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On the characterization of flat metrics by the spectrum

RuisHl KUWABARA

1. Introduction

Let M be an n-dimensional compact, connected, oriented C~ manifold
without boundary. Let R be the space of C” Riemannian metrics on M with the
C” topology. For ge @R, Spec (M, g) denotes the spectrum of the Laplace-
Beltrami operator A= —¢"V,V  acting on C” functions on M, namely,

Spec (M, g)={0=A <A, <A, < -},

where each eigenvalue is written as many times as its multiplicity. Then, the
Minakshisundaram’s formula for Spec (M, g) is given by

c n/2 ®
Y exp(-hd = () X ar,
| A

k=( 0 \4art s=0

where the coefficients a,’s are expressed by the metric and its derivatives
(curvature) (cf. [1], [2], [3)).

It is obvious that if (M, g) is flat, a, = 0 holds for s = 1. However, a, =0 (s=1)
does not imply that (M, g) is flat. In fact, Patodi [2] showed that for the non-flat
space S*(c)X[H>(—c)/A]. the coefficients a,’s vanish for s= 1. Here, S*(¢) and
H?*(—c) are a Euclidean 3-sphere with constant curvature ¢ >0 and a hyperbolic
3-space with constant curvature —c, respectively, and A is some discontinuous
group of motions of H?(—c). In the low dimensional cases, the following has been
shown.

THEOREM. (1) (Patodi [2]) For 2<n <35, a,=0 holds, and equality holds if
and only if (M, g) is flat.

(2) (Tanno [3]) For n=6, a,=0 holds, and if a,= a;=0, then (M, g) is flat or
locally Riemannian product S*(c)x H*(—c).

The purpose of this paper is to prove the following theorem which asserts that
the condition a, =0 ‘locally’ characterizes flat metrics.

427



428 RUISHI KUWABARA

THEOREM A. Suppose vy is a C” flat Riemannian metric on M. Then, there is
a neighbourhood U of vy in R such that if ge U and a,(g) =0, g is also a flat metric.

Remark. For 2<n =<6, the neighbourhood U in Theorem A can be taken
equally to the whole space R, that is, if M admits a flat metric then a,(g)=0
implies that g is flat (see §7). For n=7, the author does not know whether there
are counterexamples or not.

As a corollary of Theorem A, we have the following theorem.

THEOREM B. Suppose (M, v) is a flat manifold. Then, there is a neighbour-
hood U of vy in R such that if g€ U and Spec (M, g) =Spec (M, vy), then (M, g) =
(M, y) (isometric).

In order to derive this theorem, we have only to note the following result of
Kneser and Sunada [4].

THEOREM (Kneser, Sunada). There are only finitely many isometry classes of
flat manifolds with a given spectrum.

Remark. In the previous paper [S5] we showed that a metric of flat torus is
characterized in the infinitesimal” sense by its spectrum. Theorem B is an
extension of this result.

After giving notations and a fundamental lemma in §2, we review in §3 the
properties concerning the space of flat metrics following Fischer and Marsden [6],
[7]. In §4 we study the function a,(g) and calculate its derivatives. In §5 we
establish the weak Morse lemma for normed spaces, which gives a basic tool for
the proof of the main theorem. Then we prove Theorem A in §6. Finally in §7 we
consider the “global” characterization of flat metrics.

Remark. Fischer and Marsden gave a theorem [6, Theorem 1.5.2], [7,
Theorem 10] which is of same type as our Theorem A. Our proof is performed on
the same lines as in [7], but differently in details.

The author wishes to express his grateful thanks to Professor M. lkeda for
carefully reading the manuscript and offering valuable comments.

2. Preliminaries

Let 1.\/1 be an n-dimensional compact, connected, oriented C~ manifold
without boundary. Let T5(M) denote the tensor bundle of type (p, q) over M, and
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ST,(M) the bundle of symmetric covariant 2-tensors.on M. For a C* Hermitian
vector bundle T, let C*(T) be the space of C” cross-sections of T, and H*(T) the
Sobolev space of cross-sections of T with respect to a fixed C~ Riemannian
metric. The topology of H*(T) does not depend on the choice of a metric.

