easily from work of Brown [Bro] that there is an

n -sphère of Arf invariant 1 iff there is a framed n -manifold of Arf invariant 1.

Hence there is an élément of Arf invariant 1 ifï fcn évaluâtes non-zero on the
image of <irsn(M) in Hn(SG; Z/2).

If we hâve an élément of Arf invariant 1 in irsn(S°), M= Sn will do. For the

converse, suppose we hâve M and a map M —> SG. Then we get a map
55M--» XSSG which pulls back the s-fold suspension of kn non-zero. But, since M
has fibre homotopically trivial normal bundle, for s large enough we hâve a map
Sn+S _+ ^sM such that the composite sn+s -+ SSSG pulls kn back non-zero.

Remark. The resuit does not require tt1M {0}. One can use the formulas in

[TW] or [W4] with the proof above.

Hère is an example to show that the inequality can be strict. Let M
HP2xS30. By Corollaries 3.3 and 3.10, |0(M)|<2 and the exotic candidate is

given by the map

We get a tangential homotopy équivalence f: N-+ M and an almost tangential
homotopy équivalence /: N-*M. Using Sullivan's formula for the surgery
obstruction, we see that N(f): M—> G/TOP must pull k38 back non-zero. But k3S

cornes from H38(BTOP; Z/2) ([BMM]) so N and M are not tangentially
homotopy équivalent at ail. Hence |0(M)| 2, but |0(M)| 1.

In principle, Theorem 4.7 can also be applied to reach conclusions about

V(M)(2) although the calculations become much harder. In particular one would
hâve to compute the composite

fe, : 7rn(ifr)-^[M, Q%S-]^[M, SGl-^H2'-2^; Z/2)
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If v is an r-dimensional bundle, stably équivalent to the normal bundle of M, this

problem is équivalent, via 4.7 to Computing

> 7Tn+r(T(v)!T(v\*))

kt : 7rn+r(T(v)/T(v | *))- <+r(T(i/)/T(i/ | *)) $> [M, fljS«]

-> [M, SG] -» H2""2(M; Z/2) -* Hn_2.+2(M; Z/2)

since k, k, ° 2V.

Under favourable conditions we can extend the domain of définition of kt (and
k,) and prove naturality results: this will aid our calculations.

Let X be a complex and v an r-dimensional bundle over X. We assume

T(v)/T(v | *) has an (n + r)-dual, that is, there exists a complex K and a (stable)

duality map (see e.g. [B])

6: T

(K certainly exists as a stable object-we require an honest complex). Define kx to
be the composition

K : 7Tn+r{T(u)IT(v | *)) -> <+r(T(i/)/T(v | *)) -^ [K, fl^S"]

-* [K, SG]^ H2-\K; Z/2) -* Hn+r^2,+2(T(v)/T(v | *); Z/2) (4.13)

and k, k,° Xv.

Let /: Y -» X be a map and let £ and v be spherical fibrations over Y and X
respectively. Let f: Ç—> v be a map of spherical fibrations covering /. Then

|T(ft»

commutes.
If T(i;)/T(i/1 *) and T(f)/T(£ | *) hâve (n + r)-duals K and L respectively,

there is a stable map K-> L dual to T(/).
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LEMMA 4.14. If the stable map K-^Lis actually a map of complexes, then

7rn+r(T(£)/T(ê | *)) 4 Hn_(2._2)(Y; Z/2)

irn+r(T(v)/T(v | *)) 4 Hn_(2,_2)(X; Z/2)

commutes.

The conditions of 4.14 are satisfied in the situations of interest to us because

of

LEMMA 4.15. If n>2d(X)-c(X)-l, where c(X) îs the connectivity of X
and d(X) is the homotopy dimension of X, then kt and k, are defined for any
spherical fibration v. If, in addition n >2<i(Y) — c(Y) then the hypothèses of Lemma
4.14 are satisfied.

Proof.li X=elU-"Uel+\ then c(X)=/-l, d(X) l + s. T(v)/T(v \ *)
e'+rU* • 'Uel+s+r, and, as an object in the stable category,

If 2(n — (/ + s)) — 1 ^ n — l— 1 the Freudenthal suspension theorem guarantees
an honest complex K. Moreover, any stable map from K to L is realized by an
honest map.

Note for X=Mn that n>2d(X)-c(X)-1 when Mn is metastable. Also, to
define kv (and kt) we really only need v to be a 2-local spherical fibration. Hence
4.14 and 4.15 apply to X(2) and Y(2).

