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Cohomologically complète and pseudoconvex domains

Michael G Eastwood1 and Giuseppe Vigna Suria2*

§0. Introduction

An open subset D of a Stein manifold may be studied from a number of
différent viewpomts On the one hand, there are the essentially géométrie
conditions of q-pseudoconvexity m vanous forms and, on the other hand, the

more analytic aspects of Dolbeault cohomology and extendibility of holomorphic
functions or cohomology classes (cf [1], [2], [3], [4], and [13])

The object of this paper îs to hnk some of thèse concepts by an indirect but,
we beheve, rapid method using certain natural cohomology classes denved in §1

It should be mentioned that thèse classes can be represented directly by means of
certain forms (cf [5] and [11]) although we shall not use such représentatives
exphcitly in this paper After bnefly reviewing the vanous notions of q-
pseudoconvexity m §2 the "test classes" are used in §3 to compare thèse notions
(Theorem 3 8) In particular, we obtamed the interesting conclusion that if D has

C2 boundary with HP(D, Û) 0 for p>q then D îs q-complète, this gives an

answer to a spécial case of a conjecture proposed m 1962 by Andreotti and

Grauert [2]
The test classes also turn out to be useful m discussing extendibility questions

for cohomology classes (considered in [3], for example) and such questions are
studied in §3, §4 and §5 An interesting application of thèse methods gives a

lower bound on the number of analytic functions needed to define an analytic
subvanety just "touching" D in terms of extendibility of cohomology classes

(Theorem 5 7)

§1. The test classes

Suppose jR îs a commutative ring with îdentity and fl9 /2, ,fneR If we

regard thèse éléments as a column vector feRn /\lRn, then we may define the

*Supported by "Consigho Nazionale délie Ricerche" pos 204 804
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414 M G EASTWOOD AND G VIGNA SURIA

Koszul complex K'(f) by

K'(f) /\'(Rn), with differential dw fAw.

There is an analogous construction for a sheaf of rings and n sections thereof to
give a Koszul complex of sheaves 3T(/).

Now suppose M is an n-dimensional Stein manifold with structure sheaf 6. If
xeM it is always possible [6, Satz 1, p. 91] to find n holomorphic functions

fli fis • • • > fn SUCn tnat

{x} {yeMs.t. A(y) /2(y)= • • • =/n(y) 0}.

If thèse functions give local coordinates at x (which can always be arranged), then

we shall dénote them by z,, z2, • •., zn. It is easy to see that 3T(/) is exact on

M-{x} so we may break it up into short exact séquences:—

0->iPa(f)->3irn-s-1(/)-^^_1(/)-*0 for 0<s<n-2,
where

se-x(f)=e=yr{f) and ^2(/)
The Connecting homomorphisms of the corresponding long exact séquences on
cohomology may be composed to give

at(/):Hp(M-{x},#.(/))^H*+fc+1(M-{x},.SPï+k+1(/)) for fc>0

and in particular (if n ^ 2)

as(f):r(M, ©) F(M-{x}, 0) H°(M-{x}, i?_,(/))->Hs+1(M-{x}, #,(/)).

Hence we obtain test classes «s(g,/) as(/)(g) in HS+1(M~"{^},&s(f)) for
holomorphic function g on M and for 0<s<n-2. If g 1 then we shall dénote
thèse test classes by as(x, f).

If D is an open subset of M then there is (see [12]) a Stein manifold E(D)
called the envelope of holomorphy of D which contains D and is characterised by
the property than every holomorphic function on D extends uniquely to E(D).
E(D) is not necessarily a subset of M because sheeting can occur and in gênerai
E(D) will be a Riemann domain over M with projection ir:E(D)-*M, say. This
notation will be retained for the rest of the paper. A reason for calling the
cohomology classes as(g, /) "test classes" is given by the following theorem:
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l.l.THEOREM. Suppose xeM-D and g is chosen with germ at x not
contained in the idéal generated by the germs of the functions fx,f2, • • • ,fn (for
example if g(x) ^ 0). Then

where a()(g,/) |D means the image of ao(g,/) under restriction:

Proof. Follows exactly the argument in [5, Theorem 2.1 ] where the case g 1

is proved.