We use the following notations.

V= H(T)(M)); the H® vector fields,

A* = H*(T}(M)); the 1-forms of class H*,

S5 = H*(ST,(M)); the symmetric covariant 2-tensor fields of class H*,

@°*; the group of H*® diffeomorphisms of M, defined for s >(n/2)+ 1 (see Ebin
[8]). The group 2°*' acts on S3 as follows;

Sy XD — 835 (h, ) —>n*h,

where n*h denotes the pull-back of h by 7.
R°(< S5); the Hilbert manifold of Riemannian metrics of class H°®. The
manifold R* is an open convex positive cone in S5, and invariant under the

action of &°*'.
F (< R*); the subset of flat matrics of class H*, defined for s >(n/2)+1.
If the s is omitted, the space is understood to be of C class and endowed with

the C™ topology.
We define various inner products of H*(T) (s> (n/2)+ 1) by ge R* as follows;

(a) <T, T,>(g) zgii’ ... gjj’ gkk' Ve . gmm’T;(.-‘.‘.]mT/L"......];n,,

k
(b) (T, Tk = };0 (VOT,VOTY (k<s),

r ) ) ) . )
where V(g')T is the tensor field Vg S VgT and Vg is the covariant derivative with

respect to g.

© (T, T):= j (T, T'Y: dV(g),

M

where dV(g) denotes the volume element induced from g.
Using the above inner product (c), we can introduce the Riemannian structure
on &° by g+~ (,)X. This metric is @**'-invariant, i.e., @°" acts by isometry (see

(8, pp. 18-21)).
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For a metric ge R, we define a differential operator

8, 1 C(STL(M)) = C(TIM));  (8:€); =~V &,

§ =

Then 8, extends to a continuous linear map 8}: S5 — A*~'. The adjoint operator
8, of 8, with respect to (,)g extends to a map

(Ssg)* . AS = S;—l; {(8;)*§}q = %(gxg)i,',
where s >(n/2)+1, and £ is the Lie derivative and X (e V®) is dual to &.

LEMMA 2.1 (Berger and Ebin [9]). For g€ R, there is an orthogonal decom-
position

S5 = (8, (0)B(8, ) (AT,

where the summands are orthogonal with respect to ( ,)2.

3. Space of flat metrics

In [6] and [7] Fischer and Marsden studied the space %* of flat metrics of class
H®. We review their results in the first part of this section (Lemma 3.1 and
Proposition 3.2).

In Lemma 2.1, g is assumed to be of C” class (more precisely, g is required to
be of class H**'). However, if g is flat, the following is obtained by one of the
regularity theorems.

LEMMA 3.1 ([6, p. 237], [7, p. 530]). Let g€ ¥°, s>(n/2)+ 1. Then there is
an orthogonal decomposition

$5=(8) (0B (A,

We denote by I'(g) the Riemannian connection of ge R°. Let ¥° be the set of
flat Riemannian connections of class H*. For 'e X¥*7', set

Fi={geF; I'(g)=T}.
Furthermore, for ge R°, let us define

E,:S5—>R°; h—>gexp(g 'h),
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where g~ 'h is an endomorphism of T,(M) at each x € M, given by h!=g*h,, in
local coordinates. Then E, is a C™ diffeomorphism with E,(0) = g (see [8, p. 36]).

PROPOSITION 3.2. Let TeX*™' and ge %}, s>(n/2)+1. Set PS3(g)=
{heS5; V,h=0}. Then,

(a) F1= E,(PS5(g)), and ;. is a finite dimensional closed C* submanifold of
R*. Moreover, the tangent space of ¥, at g is

T, (Fr) = PS5(g).
b) F =" (F)={n*yeR": neD*"", yeF}, and F° is a closed C*
submanifold of R*. Moreover,

T, (F°) = PS5(g)D (8 ) *(A™™).
Proof. See Fischer and Marsden [6, Theorem 1.3.3], [7, Theorem 6].