COROLLARY 4.16. Let X= Sp and let v be an r-dimensional trivial spherical
fibration. Then

kt: 7rn+r(T(v)/T(v | *))-> Hn_(2._2)(Sp; Z/2)

is onto iff

ii) there is an élément of Arf invariant 1 in tt^S0) where q T -2;
iii) p + r>q-2i + eI where e, 2 i/ i 0(4), et=3 i/ i l(4) and et 4 if
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Proof. Since T(v)/T(v | *) Sp+r we wish to calculate the map

7rn+r(Sp+r) ^ <+r(Sp+r) ^ [Sn~p, flJS30] -> [S"-p, SG] -*

-» H2I~2(S"~P ; Z/2) ^ Hn+r_(2._2)(Sp+r ; Z/2) ^ Hn_(2,_2)(Sp ; Z/2)

Conditions i) and ii) are équivalent to the assertion that the composite from
TTsm+r(Sp+r) is onto. Barratt and Mahowald [BaM] hâve proved that iii) is équivalent

to the statement that there exists an élément of Arf invariant 1 in irn+r(Sp+r).

COROLLARY 4.17. If v is a spherical fibration over Sp,

is onto iff

ii) there is an élément of Arf invariant 1 in irsq(S°) where q 2l-2;
iii) p^q-2i + er

Proof. If v is trivial the resuit follows from 4.16 with r 0. If v is not trivial,
Corollary 5.2 below reduces the resuit to the trivial case.

§5. The Barratt-Hanks formula and highly connected manifolds

We let t] dénote an (r-l)-dimensional spherical fibration over a suspension,
XX, with X connected. It is classifled by a map c: X-> SG(r): let t^: Xx Sr~l ->
Srl dénote the adjoint of c. Define inductively

r-l ^ or-1tj/.Xx- • -xXxS
bY 4 i-i°(Idxx.. xxx<rii).

For any map /: Axx • • • x Ak -» E, the Hopf construction gives a map
J(/): S(Aa a • • • a Ak)-> 2fî. In particular we hâve

As we saw in §4, the Thom space of 17 can be identified with SrUJW1)
1)), so
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THEOREM 5.1 (Barratt-Hanks [H]). The twisted suspension (4.6)

^ : ttn(XX) -> *rN+r(T(T,)/T(T, | *)) 7rN+r(Sr(XX))

for a connectée, CW complex X is given by the formula

where yE7TN(XX); Xr is the ordinary r-fold suspension; and ^(yJeVjv^X1^) is

the Vth Hopf invariant, where Xil] XA- • -aX.

Remark. The sum is finite since ht(y) O for N<ic(X) + l.

For the rest of this section we assume r is large compared with the dimension
of X so that 7} in 5.1 is a stable spherical fibration. In the range of dimensions we
consider 7rN+r(2r+1 X) will be the stable group tt^XX) and Xr X°°.

COROLLARY 5.2. Let XX=Sk and suppose N<3k-3. Then the image of
Xv is the same as the image of X\ unless N= 2fc - 1, k 2, 4 or 8, and tj: Sk —>

BG is nof divisible by 2 (when it is not).

Proof. Given ye7rN(XX) with N<3(c(X) + l), the Freudenthal suspension

theorem shows that h2(T) 2x for x€7rN_1(Xt2]). Also hI(y) 0 for i>2.
If the map

Id^x a J(Th): Xr+1(Xa X) -> 2r+1X

is the (r+l)-fold suspension of a map /:XaX—>X we hâve ^(7)

Hence Image X^ limage Xr, and Lemma 4.8 proves the reverse inclusion. In
our case X=Sk~\ and Id2xA J(t)1)g7t^_2(S'c"1).

But Thomeir [T] has shown that

irik-iiS*'1) -> 'n-!k-2(Sk-1) is onto, k - 1 + 1, 3, 7.

The remaining cases are done by hand using 4.8.
We also want a version of 5.2 for XX Sk Ups ek+\ If p is odd, 4.8 and 4.9

give enough for us so we concentrate on the case p 2. The following lemma will
be useful in the sequel.
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LEMMA 5.3. (i) The stablization map

Tr2k-2(Sk~2)->7Tl is onto if kf 1,2,3,7.

(ii) The map is split unless k — 2l — 2; k >6; and there exists an élément, 0t, in
7rsk such that 6t has Arf invariant 1 and 20, 0.