If HP(D, €) 0 for 1 < p < n - 1 then it is easy to show that H1 (A iP0(/)) 0

for any / defining a point xe M — D and hence (as in [5]) we may deduce that D is

Stein. This suggests that we could use the test classes as(x, f) |D for 0<s<n — 2to
measure how far D is from being Stein. It follows from the above theorem that
whether ao(x, f) \D vanishes or not dépends only on x and D, and is independent
of choice of /. We will show that the same is true of as(x, f) \D if we restrict to the
case where /l5 /2,..., fn form a local coordinate System near x. So suppose / is a

gênerai collection of functions defining xsM-D and z is a collection which give
local coordinates near x. Then:

1.2 PROPOSITION. For any s, as(xj) |D =0=>as(x, z) |D 0.

Proof. If $ dénotes the idéal sheaf of {jc} and (?nXn the sheaf of germs oi nxn
matrices of holomorphic functions then

LU W

Ai >Az

is surjective, and hence the corresponding map on sections over M is surjective
too by Cartan's theorem B. This shows that there is a matrix A of holomorphic
functions on M such that Az f. A may be regarded as a sheaf homomorphism
A:€n-+6n and hence gives rise to A : /\'ûn-> f\'Ûn. A(z a w) Az a Aw
/a Aw so A :3tC'(z)-*3T(f) is a map of complexes. Less obvious is that A also

induces a map A*:3T(f)-*X(z) which in some sensé is adjoint to A. A* is

defined by *A* Al* where Ae means A transposed and * is the Hodge

*-operator. We observe that A*:^n(/)-^^n(z) is just the identity and hence,
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from our définitions, the induced map A*: Hs+1(M-{x}, «SPS(/))->

Hs+l(M-{x}, Ses(z)) takes as(xj) to as(x, z). The same is true over D i.e.

<xs(x, z) \d A*(as(x, f) |D). Thus as(x, /) |D 0 gives as(x, z) \D 0 as required.

1.3. COROLLARY. Whether as(x, z) |D vanishes or not is independent of
choice of functions zu z2,..., zn. D

This corollary allows us to simplify notation and write as(x) instead of as(x, z)
in the following définition and for the rest of this paper.

1.4. DEFINITION. The projected q-envelope of holomorphy of D is the set

^O} for 0<q<n-2,

and we say D is a-q-complète if and only if D Eq(D).

By construction aq(x) |D 0=£>aq+1(x) |D 0 so we have

D c En_2(D) c En_3(D) ç • ¦ • c EX(D) c E0(D) tt(E(D)),

where the last equality follows from Theorem 1.1. Unfortunately it is not clear that
EQ(D) are open except in case q 0 although this does appear to be true in ail
cases we have checked.

In what follows we shall compare a-q-completeness with other related proper-
ties of open subsets of Stein manifolds including cohomological completeness and

q -pseudoconvexity.

§2. Hartogs figures and q-pseudoconvexity

Let A dénote the open unit polydisc in Cn and define for each integer q in the

range 1 < q < n - 1 the qth Hartogs figure Hq by

flq={ze4s.t.|zJ|<è for />q}U Û {z eâ s.t.è<|zJ| <1}.
i

Since each of the sets in this union is Stein it follows that H^iH^ Sf) 0 for p > q
and any cohérent analytic sheaf if. By using this cover and comparing coefficients
in Laurent séries expansions it is easy to show that Hp(Hq, <9) 0 for l<p<q
also (see [2, p. 218]).
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2.1. PROPOSITION. Eq_,(Hq) A (yet Eq(Hq) Hq).

Proof. Writing just S£s instead of i?s(z) we hâve Hq+1(Hq, ï£q) 0 since £q is

cohérent and so aq(x) |Hq 0 for ail xeCn-Hq, Thus Eq(Hq) Hq.
On the other hand, consider the exact séquence

3if»-s-i js merejy ^e direct sum of some number of copies of 6 so

Hs(Hq, ^n sl) 0 for l<s<q and we can conclude that as(x)|Hq 0 implies
o,_,(x)|Hq=0. Thus Es(Hq) Es^(Hq) for l<s<q and hence" Eq_l(Hq)
E()(Hq). However, an application of the Cauchy intégral formula shows that the
envelope holomorphy of Hq is A so E0(Hq) A by Theorëm 1.1.

