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Steenrod squares in the mod 2 cohomology of a finite H-space

by James P. LiN*

§0. Introduction

In recent years the study of finite H-spaces produced some very surprising
theorems. I consider the theorem due to Emery Thomas, published in 1963 [9], to
be one of the most spectacular. For the class of H-spaces with primitively
generated mod 2 cohomology, the theorem describes a simple pattern of Steenrod
algebra connections between the algebra generators that depends only on the
dyadic expansion of the degree of the generator. Because most, but not all known
finite H-spaces have primitively generated mod 2 cohomology algebras, his results
imply a very rigid structure.

Of course, it is a very tantalizing problem to generalize results of Thomas to
non-primitively generated finite H-spaces. The purpose of this paper is to begin
this study. Thomas’ theorems turn out to be corollaries of theorems about
truncated polynomial algebras over the Steenrod algebra. In this paper we prove
his results by studying a secondary cohomology operation applied to elements of
the cohomology of the H-space. By considering Thomas’ theorem from this other
viewpoint, we also obtain theorems about generators of H-spaces with non-
primitively generated mod 2 cohomology. These theorems show there are Steen-
rod algebra connections similar to those for primitively generated H-spaces for
generators of large degree.

Finally, we point out an error in the proof of theorem 1.1 of Thomas’ paper.
This theorem claims that for primitively generated H-spaces X with PH®(X; Z,)
finite dimensional, the odd primitives are connected by certain Steenrod algebra
elements. This theorem is now open to conjecture.

I would like to thank many people for their assistance in writing this paper. I
thank Emery Thomas,.  David Kraines, John Harper and Alex Zabrodsky for
helpful conversations. I also thank Mamoru Mimura for his hospitality at Kyoto
University where the nucleus of the ideas was first created.

* Author was partially supported by the National Science Foundation and the Sloan Foundation.
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§1. The theorems

We begin by describing a theorem due to Thomas [9]. His theorem is

THEOREM 1. Let X be a finite H-space whose mod two cohomology
H*(X;Z,) is primitively generated. Then if a primitive element x has degree
2"+ 2"k —1 for some k>0, r=0, then

x=8q%y and Sq”x=0.

Remark 1. Note that every integar has a dyadic expansion. Thomas’ theorem
implies if (degree x)+ 1 is not a power of two, then x is in the image of a Steenrod
operation.

Remark 2. There is an error in theorem 1.1 of Browder and Thomas [3]. In
this theorem, they claim that if X has primitively generated mod 2 cohomology
then there is a structure theorem for H*(P,X;Z,)=A/D*A®S where the
splitting is over A(2)/(Sq").

We have A=®,Z,[y;,] where i:H*(P,X)— H*(X) has the property that i(y,)
form a basis for the odd primitives of H*(X;Z,).

The proof of the structure theorem is purely algebraic and depends only on
the exact triangle

H*(P,X) —> H%(X)

H*(X)® H*(X)

and the fact that H*(X; Z,) is primitively generated.
Therefore, consider the following possible Hopf algebra

H*(X;Z,)=Z,[x,]J® A (xs) with Sq'x,=xs.

This Hopf algebra is clearly primitively generated. If one performs the construc-
tion described in Browder and Thomas, there exist elements y € H°(P,X: Z,) and
ze H (P, X; Z,) with i(z) = x,, i(y) = x5 with Sq'(z) =y, and therefore Sq*(z%)=

2

y.



400 J. P. LIN

The conclusion of theorem 1.1 implies there is an A(2)/(Sq') splitting
H*(P,X; Z,)=Z[y)/y’®S,

where z2€S. But Sq?(z?)=y? contradicts this claim. The error in their proof
stems from misuse of the Cartan formula mod 2 in proving S is an A(2)/(Sq")
ideal. In the event that one assumes Sq'H®'*"(X;Z,) is decomposable, which is
true for finite H-spaces, one can prove S is an A(2)/(8q") invariant ideal, and
Theorem 1.1 holds true.