(iii) In this exceptional case, 7Tk G0Z/2Z where 0, générâtes Z/2. There is a

map G -» îr2k_2(S'c~2) such that G -> 7r2k_2(Sk~2) -> 74 G0Z/2Z is the obvious
inclusion. There is an élément x e /7r2k_2(Sk~2) which stabilizes to be 6t, and we hâve
that

x has order 32, Sx has order 16, X2x has order 8, 2X3x [l, t].

Proof. The theorem is essentially due to Thomeier [T]. The reader can also
check Mahowakfs [M], especially tables 4.2 and 4.3.

THEOREM 5.4. Let M2n be an (n-l)-connected closed manifold of dimension

2n > 6. Then |0(M)|=1.

Proof. We hâve |0(M)|<|0(M)|<|V(M)|, cf. 4.2. The manifold M is a wedge
of n sphères, so [M, il^00] 0[Sn, QqS00], and Cok J(M) 0 unless n 21 -2. In
the exceptional case, 4.7, 5.2 and 5.3 shows that 7r2n(M)-> Cok J(M) is onto, so

V(M) 0.

LEMMA 5.5. Lef 5X= Sk U2- ek + 1 where Jc>4 and k^8. Ifk-l 2l-2 is

an exceptional case for Lemma 5.3, assume s ^4. Then, i/N<3k —6, tfie image of
2^ is the same as the image of Xr( X°°).

Proof. As in the proof of 5.2, h2(y) Xx for x g ttn_1(XC2]) and hI(y) 0 for
i>2.

Now X=2:k~2(S1U2S e2) 5k~2Y. By Lemma 5.6 below, J^): XrX-> Sr is

Xr~ik~2)f for a map /: S2k~3U2S e2k~2-> Sk"2. Then Id^ a J(rh) is the (r+ l)-fold
suspension of 1ya/ and, as before, we are done.

LEMMA 5.6. The stabilization map

[S2k~3 Ur e2k~2, Sk'2] -? {S2k~3 U2S e2k-2, Sk^2}

is onto unless k < 4; or k 8; or k - 1 2l - 2 is an exceptional case of Lemma 5.3
and s<3.

Proof Given a stable map y: S2k~3Ur e2k~2-> Sk~2, we can restrict to S2k~3

and get a stable map a: S2k"3-> Sk~2 of order at most 2S.
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By 5.3 we can fînd an honest map a: S2k'4 —» Sk~3 which suspends to a with
the order of 2a at most 2S. It is now easy to extend 2a to a map
b: S2k~3Ur e2k"2-» Sk~2. Let p dénote the corresponding stable map.

The fi-y can be obtained as a composite

o. c*2k — 3 I i _2k—2 f2k-2 r^—2

By 5.3 again, 8 cornes from an honest map d: S2k~~2-> Sk~2. It is now easy to

get a map /: S2k3Ure2k"2^ Sk~2 which suspends to y.

LEMMA 5.7. The stabilization map

7T2k(S U2*e )—* 7T2k+i(S U2*e +

is onto unless k < 3; or k 7; or k 2l -2 is an exceptional case of lemma 5.3 and

s<3.

Proo/. Given a stable map y: S2k+1-> Sk Urek+l we get a stable map
a: S2k+1 -> Sk+1. By Lemma 5.3 this cornes from a map a: S2k"2-> Sk"2 such that
2a has order at most 2\ Hence S2k-1—% Skl ~» Skl is null homotopic; i.e.

Ç2k-1 2" r«k-l

n2 J»,

commutes.
Passing to cofibres gives a map b: S2k —> Skl U2^ek: let j3 dénote the

corresponding stable map.
The map (3-y factors as a composite S2k+1 -*> Sk -^ Sk Urek+\ By Lemma

5.3, 8 cornes from an honest map d: S2k —> S*""1 and it is now easy to finish.

Quite similar arguments give

LEMMA 5.8. If k — T — 2 is an exceptional case of 5.3, the stabilization map

7T2k+i(Sk U2. ek+l)^7rs2k+1(Sk Ur ek+1)

is onto unless s 1 or 2.
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COROLLARY 5.9. The twisted suspension map

Xv : 7r2k + 1(Sk U2- ek + l) -> 7Ts2k + 1(Sk Ur ek+l)

is onto unless k < 3; or k 7\ or k T — 2 is an exceptional case of Lemma 5.3 and

Proof. If k -1 T -2 is an exceptional case of Lemma 5.3, then Lemma 5.7
and Lemma 4.8 combine to prove the resuit. Otherwise 5.5, 5.7 and 5.8 prove the
resuit.