In the above proof, Eq_1(Hq) E0(Hq) was deduced from Hp(Hq, O) 0 for
so the same can be said for Hq as in the following définition.

2.2. DEFINITION. An open subset Hq of M is said to be a gênerai q-Hartogs
figure if and only if Hp(Hq, €) 0 for 1 < p < q. D is said to be Hartogs q-complete
if and only if for any gênerai q + 1-Hartogs figure Hq+1 ç D, also 7r(E(Hq+1)) c D
(or, équivalent^, £0(Hq+1)çD). Cf. [7, Définition 2.1, p. 35].

We now recall the basic définitions of q-pseudoconvexity and q-completeness.
If x0 e dD, the boundary of D, it is always possible to find a neighbourhood U

of x0 and a defining function of class C2 <f>: U—^U such that

Dn[/ {xG[/ s.t. <f>(x) < <f>(x0)}.

If 4> can be chosen to be non-singular at x0 we say that D has C2 boundary at x0
and if this is true at ail points of dD we say D has C2 boundary. If </> is a

non-singular defining function near xo and zt, z2,..., zn are local coordinates
centred on x0 then we consider

the complex Hessian.

The Levi form (^>)(x0) is defined to be the restriction of (%<f>)(x0) to the

holomorphic tangent space to dD at x0. It is easy to check that the number of
négative, zéro, and positive eigenvalues of (3?<t>)(xQ) are independent of choice of
<t> and coordinates. Thus they are invariants of D near x0 and we will dénote them

by n(x0), z(x0), and p(x0) respectively. If D has C2 boundary we say D is weakly
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(resp. strongly) q-pseudoconvex if and only if n(x)^q(resp. n(x) + z(jc)^q) for ail
xedD (cf. [4, p. 209]).

If D does not hâve C2 boundary we can still make the following définition [13,

p. 433]; D (which only need be a complex analytic manifold) is said to be

q-complete if and only if we can find an exhaustion function c/> : D—»IR of class C2

such that

(1) {xgD s.t. (f)(x)<c} is compact for ail ceU.
(2) ($?$)(x) has at least n-q positive eigenvalues for ail xeD.
Finally we say [13, p. 443] D is cohomologically q-complete if and only if

HP(D, 9>) 0 for ail p>q and ail cohérent analytic sheaves $f.

Using Theorem 1.1 and well-known results (e.g. [9, esp. Ch IX] or [10]) the

following are équivalent:
(a) D is 0-complete,
(b) D is cohomologically 0-complete,

(b') Hp(D,<9) 0 for p>0,
(c) D is a-0-complete,
(d) D is Hartogs 0-complete.

Indeed, they are ail équivalent to:
(e) D is Stein,

and in this case we say D is a domain of holomorphy as if M Cn. If D has C2

boundary then [10, p. 49] (a) is équivalent to:
(a') D is weakly 0-pseudoconvex.

§3 Inextendibility of cohomology classes

We now want to investigate what happens if we replace 0 by q in the
statement at the end of the previous section. We start with some well-known or
simple implications.

3.1. THEOREM. If D is q-complete then it is also cohomologically q-
complete.

Proof. [2, p. 250]. The notation there is slightly différent.

3.2. LEMMA. If HP(D, O) 0 forp>q then HS(D, £^x) 0fors>q.
Proof The conclusion is vacuous unless q < n - 2 so we may assume that this is

the case and, in particular, that Hnl(D, 6) 0. The long exact cohomology

séquence of 0-»££s—?3P~s~1-*i£s_1-^0 together with the hypothèses show that
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H'(D, .#,_,) Hs+1(D,i?J for s>q

Thus Hs{D,<£sX) Hn~\D,%n^2) Hn\D, O) 0 for s>q. D

3.3. PROPOSITION. If HP(D, Û) 0forp>q then D is a-q-complète.

Proof. Lemma 3.2 implies Hq+\D,ï£q) 0 so aq(x)\D 0 for ail xeM-D.
Hence (see Définition 1.4) Eq(D) D so D is a-q-complete.