In a later paper, Theorem 1.1 is used by Thomas [9] to prove a theorem for
H-spaces that are not finite, but have PH°%(X;Z,) finite dimensional. This
theorem is now an open conjecture: Is Theorem 1 true if the word finite is
replaced by PH*"!(X;Z,) finite dimensional?

We now proceed to prove Theorem 1 using secondary cohomology operations.

The proof is by induction on r. For r=0 the theorem amounts to proving
PH?*(X;Z,)<im Sq".

Consider the following bundle induced over the contractible fibre space

K(Z,,2n—1) K(Z,,2n-1)
BE, > LK(Z,, 2n).
K(ZZ, n') > K(ZZ’ zn)

QBE, = E, has the homotopy type of K(Z,, n—1)®K(Z,, 2n—2). It is shown in
Zabrodsky [10] that the coproduct of the 2n —2 dimensional fundamental class is

Aiyy =1, 1 Q.

It follows that if E is a space which maps to E,

E—E,

with f*(i,_;)=u#0 and f is an H-map, then Af*(i,,_,) = u®u+0.
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In our case, let n=2k and let E be the bundle induced by

E

K(Z,, 2k) X K(Z,, 4k — 1) —> K(Z.,, 4k)
g*(i4n) = qunizn - Sql lgn—1-

There is an H-map (in fact infinite loop map)

A f
E— E,,,
because
K(Z,,4k —1) K(Z,, 4k)
i
v {
E ! > E,,

K(Z,, 2k) X K(Z,, 4k — 1) —> K(Z,, 2k)

K(Z,, 4k)

s K(Z,, 4k + 1)

1

is a diagram of infinite loop maps.
Therefore if v = f*(i,,) then

Av=u®u where #*(iy)=u
and

(i) = Sq " i1

Now to prove the theorem, PH?**(X;Z,)<image Sq', assume by induction
that the theorem holds for all even primitives of degree greater than 2k.

Given x € PH**(X;Z,), x> PH**(X;Z,). Therefore x>=Sq'y, for some y,.
By a simple argument (see Browder [2] p. 365, bottom) there exists x' = Sq'y’€
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PH?**(X;Z,) and (x—x')*=Sq'w where w is primitive. If x = x" we are done.
Otherwise x —x’' and w are primitive and there exists an H-map

h: X — K(Z,, 2k) X K(Z,, 4k — 1)

With h*(IZk) =X x’, h*(i4k,‘1) = W.
The relation Sq2*(x —x')=(x—x')>= Sq'w implies there is a lifting f: X — E
that makes the following diagram commutative:

K(Z,, 4k —-1)

|

A

~-———E
-

f -,
/

/

’

)é-—;—> K(Z,, 2k) X K(Z,, 4k — 1)

K(Z,, 4k)

Now the H-deviation of f is a map D: XA X — E.
Since @D is the H-deviation of h and h is an H-mayp, it follows that D factors
through the fibre

K@y, 4k~ 1)

X /

Dy i

/
X/(X—-I;»E

Hence

Af*(v) = F*®F*(Av) + D**(v) = F*Qf (u®u) + D*(Sq i e _1)
=(x—x)®(x—x")+ Sq' D*(iyy_,).

At this point, we use the fact that H*(X; Z,) is primitively generated if and only if
H.(X;Z,) is commutative, associative, and has no squares [7].
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If x—x'¢image Sq', there exists a t € Hy(X; Z,) with {t, x—x')# 0 and 1Sq' =
0. Hence

(2, FHo) = ®t, Af*(0))=(t®1, x —x'®x —x')+(t®t, im Sq")
=(t, x—xY#0.
Therefore if x—x' ¢ image Sq', t* # 0 which contradicts the fact that H*(X; Z,)

is primitively generated.
We conclude x = x'+(x—x')eimage Sq'. This proves the theorem in the case
v=0.
Before proceeding to the induction step, we will need a few more lemmas
concerning Hopf algebras and factorizations in the Steenrod algebra.

LEMMA 1. If A is a commutative Hopf algebra over Z,, p a prime, there is an
exact sequence [7]

0— P(¢A) — P(A) — Q(A).