THEOREM 5.10. Let M2n+1 be an (n-\)-connectée manifold. Assume n>2
and, if n 2l -2 is an exceptional case of Lemma 5.3 assume Hn(M; Z) has no
Z/2Z or Z/4Z summands. Then |0(M)|= 1.

Proof. If n 2, Barden [Ba] gives the resuit. If n 3, Corollary 3.2 and
Remark 3.16 prove the resuit if H3(M; Z) has no 3-torsion. Wilkens [Wilk]
proves M MY#M2 where H3(M1;Z) has no 3-torsion and H3(M2;Z) is ail
3-torsion. Then M2 is triangulable [KS] and Wilkens proves |0(M2)|=1. Also,
|0(Mj)| 1 and since 0(M1#M2)ç 0(M1)x 0(M2) by Browder's splitting theorem,
see e.g. [W3], 12.1, the resuit follows (Note that Wilkens' différent PL manifolds
are topologically the same.)

If n >3, M2n+1 is metastable, so Theorem B of §1 applies to prove the resuit
unless n or n + 1 is 2l -2. The space M is homotopy équivalent to a wedge of
sphères and Moore spaces. Now Theorem 4.7; Lemmas 4.14, 4.15; Corollaries
5.2 and 5.9; and Lemma 5.3 prove that V(M) 0. And hence the resuit.

Theorems 5.4 and 5.10 hâve counterparts in the smooth category. For
example we hâve

THEOREM 5.11. Let f: N2n+1 -» M2n+1 be a homotopy équivalence between

smooth (n-\)-connected manifolds. Suppose f\N is covered by an orthogonal
bundle map v^ —> v^. Then f\N is homotopic to a diffeomorphism unless n 1, 3 or
7, or n 2l - 2 is an exceptional case of 5.3 and Hn(M; Z) has a Z/2Z or a Zj'4Z
summand.

(As above, Nf: 7T2n+1(M)—» [M, OqS™] is surjective, and one can recopy
sections 2 and 4 to the smooth category to show that |0(M)|<|Cok Nf|).

Of course 5.11 is contained implicitly in [W2] but seeing that Wall's invariants
are tangential homotopy invariants is non-trivial. See [Ar] for an early attempt in
this direction.
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Remark 5.12. If k 2' - 2 is an exceptional case of 5.3 and s 1 or 2 then 5.8
fails. Indeed, we prove below that the stabilization map

r°: 7r2k + 1(Sk U2s ek + i) -> 7r2k + 1(Sk U2s ek+1), 5 1,2.

has cokernel Z/2. Thus, in 5.10 if one removes the cohomological conditions in

the exceptional case, V(M) ^ 0. (Note: k>6 from 5.3).
The proof that Cok2°° Z/2 is similar to the proof of 4.9 in that it use the

approximation to Q^S^iX). First, one checks by cohomological methods that in
dimensions <2fc + l, S™ xTSk a Sk/RP00 is homotopy équivalent to the fibre F in

F-» K(Z, 2k)-^> K(Z/4, 2k + 2)

and (in the same range) that

S°° x^ aLj K(Z/2, 2k)x K(Z/2, 2k 4-1) F,

SX -j-1^2 A iy2 F2 •

Hère Ls Sk U2sek + l and F2 is the fibre in

F2 -? K(Z/2, 2k)^*K(Z/4,2k+ 2)

Moreover, the natural inclusion of S^x^ /\Sk/RP°° in S°°xTLs aLs/RP" can be

identified (in our range) with the natural map from F to Fs. It follows that

s l,
Z/4, s 2,

and in both cases

7T2k + 1(S~ X^" A Sk/RPl -> 772fc + 1(Sœ XTLS

is surjective.
As in the proof of 4.9 we hâve exact séquences

I1 (5-13)

XTLS aL/RP~)^> ir2k(Ls)



Tangential homotopy équivalences 475

With the notation of 5.3 (iii) the generator of 7r2k+1(SocxTSk ASk/RP~) maps to
2X2x in 7T2k(Sk), so for s l, ds 0 in 5.13. If s 2, / is an isomorphism, and
2X2x maps non-zero to jr2k(Ls). Since 4X2x maps to zéro, Kerds=Z/2 also in
this case.

Remark. Lemma 5.8 also follows from thèse considérations.

§6. Hypersurfaces

In this section we study hypersurfaces of dimension at least 5, that is closed
manifolds which admit a locally flat, co-dimension one embedding in a sphère. In
fact, the entire section is a discussion of the

CONJECTURE 6.1. If two metastable hypersurfaces are homotopy équivalent

then they are homeomorphic.