3.4. PROPOSITION. If D is a-q-complete then it is Hartogs q-complete.

Proof As remarked just before Définition 2.2 we know that for any gênerai

q+1-Hartogs figure Hq+1, E0(Hq+l) Eq(Hq+l). Hence, if Hq+l^D,

7r(E(Hq+1)) E0(Hq+1) - Eq(Hq+l) c Eq(D) D

where the last equality is by assumption. By Définition 2.2, D is Hartogs
q-complete.

To proceed further we discuss inextendibility of cohomology classes. Suppose

x e dD and îf is a cohérent analytic sheaf. Following Andreotti and Norguet [3, p.
199], we introduce

HP(D, x, <f) =lim HP(D H U, ^)

HÎ(DU{x}, ^) lim HP(D U [/, y)

where the direct limits are taken over ail open neighbourhoods U of x. Notice
that

h) otherwise.

There are restriction maps:
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p :HP(D U{x}, #>)-*Hp(D, Sf)

A : H?C5?) -» Hp (D, x, .S?) etc.

and an exact séquence (the Mayer-Vietoris séquence):

-»HP(D U{x}, <f)^Hp(D, &>)®IFx{<f)-+tP{p, x, SO~*HP+1(D U{x},

induced by the usual Mayer-Vietoris séquence. We say that ÇeHp(D, &>) is

extendible through x e dD if and only if £ g im p. From the Mayer-Vietoris
séquence we see that if p>0 then £ is extendible if and only if jll(^) 0. We say
that D is a q-domain of holomorphy if and only if, for ail x e dD, there exists p <q
and a cohomology class £efP(D, 0) which does not extend through x (cf. [1, p.
138]). For q - 0 this is just the usual définition of domain of holomorphy but for
gênerai q we shall see (Example 4.3) that there are many domains which are not
q-domains of holomorphy for any q.

Inextendibility of cohomology classes is closely related to pseudoconvexity.
Suppose x g dD and <f> is a C2 defining function in a neighbourhood U of x. The
following is due to Andreotti and Grauert:

3.5. PROPOSITION. If the complex Hessian W)(y) has at least fc(>2)
négative eigenvalues for ail y eU then there are arbitrarily small open neighbour-
hoods Q of x with

(1) Hp(DnQ,(9) 0 for l<p<fc-l
(2) The restriction map r(Q,€)-*r(DDQ,6) surjective.

Proof. [2, Proposition 12, p. 222]. D

3.6. COROLLARY 1. If D has C2 boundary and it is Hartogs q-complète
then it is also weakly q-pseudoconvex.

Proof. If x g dD and <f> is a C2 defining function, non-singular at x, whose Levi
form has at least q +1 négative eigenvalues then by considering instead the

defining function i// -e~c4> for c sufficiently large we can arrange that $f(i/>) has

at least q + 2 négative eigenvalues near x. Thus, if Q is chosen as in the
proposition, D D Q is a gênerai q 4- 1-Hartogs figure by (1) with tt(E(D H Q)) ^ D
by (2). This is in contradiction with D being Hartogs q-complète so our original
assumption must be false and consequently n(x)<q as required.
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3.7. COROLLARY 2. If D has C2 boundary and is a q-domain of holomorphy

then D is also weakly q-pseudoconvex.

Proof. If D is not weakly q-pseudoconvex then there is a point xedD with
n(x)>q. Then, arguing as in the first corollary, Proposition 3.5 shows that
(combining statements (1) and (2))

A : Hpx(€) -» Hp (D, x, 6) is surjective for p < q.

From the Mayer-Vietoris séquence it follows immediately that

p : Hl(D U{x}, Û)-^HP(D, €) is surjective for p <q

so, by définition, D is not a q-domain of holomorphy.

To complète this section we collect the results to prove the main theorem:

3.8. THEOREM. Consider the following statements for an open subset D of a
Stein manifold:

(a) D is q-complète
(a') D is weakly q-pseudoconvex (if dD is of class C2)

(b) D is cohomologically q-complete
(b') Hp(D,O) 0 forp>q
(c) D is a-q-complete
(d) D is Hartogs q-complete
(e) D is a q-domain of holomorphy

Then, (a)=>(b)=>(b')^>(c)ds>(d) and if, D has C2 boundary (a), (a1), (b), (bf), (c),
and (d) are ail équivalent and follow from (e).