In the remainder of this section, let us prove the following Proposition 3.3. For
g € ¥y, set

S(g) = E,((83)'(0)).
Then we have the following.

PROPOSITION 3.3. (a) S(g) is a closed C* submanifold of R*, and F7 is a
closed C” submanifold of S(g). Moreover,

T,(S(8)) = (8)'(0).

(b) For any neighbourhood V of g in S(g), there is a neighbourhood U of g in ®°
such that U< @+'(V).

Proof. (a) We have PS3(g)<(5}) '(0)= S35, where each subspace is closed.
Therefore, the assertion is obvious because E, is a C* diffeomorphism.

(b) By the regularity theorem ([6, Theorem 1.3.1], [7, Theorem 5]), there is
ne P! such that n*g=g’ belongs to %. Hence, the orbit O°(g) through g is
equal to O°(g’) and is a C” submanifold of ®°. Let N= N(O°(g)) be the normal
bundle with respect to the weak Riemannian metric y — (,)3 ([8, pp. 30-31]). We
define E:N— ®° by E(y, h) =E,(h), where ye O°(g) and he N, =(83)7'(0), N,
being the fibre of N at . Then, it is easily shown that E is a C* map and
E(n*y, n*h)=n*E(y, h) holds for n € @**'. Moreover, the first derivative of E
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at (g, 0) is given by
dE(g,0) (h', h"y=h"+h",

where h'e T,(O*(g)) = (8"")*(A*"") and h"e N, =(83) '(0). Thus, dE(g,0) is an
isomorphism (Lemma 3.1). Therefore, there are a neighbourhood U’ of g in R®°
and a neighbourhood W of (g, 0) in N such that E: W — U’ is a diffeomorphism.
Let y > (,); be the strong Riemannian metric of R°. Then, the neighbourhood W
1s given by

W={(y,h)eN; ye W', (h, h),<e, >0},

W' being a neighbourhood of g in O°(g). For given V(< S(g)) there is &£'(<¢)
such that if V'={(g h)eN,; (h, h):<e'}, E,(V')< V holds. Set

V'={(v,h)eN; ye W, (h, h),<e’} =W,

and U= E(V"). Then U is open in ®° and satisfies U< @°"'(V). In fact, if v is in
U and y = E(n*g, h), then (n ")*h = h’ belongs to V' because (" ")*:85— S5 is
an isometry with respect to the metric (,)°. Thus, y=E(n*g n*h')=
n*E(g, h')=n*E,(h)c2**'(V). O

4. Derivatives of a,(g)

For ge®R, let {i}, Rj. R; and 7 denote the Christoffel symbol, the
curvature tensor, the Ricci tensor and the scalar curvature, respectively. The
curvature tensor is defined by

st sl )

in terms of the local coordinates (x').
It is known that the Minakshisundaram’s coeflicient a, is given by

1

27360

1
165) QIRP=21pP+57dV(g) = 35F (o)

Where |R[? = R;,,R"™™ and |p]*= R,RY (cf. [1],[2], [3]).
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It is easily shown that Spec (M, n*g) = Spec (M, g) for n€ D and ge R, hence
F(n*g)= F(g) holds.

The function F can be regarded to be defined on R° if s >(n/2)+4. We write
this function F°.

PROPOSITION 4.1. The function F* on R° is of C class.

We need the following lemma which was proved in [10, 11.3].

LEMMA 4.2. If ¢ and n are C” vector bundles over M and f:£€ —>n is a C”

fibre preserving map, then for s>n/2 the map f.:H*(§)— H’(n) defined by
fila)=foa is of C” class.

Proof of Proposition 4.1. We prove that g — f,,|R|*?dV(g) is a C” function. The
proof is done in two steps.