We begin with an observation from Morgan [Mo] which restricts the possible
normal invariants.

LEMMA 6.2. Let f: M —» N be a homotopy équivalence between hypersurfaces.
Its normal invariant Tj(/)e V(M) is contained in the image of

î: 7Tn+1(XM) -> <(M) ^> [M, HoS°1 ^ [M, SG]-> V(M).

Proof. Let /: v^ —» v^ cover f: M^> N where v^, v^ are the 1-dimensional
trivial normal bundles. By définition, the normal invariant of (/, /) is the S-dual of
the composite

Now, T(^)/T(^|d2V)-T(i/^)/T(^|*)vSn+1 and T(vA)/T(vA\*) SN with
similar results for T(

A hypersurface MnczSn+1 divides Sn+1 into two parts, denoted Nx and N2.

Let Kt c= N( be the spine of Nr It is a finite cell complex and Kt -> Nt is a (simple)
homotopy équivalence. Note that c(M) min (cOK^), c(K2)), where c( dénotes

connectivity. If M is metastable then

l)- n + 1 > 1, 2(w + l)>3(d(K,) + 1), (6.3)

where d(Kt) dimension of Kr
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Recall that a trivial thickening of a finite complex K is a simple homotopy
équivalence j:K-*N where N^Sn+l is a codimension zéro submanifold with
boundary. The following standard resuit ([WJ) will be used many times below.

THEOREM 6.4. Let j: X-> N, NçSn+1 be a fm;îai thickening of K and
assume n>5 and c(K)>2d(K)-n + l. Giuen any homotopy équivalence /: K—>

K, rhere existe a homeomorphism F: (N, dN) —» (N, dN) such that F° j — j ° f.

Note in particular for a metastable hypersurface Mn, Sn+1 -M" Nt UN2,
that each self-homotopy équivalence of N, can be realized by a homeomorphism
up to homotopy.

We now fix a small dise DÎ+1cNt with Dnx + 1 DM= D^+1 DM= Dn and we
write N^ty- Dv We hâve

The first homotopy équivalence in 6.5 is the sum of the inclusions, the second is

the sum of the natural collapse maps NJM —> XM.
We combine the map in 6.2 with the collapse maps to get

The next resuit is a corollary to work in [WillJ.

THEOREM 6.6. With the assumptions in 6.3, for every élément at e Image (A,)
there exists a homotopy équivalence ft : (Np M) —» (Nl9 M) such that f | N is

homotopic to the identity and r)(f\M) at.

Proof. Let Emb (N, M) dénote the set of concordance classes of Poincaré

embeddings of (N,M) in Sn+1 (see [WillJ). Let e(N,Af) dénote the group of
homotopy classes of (simple) homotopy équivalences of pairs. There is an obvious
action of e(N, M) on Emb (N, M) and by acting on our given embedding we get a

map F: e(N, M) -» Emb (N, M).
To each Poincaré embedding of (N, M) in Sn+1 we get an élément in the set of

degree 1 classes in 7rn+l(N/M). This set is isomorphic to 7rn+1(N/M) and a chase

through the définitions involved show that

e(N,M)-*s(M)

Emb (N, M)
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commutes, where the right hand vertical map is the unstable normal invariant
from the proof of 6.2.

In [WillJ it is shown that Emb (N, M) —» Trn+l(N/M) is onto under our
hypothesis. Hence, it suffices to show that F is onto.

A Poincaré embedding, T, consists of a map g: M—> C such that NUMC is

homotopy équivalent to Sn+1. By the splitting theorem ([W3], 12.1) and the

uniqueness of the trivial thickening of K we hâve a homotopy équivalence of
triads

h : (Sn+1 ; N, Sn+1 - Int (N), M) -» (Sn+1; N, C, M)

and we may assume h \N is homotopic to lN using 6.4. tt /= h |(N, M), then F(f)
is our Poincaré embedding T.

For a hypersurface Mn we write Xd(Mn) for the subset of 6(Mn) realized by
hypersurfaces. Let XV(M) be the image of X in 6.2. Then X6(Mn)^
XV(M)/s(M) where e(M) is the group of homotopy automorphisms of M.

COROLLARY 6.7. Suppose MnczSn+l is a metastable hypersurface with
Sn + l — Mn NlUN2. Suppose n>5 and that there exists an integer q, necessarily

unique of the form 2'-2 with c(M)<q< d(M). If either WiN^ Z/2) or

Hq(N2; Z/2) is trivial, then every hypersurface homotopy équivalent to Mn is

homeomorphic to Mn.