Proof. (a)=>(b) is Theorem 3.1, (b)=>(b') is trivial, (b')=>(c) is Proposition 3.3,
and (c)=Md) is Proposition 3.4. If D has C2 boundary then (d)^(a') and (e)=Ma')
are the corollaries to Proposition 3.5. Hence, the only missing implication is

(a')=>(a). This follows from the same argument used in case q 0 [10, p. 50] and

an exhaustion function for D can be constructed from log(distance to dD).

§4. Counterexamples

We now discuss some counterexamples to missing implications in Theorem 3.8
when D does not hâve C2 boundary. The most interesting examples of such

domains are compléments of analytic subvarieties.
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4.1. PROPOSITION. Suppose V is an analytic subvariety of M with irreduci-
ble components V] such that, for any open Stein subset U of M, HP(U — Vv €) 0

for p^ 0 or dj — 1, where dl is the codimension of Vr (This happens, for example, if
the Vj are geomeîrically complète [8, Theorem 23]). Let D M-V. Then

Proof. If xeVj and d,<q + l then aq(x)|M_Vj is zéro since Hq+l(M-
VpJ£q) 0 by lemma 3.2. Thus, further restricting to D also gives zéro and we
conclude that EQ(D)^M- Ud,<q+i VJ. To show the reverse inclusion suppose
* G Vk - Ud,<q + i V, for some fc with dk >q H-1. Choose a Stein neighbourhood U
of x which avoids Udj=sq+1 Vr Then HP(U- Vk, 6) 0 for l<p<q-hl so as in

Proposition 2.1 we may conclude that Eq(U- Vk) E0(U- Vk). But by the
Riemann removable singularities theorem E0(U— Vk)= U so, as D^U~ Vk,

Eq(U-Vk) EQ(U-Vk)=U xasrequired.

4.2. EXAMPLE. Let M C4, V= VtU V2, and D M- V, where

V! - {z e C4 s,t, z! z2 0}, V2 {z g C4 s.t. z3 z4 0}.

Then, by [13, pp. 445-447], H2(D, 6)£0 so D is not cohomologically 1-

complete. By Proposition 4.1, however, we see that EX(D) D so D is a-1-
complete (and thus Hartogs 1-complète too). Also, since V may be defined by 3

functions (z1z3, z2z4, z2z3+ zlz4), it follows [13, Proposition 2.6, p. 435] that D is

2-complete. Thus D is a-1-complete but nothing better than 2-complete and

cohomologically 2-complete. In the notation of Theorem 3.8 (c)£>(b').
This example also provides a négative answer to the following: Is it true that if

D is a q-domain of holomorphy then, for ail xedD and ÇeHp(D, 6) p>q> £ is

extendible through x? The answer is yes if q 0 or D has C2 boundary for then

HP(D, 6) 0 for p>q. However, we claim that, in this example, D is a 1-domain
of holomorphy but that there is an élément of H2(D, 6) which does not extend

through the origin. To see that D is a 1-domain of holomorphy consider the

following commutative diagram with exact rows:

H\D,J{2)- -^ H\D,£e0) -^ H2(D,^)
k k h for any xeV.

H\D,x,%2) -* HHD, jc-SPo) -* H2(D,aJ
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Now since E()(D) C4 yet EA(D) D we hâve ao(x)\D£0 yet a1(x)\D=O. But
ai(x)|D ô(a0(x)|D) so there is an élément ^tffDJ2) such that <£(£)

ao(x) |D. For any polydisc neighbourhood A of x ao(x) \DnA is again non-zero by
Theorem 1.1 and the Riemann removable singularities theorem. Therefore
jul(£)^O and so, identifying %2 with C6, one of the components of £ does not
extend through x. Thus D is a 1-domain of holomorphy. On the other hand the

Mayer-Vietoris theorem shows that

H2(D,€) H\C4-{0}, 6)

and there is a cohomology class (a2(0) for example) in H3(C4 - {0}, 6) which does

not extend through the origin. It is clear that the corresponding class in H2(D, Û)
also fails to extend.

4.3. EXAMPLE. Finally we give an example of an open set D in Cn (n>2)
which is not a q -domain of holomorphy for any q. Simply take D Cn — A where
Â is the closed unit polydisc. Let x (1, 0,..., 0). Then D has flat boundary near
x so HP(D, x, €) 0 for ail p>l and hence every class ÇeHp(D,€) extends

through x. Moreover every analytic function on D extends across Â by Hartogs'
theorem.