First step: ¢: g+ |R|* is a C* map of R’ into H*"*(M, R), the Hilbert space
of all H* ? functions. In fact, we have

IRI” = R{caRjm8a8"8 8"

Thus, as is easily shown, |R|* is a rational combinations of g, dg, dg, so that
|IR|?:J?(¢) > M X R is a C™ fibre preserving map, where ¢ is the fibre subbundle of
ST,(M) consisting of positive definite forms on each tangent space and J*(§) the
second jet bundle of & Noting that R° = H*(¢) < H* *(J*(£)), we can conclude
from Lemma 4.2 that ¢ is a C” map of R° into H* *(M, R).

Second step: The function :H* *(M, R)x%®°— R defined by (f, g)—
fmf dV(g) is of C” class. In fact, fix g€ R° and define n:R* — H*(M, R) by the
equation w(g) dV(g,) = dV(g). Then it is easy to see that the map u is of C™ class
(see [8]). The map ¢ is decomposed as Y =,o(idxu), where
Y,: H 2(M, R)x H*(M, R) — R is defined by (f, f') — [mff’ dV(g,). Since p and
Y, are C~ maps, ¢ is of C” class.

Finally, the function g+~ fy|R[> dV(g) is decomposed as follows:

H' *(M, R)x H*(M, R)

%:( " U

R 20X, F2(M, R)X R° —%—> R
1 ¢ ]
§ ——  (RFg) — jM|R|2 dv(g)

Since ¢ and ¢ are C* maps, g~ [p| R[> dV(g) is of C” class.

It is similarly shown that the functions g — fy|p|*> dV(g) and g+ 7> dV(g)
are of C” class. []
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PROPOSITION 4.3. F*(n*g)= F*(g) holds for ne®**",

Proof. The action S;x @**' — S5 is continuous ([8, pp. 17-18)), and F* is of
C™ class. Hence, the proposition follows from F(n*g)= F(g) for ge R and n € 9.

Now, we give the formulas about the derivatives of F°, which have been
calculated in the previous paper [5].

PROPOSITION 4.4. For ge R° and h € S5, the first derivative of F" is given by

dF*(g)(h) = ijg), BY dV(g)= jMT,-,<g>h" dv(g), @.1)

where

T;(g)=12V V r— 6V, kau + 8RikR;< - 4Rk1m1ka + 4Ri’<"”R;(m

V and the curvatures being induced from g. Therefore, if ge F°, then dF*(g) =0,
i.e., a flat metric is a critical point of F*.

Proof. This is a direct but tedious calculation (cf. [5]).

Remark. T(g) is an element of S37*, and g~ T(g) is a C” map of R®° into
S:7*. This is proved on the same lines as Proposition 4.1.

PROPOSITION 4.5. The second derivative of F* at ge R° is given by

d’F*(g)(h, k)= J’M([dT(g)—F%T(g)tr(g)]h, k), dV(g), (4.2)

where tr(g)h = g"hy. In particular, at g %",

L (g)(h, h) =3 j [6(AR2)(V,V k) + 3(AR3)

M
AV (VY R = 2V, VRN (VET R (4.3)
+ (Vi VRV, V™ hy)] d V().
Proof. This is obtained by straightforward calculation starting from (4.1).

Remark. dT(g)+(1/2)T(g)tr(g) is an element of L(S5; S5 *), the space of all
continuous linear maps of S} into S5°.
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5. Weak Morse lemma for normed spaces

In this section we establish the weak Morse lemma for normed spaces. This
work is motivated by Tromba’s paper [11], in which the Morse lemma for
almost-Riemannian manifolds is considered.

Let X,, X5, - - be normed vector spaces, and define L(X,,..., X,; X,,,) as
the normed vector space of all continuous k-linear maps of X, ... X, into X, ,.

Let B be a continuous bilinear form on a normed vector space X, i.e.,
Be L(X, X; R). B is called the weak inner product of X if (a) B(x, y) = B(y, x), (b)
B(x, x)>0 for x#0. The space X with B is regarded as a pre-Hilbert space
denoted by X;. Let XB be the completion of X, and B the continuous extension
of B to XB. Thus the space Xﬁb is a Hilbert space with inner product B. The
canonical injection X — XB(XB) is continuous.

Let f: X — R be a C* function, k =2.