Remark. If there is no such q, Theorem B implies Conjecture 6.1.

Proof. Consider the diagram

» V(M)

It is classical that Image (2°b) Image (X). Thus in gênerai if a g irn+1(XM) goes

to an élément of the form (x, 0) or (0, y) in Hq(M) WiNJQHH^) then it is

easy to use 6.6 to find a self équivalence f:M^> M with r\(f) being the image of a
in V(M). With our assumptions Hq(M) Hq(Nl) or Hq(M) Hq(N2) so

2V(M)/e(M) 0.

Remark 6.9. It is the twisting formula 2.5 which prevents us from proving 6.1

in gênerai: even if each normal invariant of the form (x, 0) or (0, y) cornes from a

self-homotopy équivalence we cannot prove that (x, y) does. Note, if each
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automorphism of Hq(M;Z/2) is induced from a homeomorphism of M, then we
can undo the twisting and XV(M)/e(M) 0 in thèse cases.

Remark. An example, shown to us by R. Schultz, shows that some connectiv-
ity is necessary in 6.1. From 7.1 we see there is a tangential homotopy équivalence

/:M->S2xS6 such that M is not homeomorphic to S2xS6. From Brow-
der's embedding theorem [Bj and some easy homotopy theory, M embeds in R11

with trivial normal bundle. Hence S2x M is a hypersurface in R11 and Schultz [S]
shows how to see that S2xM is not homeomorphic to S2xS2xS6. So

|20(S2xM)|>2, and in fact \X$(S2xM)\ 2.

§7. Examples

In this section we calculate 0(M) for certain M. We give examples to show that
0(M) is not a homotopy invariant and that 0(M may be arbitrarily large even for
metastable hypersurfaces.

Ail manifolds will hâve fibre homotopically trivial normal bundles so 0(M)
0(M) by 4.12.

EXAMPLE 7.1. M=SpxSq, 2<p<q, rc p + q>5. Then |0(M)| 1 unless

there exists an élément of Arf invariant 1 in 7Tq(S°), q — T — 2, and p+l<
q-2i + ev If |0(M)|f 1 then |

Proof. It follows from 4.14 and 4.17 that V(M) 0 unless there is an élément
of Arf invariant 1 in irsq(S°) and p<q-2i + ev In this case V(M) Z/2.

If p + l<q-2i + ev then <7Tn+1(2M)-> V(M) is trivial (again by 4.17) so 6.2

gives 0(M) V(M).
Finally, if p +1 q - 2i 4- £x, 7rn+1(2M) maps onto V(M) and as M satisfies the

hypothesis of 6.6, \0(M)\= 1.

Note in 7.1 above, if |0(M)| 2 and f:N-*M is a tangential homotopy
équivalence, then N is homeomorphic to M iff the q'th Kervaire class of / is

trivial (written Kq(f) 0).
We can sharpen 7.1 to

EXAMPLE 7.2. If M is any closed manifold homotopy équivalent to Sp x Sq,

<5 then 0(M)= 0(SP x Sq).

Proof. Since V(M) is a homotopy invariant by 2.9, the resuit is clear if
V(SP x Sq)°) 0. Hence we may assume V(M) Z/2.

Suppose |0(M)|=1, or, equivalently, there is a tangential self-equivalence
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f: M-> M with tj(/) ^ 0. If g: M-^> Spx Sq is a homotopy équivalence, then 2.5
shows r^g/g-1) î 0, so |0(SP x Sq)\ 1. Hence if |0(SP x Sq)| 2, |0(M)| 2.

In the remaining case, let h: Sp xSq -» Sp x Sq dénote the exotic self-
equivalence. By 2.10, g~lhg is tangential, and again we hâve r\(g'1hg)^0, so

For simply connected M! and M2 we hâve

B(Ml#M2) g 0(M0 x 0(M2) (7.3)

by the splitting theorem in [W3], §12.1. Nevertheless we hâve

EXAMPLE 7.4. Let M dénote the connected sum of r copies of Sp x Sq, 2<
p<q, p + q^5. Then |0(M)| |0(SP x S%

Proof. If |0(SpxSq)| l, 7.3 shows |0(M)|=1, so we assume |0(SP x Sq)\ 2.