This D does not hâve C2 boundary but the corners can clearly be smoothed
without destroying the example.

§5 The analytic touching niimber

There are some further results about inextendibility of cohomology classes

which can be deduced by thèse methods.

5.1. DEFINITION. If xedD define the inextendibility index k(x) by

k(x) min {q s.t. H^(0))-^Hq(D, x, 6) is not surjective}.

k(x) is well-defined by the following:

5.2. LEMMA. If jm(ao(x) |D) 0 in H\D,x,20) (for example if
Hq(D,x,Û) 0 for ail q>l) then H^(O) -* H°(D, x, 0) is not surjective, Le.

Proof Apply Theorem 1.1 to UHD where U is any neighbourhood of x so

small that ao(x) \unD 0.
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5.3. PROPOSITION. // D has C2 boundary at xedD then fc(x)>n(x). (Cf.
[3, théorème 1, p. 203]).

Proof. Follows from Proposition 3.5 along the same lines as the proof of
corollary 3.7.

The following question clearly has a positive answer if q 0: Is it true that in
the highest non-vanishing cohomology group HQ(D, 6) there is a class which does

not extend through at least one point of dD? If D has C2 boundary we can give a

positive answer for arbitrary q:

5.4. THEOREM. Suppose that HP(D, 6) 0 for p>q but that Hq(D, €) + 0.

Suppose also that there is a point xedD such that k(x)^q (which is always the

case, by Theorem 3.8 and Proposition 5.3, ifD has C2 boundary). Then there exists

Ç e Hq(D, û) which does not extend through x.

Proof. This is clearly true if q 0 so suppose q>l. By Lemma 3.2

Hq+1(D, £4) 0 so in the following commutative diagram with exact rows

it is possible to find ^H^DJ""^1) s.t. <{>(£) aq^(x)\D. We claim that
jtx (£) ^ 0 and, by the Mayer-Vietoris séquence, this will show £ does not extend
through x and so prove the theorem since 3£n~Q~l is merely a direct sum of copies
of Û. To prove the claim we will show ^(a^^x) \D) ^ 0. If jll(«0(x) |o) 0 then, by
Lemma 5.2, k(x) 0. But, by hypothesis, k(x)>q so for q>l (as supposed) we

may conclude that ii(ao(x) \D)^0. Thus, for some s>l, jLt(as_!(x) \D)£ 0 yet
ix(as(x) \D) 0. Then the exact séquence

HS(D9 x, ^nsl)->Hs(D, x, <%_!>-* HS+1(D, x, iP8)

shows H'IAjcF-8"1)^ and hence HS(D, x, O)£0. Therefore s>fc(x)>q.
Hence /ut(aq-i(x) |D) ^0 as required.

We now introduce another invariant motivated by the following:

5.5. PROPOSITION. Suppose D has C2 boundary at xedD. Then there exists

a neighbourhood U of x and s analytic functions gu g2,..., gs on U for s
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n(x) + z(x)+l (=n-p(x)) such that, writing

V {yeU s.t. gl(y) g2(y) fc(y) =0},

we hâve VP\D {x} i.e. V touches D at x.

Proof. [4, Prop. 6, p. 209].

5.6. DEFINITION. The analytic touching number a(x) of xedD is the least s

for which we can find s analytic functions gx, g2,..., gs near x which define a

subvariety touching D at x as in the above proposition.
Proposition 5.5 shows that a{x)<n(x) +z(x)+ 1. A lower bound is provided

by the following:

5.7. THEOREM. a(x)>fc(x)+l.

Proof. Suppose gi, g2, • • & are as in Définition 5.6. We suppose without loss

of generality that U, their common domain of définition, is Stein. Then, by [8,
Theorem 23, p. 154],

Hp(U-V,Û) 0 for p>s.

Thus, by lemma 3.2, HS(U- V, x, iPs_1) 0 and hence ^(«^(x) |D) 0. It fol-
lows, as in the proof of Theorem 5.4, that fc(x)<s- 1. D

The inequalities proved in this section for D with a C2 boundary may be

summarised as

< fc(x) < a(x) - 1 < n(x) + z(x).
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