DEFINITION. The C* function f is of Cj class if
(a) for each x € X, the second derivative d’f(x) belongs to L(Xj, X;: R).
(b) x = d*f(x) is a C*"* map of X into L(X,, X;; R).

Suppose X =Y XZ (the product normed space), and f:X—R is a Cj
function (k=2). We have
d*f(x)((u, v), (u', v")) = Dif(x)(u, u') + D; D,f(x)(u, v')
+ D, D, f(x)(v, u') + D3f(x)(v, v').

where (u,v), (u', v')e YX Z, and D,f(x) (i=1,2) is the partial derivative of f at x
with respect to the i-th variable. Since f is of Cj class, there is a unique
B(x)e L(Z;; ZB) such that

2f(x)(u, v) = B(B(x)u, v),
for u, ve Z. Moreover, x — B(x) is a C*"? map of X into L(Zg; ZB).

DEFINITION. Let K be a subset of Y. The subset K x {0} of X is called the
B — nondegenerate critical subset of f, if for each x € K x{0},

(a) df(x)=0, and

(b) B(x), the continuous extension of B(x) to Z,, is invertible.

We are now ready to state and prove the following.

PROPOSITION 5.1(weak Morse lemma). Let f:X=YXZ—R be a Cj
function, k=2. Suppose K is a compact subset of Y. If the subset KXx{0} is a
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B-nondegenerate critical subset of f and f(K x{0})=0, then there are a neighbour-
hood V of the origin in Z and C*™ map ¢:K x V— Z, such that

(a) ¢(x)=0 if and only if x=(y,0), and

(b) f(x) =2D3f((y, 0)(b(x), d(x)), x=(y, 2) €KXV,

where D3f(x) is the continuous extension of D3f(x) to Za X ZB.

Proof. By the Taylor’s formula we have

F((y, 2)) = j (1= \)D2f((y, \2))(z, 2) dA.

0

Set

Hy, 2)(a, ) = j (1= ND2f((y, A2))(, v) dA.

Then, J(y, z) belongs to L(Z,, Z;; R) since f is of Cg class. Therefore, we can
write J(y, z)(u, v)= B(B(y, z)u, v) and D2f((y, 0))(u, v)=2B(B(y, 0)u, v) where
B(y, z) e L(Zg; ZB). Let E(y, z) be the continuous extension of B(y, z) to ZB.
Then, (y, z)— B(y, z) is a C*"2 map of X into L(ZB; ZB). Moreover, B(y, z) is
self-adjoint for each (y, z). Since l§(y, 0) is invertible and K is compact, so f?(y, z)
is invertible in KX V', V' being a neighbourhood of the origin. Define Q(y, z)=
B(y, z) 'B(y, 0) and Q is a C*~2 map of Kx V' into L(Zy; Z;). Now Q(y, 0)=
identity and since a square root function is defined in a neighbourhood of the
identity operator by a convergent power series with real coefficients, we can
define a C*2 map R:KX V(< KX V’)—>L(2’B;Zﬁ) with each R(y, z) in-
vertible and Q(y, z)=[R(y, z)]>. We see easily from the definition of Q
that Q(y, z)*B(y, z)=B(y, 2)Q(y, z) hence R(y, z)*B(y, z)=B(y, 2)R(y, z)
holds. Thus, we have R(y, z)*fi(y, Z2)R(y, z)= I§(y, 0), or l§(y, z)=
R(y, 2)*B(y, 0)Ry(y, z), where R(y,z)=R(y,z)"". Now, set ¢((y,z))=
R,(y, z)z, and we have

f((y, 2)) = B(R\(y, 2)*B(y, 0)R(y, 2)z, 2)
= B(B(y, 09 ((y, 2)), o((y, 2)).