Then, from 7.1 we recall that V((SP x Sq)°) Z/2 and 7rn+1(X(Sp x Sq)0)-^
V((SP x Sq)°) is trivial. Since (Sp x Sq)° is a tangential retract of M, Lemma 4.14
shows V(M) Hq(M;Z/2) and 7rn+1(5M)-> V(M) is trivial. Lemma 6.2 shows

e(M)~> V(M) is trivial so there is a 1-1 correspondence between 0(M) and
the orbit space Hq(M\ Z/2)/e(M) where hee(M) acts on Hq{M\ Z/2) via jc goes
to h*(x).

Now M is the boundary of a trivial thickening of K
v; Sq(M=d(#r1Dp+1xSq)) and 6.4 shows that e(M) maps onto G/(r; Z/2)
(r dimHq(M;Z/2)).

Hence |0(M)| 2 and there are precisely two orbits: the zéro vector and any
non-zero vector.

EXAMPLE 7.5. Let M be a manifold homotpy équivalent to a connected
sum of r copies of SpxSq where 2<p<q, p + q>5 and r>2. Assume M is not
stably parallelizable. Then

|0(M)|=1 if |0(SpxSq)|=l (i)

| 3 if |0(SpxSq)| 2 (ii)

Proof. From 7.3, |0(M)|=1 if |0(SP x Sq)\= 1, so we assume |0(SP x Sq)| 2.

Then V(M) Hq(M; Z/2). Let N be the connected sum of r copies of SpxSq.
Then e(N) et(N) since N is stably parallelizable. Recall from the proof of 7.4
that t): e(N) -> V(N) is trivial and that the natural map e(N) -> Aut (Hq(N, Z/2))
defines a surjection onto G/(r; Z/2).
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Choose a spécifie homotopy équivalence f: M-> N. For technical reasons we
want to assume rj(f) 0. This is no loss of generality. Indeed, if v(f)j=O choose a

tangential homotopy équivalence g:M1->M with r](g) /*(rj(/)). Then
Tj(/og) 0 and OiMJ^eiM). By 4.12, 0(M1)=0(M).

The équivalence f:M-*N (with t}(/) 0) induces via conjugation a map
cf: e,(M)-» e(N) and a map (fV: V(M)-» V(N). The sets et(M) and ef(N) act

on V(M) and V(N), with orbits 0(M) and 0(N), cf. 2.9. From 2.5 we hâve

(f*y1(a-x) cf(a)'(f*r1(x), (7.6)

a££((M), x€ V(M). Thus,

V(M)/et(M) V(N)/Im (cf) Hq(N; 1*12)1 e

where £ <= Gl (r; Z/2) is the image of

Of course, e(M) maps onto Gl(r;Z/2) so 2.10 supplies the only restraint.
Since M is not stably parallelizable, N(f) must be non-zero in [N, G/TOP].

Since H*(N; Z) is torsion free,

[N, G/TOP]c=[N, G/TOP](g)Z(2) Hq(N; Z/2)©HP(N; R)

where R Z/2 if p 2 (mod 4) and R Z(2) if p 0 (mod 4).
The component of N(f) in Hq(N; Z/2) is rj(/) O, so N(/) is a non-zero

élément of HP(N;R). If p 2(mod 4), let 8 N(f). If p^0(mod4), let ^ g

HP(N; Z(2)) be the unique indivisible élément with sôl N(/) for some positive
integer s. Let ô be the Z/2-reduction of ôt and consider the homorphism
p: Hq(N; Z/2) -> Z/2 given by p(x) (xU5, [N]>.

The éléments a g G/(r; Z/2) which correspond to éléments of ef(M) must
satisfy p(a*(X)) p(x). Thus there are at least 3 orbits under the action of et(M)
on Hq(M; Z/2) V(M) if r^2:

{0};{jc|x^0,p(x) 0}; and {x|p(x)^0}

We leave to the reader the task of constructing the équivalences of N necessary to
show that the above three sets do indeed form the orbits.

The "détection" resuit in the situation of 7.5 is the following: If fl:Ml—»
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M, i 1, 2 are tangential homotopy équivalence then Mx is homeomorphic to M2
iflf either

(i) Kq(fl) Kq(f2) 0

or
(ii) K.C/^O, Kq(/2)^0 and p(Kq(/1)) p(Kq(/2)).

Remark 7'.7'. Cappell's splitting theorem [C], Theorem 3 can be used to show

|0(M)| 1 for any M the homotopy type of a connectée sum of S1 x Sq's, q >4.

Remark 7.8. The reader can easily show that for Mn the homotopy type of a

connected sum of Sp x Sqs, |0(M)|=1, 2 or 3 and even produce a détection
resuit (n > 5). The only point is that, for a fixed n, there is at most one pair (p, q)
such that p + q n and |0(SP x Sq)| 2.