COROLLARY 2. Let x and y be odd degree primitives in a commutative Hopf
algebra A over Z,. Then if x—y is decomposable, then x—y = 0.

Proof. x—y is decomposable primitive, hence x—ye P(¢A). But P(¢A) is
even dimensional. Hence x —y =0.
The following relations hold in the Steenrod algebra.

LEMMA 3
i—1
Sq*Sq*= ) Sq*B, >0, Sq'Sq'=0. (a)
=0
r—1
Sq*Sq* " " =Sq* ¥ "“+ ). Sq*b. (b)

i=0

Proof. These relations are easily proven by induction, using the Adem rela-
tions.

LEMMA 4. If xe H¥(X; Z,) has nonzero projection in QH*(X;Z,) and x =
8y for 6 € A(2), then y has nonzero projection in QH*(X; Z,).
Proof. This follows from the Cartan formula.

Now, armed with these lemmas, we return to the induction step of the
theorem.
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We may assume by induction that
PH***"'*"Y(X; Z,) < image Sq°, (1)

and Sq*PH*"?""*"Y(X;Z,)=0 for I<r.
By downward induction, we may assume

PH2,+2,+1k'»1(X; Zz) c image qu', (2)

and Sq*PH**?"*~Y(X;Z,)=0 for k'>k.
Then let x e PH***"'*"1(X;Z,). By Lemma 3

r—1
Sq2'+2'+‘k —_ Sq2'Sq2'”k + Z qulai-
i=0

1

We have Sqg®"'*x is primitive. Therefore
Sq*"*x=8q"y, by (1) ax=Sq"y, by (2).

For i >0, a;x and Sq*" "“x are odd primitives. By Lemma 1 they are indecompos-
able. By Lemma 4, the y, are indecomposable. Since H*(X; Z,) is primitively
generated, Corollary 2 implies we may choose the y;, for i>0 to be primitive.

Finally consider aox =Sq'y,. If ayx has nonzero projection in QH*(X;Z,)
then there is a primitive indecomposable w with ayx = Sq'w modulo decomposa-
bles. But then a,x—Sq'w is primitive decomposable in degree =2 mod 4. Con-
sider the exact sequence for A = H*(X;Z,)

0—— P(£2A) —> P(£A) —— Q(£A).

We must have 0(agx —Sq'w)# 0 because P(£°A) is concentrated in degree =
0 mod 4.

Hence there is a primitive generator z in degree 2" +2" 'k —1 with ayx—
Sq'w=2z>=8q"'(Sq*** '*72z). This implies ay,x =Sq'(w+Sq*** " "* ?z). Hence
we may choose y,=w+Sq*"*" '“"?z to be primitive.

We now have relations

qumkx = qu,yr, ox = qu‘y”
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where y, are all chosen to be primitive. Hence

4

r—1 —1
Sq” " x =897 Sq” “x+ ) Sq”ax =Sq¥Sq”y, + ). Sq7Sq”y,
=0

1=0) i

Now by Lemma 3

-1

SQZ’SqZIYJ = Z qulaj,lyl’

=0

and by induction «,y, = Sq*'y, where y,; may be chosen primitive.
Continuing this process as far as possible, we produce relations among
primitives of degrees 2'+2'"'k—1 for I<r. Let K,K be generalized Eilenberg

Maclane spaces K =11 K(Z,, n,) and K —~ 5K be a map that describes all the

relations. If E is the bundle induced over this map,

QK,

|
E

There exists a map of infinite loop spaces

where n=2"+2*'k—1 and there is a ve H*(E;Z,) with j*(v)eimage
(Sq%,8q%",...,Sq") and Av=u®u where #*(i,) = u.
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By construction, there is an H-map h: X — K

QK,
~E
7~

fr

/

/ $

X——K

and a lifting f: X — E. As before,

=0

Af*(v)=f*@Ff (u®u)+ ). image Sq* = x®x+ ), image Sq*.
=0

Now x¢image Sq* for I <r. Because if so, then x = Sq*'y and we may assume
by Lemma 4 and Corollary 2 that ye PH***"'*'"1(X;Z,) for some k'>0. Hence
by induction Sg*'y =0.