Finally, ¢((y, z))= R;(y, z)z =0 holds if and only if z=0, because R(y, z) is
invertible. [0

COROLLARY 5.2. Besides assumptions in Proposition 5.1, assume that
i D3f((y, 0))(u, u)>0

holds forye K and u(e Z) # 0. If f(x) =0 and x € K X V, then x belongs to K x{0}.
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Proof. From Proposition 5.1, we have only to prove that 53\)“(()1, 0)(u, u)>0
holds for any u(623)¢0. Suppose there is u#0 such that @((y, 0)(u, u)=
B(B(y, O)u, u)=0. Then, infg, ,)-; é(B(y, 0)u, u) =0, hence zero belongs to the
spectrum of I§(y, 0), which is absurd because I§(y, 0) is invertible. [

In the remainder of this section we give a supplement.

Let us define a C™ map x(€ X)+> B(x) (the weak inner product of X) such
that the topology of X, does not depend on x. We call this map the weak C~
Riemannian structure of X. Let B=B(0). Then, for each xe€ X, there is
C(x)e L(X;; X;) such that

By, 2)=B(C(x)y, 2),  y, z€ Xy =Xp),
and x — C(x) is of C™ class. Moreover, we can easily prove the following.

PROPOSITION 5.3. Let f: X — R be a C* function (k=2). f is of Cj class if
and only if

(a) for each xe€ X, d*f(x)e L(Xg(x) Xax); R), and

(b) if B(x) is given by d*f(x)(u, v)=B(x)(B(x)u, v), then x —> B(x) is a C*2
map of X into L(X;; XB).

6. Proof of the main theorem
In this section we prove the following theorem and Theorem A.

THEOREM A'. Let ye % and s be sufficiently large. Then, there is a neigh-
bourhood U< R’ of y such that if ge U and F°(g)=0, g is in &F".

We define f:S5—> R by f=F*°E,. Let f be the restriction of f to X=
(85)7'(0)(<= S5). Then, f is a C* function (Proposition 4.1). Let Y = PS5(y). We
have the following from Propositions 3.2 and 4.4.

PROPOSITION 6.1. f(y)=df(y)=0 holds for each ye Y.

We apply Corollary 5.2 to the function f on the Hilbert space X.
Let us introduce a weak C” Riemannian structure on X. First, we define a
weak Riemannian metric on R° as follows;

(h, k), = J [(h, k) +2(Vh, VKY+(VV h, VVk)9] dV(g)
Mo (6.1)
=((1+A4,)%h, k)?,
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where L_Sg is the rough Laplacian defined by (ﬁgh.)il = —g"'V,V,h; in local coordi-
nates.

LEMMA 6.2. Let L, =(1+Zg)2. Then, the maps
R*X S — 8574 (g, h)— L,h,

and
R x Sy — S5; (g h) > Ly 'h

are of C” class.

Proof. First, we note that for each ge R°, L, has a continuous linear inverse
L.'. In fact, the differential operator (1+A4,)? is an injective self-adjoint elliptic
operator. Therefore, L, is surjective by the decomposition theorem (e.g.
[12, Ch. XI]). Furthermore, by the open mapping theorem L, has a continuous
inverse.

Now, it is easily shown that (g h)—> L is C* (cf.[13,Lemma 2.11}).
Moreover, it follows that g+~ L, is a C” map of ®° into L(S3; S5 ). On the
other hand, L,— L;' is a C” map (e.g. [14, Ch. 8]). Therefore, g—L,"' is C”
and accordingly (g, h)— L;'h is C”. [

PROPOSITION 6.3. The Riemannian structure defined by (6.1) is of C” class.

Proof. The proposition follows from Lemma 6.2 and the proof of Proposition
4.1. O

Now, we define a C” Riemannian structure 8(x) on S; as the pull-back of (,),
by E,. Namely,

B(x)(y, z) = (dE, (x)(y), dE, (x)(2)),,

where g =E, (x). /\
Let B =B(0). Obviously, (S3); = S3 holds.

PROPOSITION 6.4. The function f: X — R is of C; class.

For the proof we first prove the following lemmas.
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LEMMA 6.5. The first and the second derivatives of E, are given by

o]

dEy<x>(y>=v[k;(kH)!