To avoid leaving the impression that |0(M)| must be small, we now construct a

set of metastable hypersurfaces with arbitrary |0(M)|.
Let Kr be a wedge of r différent Moore spaces S18 U2«e19i 1, 2,..., r and let

Ko be a point. Up to homotopy, Kr embeds in S50 and we let M?9 dénote the

boundary of the corresponding trivial thickening.

EXAMPLE 7.9. The manifold M4r9 is a metastable hypersurface and |0(Mr)|
r+1.

Proof. By construction there is a map p: Mr M-> Kr K. Let L dénote a

wedge of r 19-spheres and let f: M-> L dénote p followed by the collapse map.
Note that

/*:H19(M;Z/2)->H19(L;Z/2)

is an isomorphism. Lemma 4.14 shows that

—H19(M; Z/2Z)

commutes. Barratt and Mahowald (4.16) hâve shown the bottom k50 to be trivial:
hence so is the top k50.

Therefore V(M) H30(M; Z/2) and 0(M) is just the orbit space

H30(M;Z/2)/e(M) with hee(M) acting via x goes to h*(x). Once we compute
the image of e(M) in Gl(r;Z/2) we are done.
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Now H18(Xr; Z) ®'=1 Z/2'Z and hence so is H18(Mr; Z). This décomposition
gives rise to a natural filtration on H19(M; Z/2): FaHl9(M; Z/2) is the kernel of
the a'th Bockstein from H19(M; Z/2). We see

Fa+1/Fa s Z/2 for 0<a<r,

so we can choose a basis x1?..., xr e H19(M; Z/2) such that jca+1 générâtes Fa+l/Fa.

Any homotopy équivalence g: M-* M gives rise to a lower triangular matrix

g*: Hl9(M; Z/2) -* H19(M; Z/2)

with respect to the basis {jcx, xr}.

Using 6.4 it is easy to show that the image of e(M) in Gl(r; Z/2) is the lower

triangular matrices. Since H30(M; Z/2)/e(M) H19(M; Z/2)/e(M) and since

|H19(M; Z/2)/{Lower triangular matrices}| r +1, we are done.
To formulate a "détection" resuit let /: N-* Mr dénote a tangential homotopy

équivalence. From N(f) e [Mr, G/TOP] we hâve a natural projection to
H30(M; Z/2). Since H30(M; Z/2) is naturally isomorphic to H19(M; Z/2) by
Poincaré duality we consider the image of N(g) in Hl9(M\ 2*12). Define ii(g) to be

the image of N(g) in the associated graded to the filtration on Hl9(M; Z/2). Then,
if gt: Ml-+ Mr are tangential homotopy équivalences, i 1, 2, M1 is homeomor-
phic to M2 iff /x(gi) jbt(g2).

Let us conclude by considering manifolds which are homotopy équivalent to

Mr but not necessarily stably parallelizable. Now [Mr, G/TOP]
H18(M; Z/2)0H3O(M; Z/2): given a homotopy équivalence g:N^>Mr let N(g)e
H18(M; Z/2) dénote the image of N(g). The filtration on Hl9{M; Z/2) gives rise

to a filtration on Hl8(M\ Z/2). We say that the homotopy équivalence g: N-> Mr
has filtration s, if N(g) is in the s'th filtration but not the (s-l)'th.

EXAMPLE 7.10. Let g: N-+ Mr be a homotopy équivalence of filtration s.

Then

Proof. First not that N(g) N(g)®x with xeH30(M;Z). Actually, as in the

proof of 7.5 we can assume that N(g) N(g)©0. But then cg maps et(N) into
et(Mr) and the orbits correspond. Thus

0(N) s H30(N; Z/2)/e,(N) H19(N; Z/2)/e,(N)

and so we need only compute the image of ef(JV) in G/(r; Z/2Z). It is possible to
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choose our basis {xu xr} for H19(N, Z/2) such that heet(N) îff h*e
G/(r, Z/2) îs

1) lower tnangular
n) h*(xr+l s) xr+1 s (if s 0 this îs no condition)

(When g changes we will hâve to change the basis but we can always do so.)
Now a =Z« i atx, and b =£[=i btxt are in the same orbit îff the filtration of a îs

the filtration of b (say /), (so ax bx \, al+1 ar b,+1 5r 0) and

ar+1 s br+1_s, If J<r+l-s this last îs no condition so there are l + (r-s) + 2s

orbits.
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