{(y "x) (v y)}J,

and

- 1
CE®0.2)=| T g {0 %M 2

respectively, where {A, A, -+ A} =20 A1, Av " " " As)» the summation being
taken over all permutations o of (1,2,..., k).

Proof. These are straightforward calculations.

From this lemma we immediately obtain

LEMMA 6.6. For each x€ X, dE,(x)€ L((S%)4; (S3)s) and d’E, (x) € L((S5)g,
(S3)s: (S3)p). Moreover, the maps

S5 — L((S5)s:(S3)p): x = dE, (x),
and

S5 —> L((83), (S3)p; (S3)p); x = d*E, (x)
are of C* class.

Lemma 6.7. For each ge ®°, dF*(g)e L((S})s; R) and d’F’(g)e L((S3)s; R).
Moreover, the maps

R — L((S5)s; R); g — dF°(g),
and
R* — L((S5)p, (S5)s; R); g — d*’F*(g)

are of C” class.
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Proof. From Proposition 4.4 and 4.5 we obtain

dF*(g)(h) =(T(g), h)g= (L. 'T(g), h),,
d*F(g)(h, k)= (L '[dT(g)+3T(g) tr (g)]h, k),.

Hence, using Proposition 5.3, we have dF°*(g)e L((S3);; R) and d°F’(g)e
L((S5)g, (S5)g; R). Moreover, it is easy to check that g+~ dF*(g) and g+ d’F*(g)
are C*.

Proof of Proposition 6.4. We have
d*f(x)(y, z) = > F*(E, (x))(dE, (x)(y), dE, (x)(z)) + dF*(E, (x))(d’E, (x)(y, z)).
Therefore, the proposition follows from Lemmas 6.6 and 6.7. [

At the origin of X we have d2f(0)(x, x)= d*F*(y)(dE, (0)(x), dE, (0)(x)) =
d’F*(y)(x, x). Since x €(8})"'(0), we have the following from Proposition 4.5.

d*f(0)(x, x) = 3[ [3(Ax3)?+(V,V*x")(V,V'x,)] dV(y)

=3(L;'[A2+3y tr (y)AZ]x, x), (6.2)
=3B(L;'[A%+ 3y tr (y)A2]x, x).

Set D=A2+3ytr(y)A2. The symbol of the differential operator D is
given by o(D)(v)x = (|vl|*+ 3y||v||* tr (v))x, for ve TI(M) and x € ST,(M). Thus
o(D)(v)(v#0) is injective. Hence, by the decomposition theroem ([9, Theorem
4.11]), we have

S5 =range(D)®ker(D), (6.3)

because D= D*(the L*-adjoint of D). Moreover, it follows that D*=D*D is
elliptic, and D?*:S5— S57® is a Fredholm operator.
LEMMA 6.8. ker (D)= Y(= PS*(y)).

Proof. From (6.2), Dx =0 holds if and only if V,V*x; = Ax;=0. This condition
is equivalent to Vx =0, i.e., x€ Y, because M is connected and compact. []
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Set Z =range (D)N X, and we have a decomposition,
S5=(8"Y(AHBYDZ

We immediately obtain the following from (6.2).
PROPOSITION 6.9. d*f(0)(z, z)>0 holds for z(e Z) #0.
Since V_(L,'D)=(L,'D)V, for ye %, we have

L;ID((8;+1)*(As+I)) c (8;+1)*(As+]),
L,'D(X)c X, L;'D(Z)cZ (6.4)

Hence, we get from (6.2),
B(0)=3L,'D:Z,(=S3) — Z,.

LEMMA 6.10. B(0) is invertible

Proof. Obviously, B(0) is injective, hence, by the open mapping theorem we
have only to show it to be surjective. From (6.3) (by replacing s with s-4), we have

Ss=range (L,'D)+ L' (ker (D)),

Since L' (ker (D)) =Y, we conclude that Z=L}'D(Z)=(L;'D)*(Z) by noting
(6.4). Hence (L;'D)*(Z,) is dense in Z,. On the other hand, (L;'D)X(Z,)=
(L;")2D?(Z,) is closed because (L;')2D?:S2— S2 is Fredholm. Therefore,
(L;'D)X(Zg) = Z5, which leads to B(0)(Z,)=(3L;'D)(Zs)=Z,. O

From this lemma we have the following.

PROPOSITION 6.11. There is a compact B-nondegenerate critical subset
K<Y of f: X(= Y®Z)— R, which contains the origin.

Proof. Noting Lemma 6.10 and that f is of C; class, we see that there is a
neighbourhood W< Y of the origin such that B(y) is invertible for y € W. Since Y
is of finite dimension, so locally compact, there is a compact subset K=U'<
W (U’ being the closure of the open set U’) which contains the origin. [

We are now in a position to prove Theorem A'.

Proof of Theorem A'. From Propositions 6.1, 6.4, 6.9 and 6.11, the function
f:X(= Y®Z)— R satisfies the assumptions of Corollary 5.2. Let K=U' and V
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be the sets mentioned in Corollary 5.2. Since E, : X — S(vy) is a C™ diffeomorph-
ism, there is a neighbourhood W=E (U'+ V) of vy in S(7y) such that F*(g)=0
implies ge & (I'=T(vy)) if ge W. From Proposition 3.3, (b), there is a neighbour-
hood U of y in R* such that Uc @**'(W). Then U satisfies the assertion of the
theorem because #° = P°*"(%}), and F*(n™g) = F’(g) holds for n € @**' (Propos-
ition 4.3). (OJ

By virtue of Theorem A’ we prove Theorem A.

Proof of Theorem A. Let ye % and U(<=R’) be the neighbourhood men-
tioned in Theorem A'. Then, U'= UN®R is a neighbourhood of y in R because
the inclusion map R — R° is continuous (Sobolev lemma). This neighbourhood
U’ satisfies the assertion of Theorem A. []

Remark. The space R is an ILH-manifold [13]. Moreover, it is easy to see
that & is an ILH-submanifold of &.

7. Supplementary discussions

The purpose of this section is to prove the following theorem, which “‘glob-
ally” characterizes flat metrics.

THEOREM 7.1. Suppose n =dim M <6 and ¥# ¢. Then,
F=F '(0).

The theorem for n <5 was proved by Patodi [2]. We give the proof for n = 6.
Hereafter, we assume n =dim M = 6.
The following is due to Tanno [3, Lemma 1].

LEMMA 7.2. If F(g)=0, then (M, g) is conformally flat and the scalar
curvature 7 is vanishing.

The Gauss-Bonnet-Chern formula for n=6 is given by

1
3847

—24R*R™ Ry, +24R*RI" Ry, — 8R¥"R;, R!

ij ims

—2RY RYGR™;1dV(g).

x(M) = J- [7°—127|p|*+37|R]*+ 16 R\ R/, R,
M
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When (M, g) is conformally flat and 7= 0, this reduces to

1
25647

XM= [ RIRIRE Vi) (7.1)

LEMMA 7.3. Suppose (M, g) is conformally flat and +=0. If x(M)=0, then
leik = ()

Proof. By Tanno [3, Lemma 2], if (M, g) is conformally flat and 1= 0, we have
| WRI@RMaV()= 3| RIRLR:aV(g).
M M
Using (7.1), we get V,R, =0 if x(M)=0. O

Proof of Theorem 7.1. Since F# ¢, x(M) =0 holds. Tanno [3, Proposition 5]
showed that if (M, g) is conformally flat and 7=V R, =0, then (M, g) is either (1)
locally flat, or (2) Riemannian product S*(c)x[H?(—c)/A], A being some dis-
continuous group of isometries of H*(—c). On the other hand, the homotopy
group m;(S>(c) X[ H*(— ¢)/A]) = Z, hence the manifold S?(c)x[H?(— c)/A] has no
flat metrics (Cartan-Hardamard Theorem). Now, the proof is completed by virtue
of Lemmas 7.2 and 7.3. [

Remark. For n=7, the author does not know wether there is such a manifold
that satisfies

F ' 0)# F+#¢.
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