Therefore if x®x e Y|_,image Sq*, we conclude

x=8q%y for some yePH* """ (X;Z,).

It remains to show Sq*x =0. By Lemma 3,

r—1
Sq*x =Sq%Sq*y = ), Sq*Byy.
1=0

Sq°.

By induction Sq*B;y =0. This completes the proof. Q.E.D.
It may be instructive to trace through the proof for PH***'(X;Z,) <image

Note

Sq* 2= qusq4'k +Sq'Sq*Sq.

The relations are for x e PH***(X; Z,):

Sq*x=Sq%y;,  $q**Sq'x=S5q'y,,  a;=8q9*Sq',  a,;=Sq*
Sq°Sq’y,=S9'Sq°Sq'y;,  @11=S5q9°Sq’,

Sq°Sq'y1=5q"y1.0
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All y, y;, are primitive. Let K, = K(Z,, n). Then

K=Ky 1 X Kgj— 1 X Kgj 1 X Kgj 4 K:K8k+lxK8k+2xK8k+2 g:K—K
8*ixk+1 = Sq4ki4k+l ‘Sq2i3k~1 g*i8k+2 = Sq4ksqli4k+1 - Sqlizaku

g*i8k+2:qusq]i{ik»-l‘-sqli_xk«#l-
Let g,: K — Ky, ., be defined by

gT(iSkm) = Sq2i8k+1 + Sqlixk+2+ Sq1i8k+2-

Then stably

g% 8T (igk+3) = Sq° 8" (igi 1) + Sq" 8" (igi+2) + 5" g (i gic+2)
= Sq*[Sq™ isps1— Sq%igi 1]
+89'[S9**Sq " i41. 1 — Sq gkt
+5q'[Sq*Sq " ig -1 — Sq" ig+1]

_ Q. Ak+2;
=Sq lak+1-

g, g, are assumed to be infinite loop maps.

In view of our proof of Thomas’ theorem, it now becomes clear that there
exist certain generalizations of this theorem to H-spaces whose mod 2 cohomol-
ogy is not primitively generated. Certainly, if the variables that appear in the
domain of the operation are primitive, there is no obstruction to obtaining a
secondary operation that detects the dual of a square.

Work of Browder [1] shows that for any finite H-space X, the square of an
odd homology primitive is zero.

In Lin [5] it is shown that generators of the cohomology ring may be chosen so
that they have a “primitive degree.” This means roughly for each generator x
there exists an 2A(2) subHopf algebra B, with Axe B,®B, and x¢B,. B,
therefore measures the deviation from primitivity of x.

The following theorem is proved in Lin [5]:

THEOREM 2. Let x be a generator in H"'(X; Z,). Let B be an A(2) subHopf
algebra with Axe BB and x¢ B.

Suppose Sq" =3 a;b; and b,x is decomposable in B for each i. Then there is a
secondary operation ¢ defined on x and A¢(x)=x®x+Yim a; + [B)H*@ H* +
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H*®I(B)H*. Hence if te PH, (X;Z,) with (t, B)=0, t®teker) a;, then
t2#0.

Theorem 2 can be used to prove the following theorem about H-spaces with
possibly non-primitive cohomology rings:

THEOREM 3. Let X be a finite H-space and let n be the largest integer such
that QH"(X;Z,) # 0. Expand n+1 dyadicly

n+1:2r0+2r1+"'+2r’, 05r0<r1<"'<r

Then for all indecomposables of degree 2' +2'"'k —1>2",

Q21+2l+!k~1 — qulQ‘?Hlk_Al and qu‘oz‘+2'*1k—l _ O.
In particular Q" = Sq**Sq>" - - - Sq*' Q> ".

Before proving this theorem, we remark that this proves that there are the
following Steenrod squares connecting generators of the exceptional groups

(1) H*(G,):Sq%x3= x5

(2) H*(F,):8q°x5s= x,3

(3) H*(Eq):5G°x;5= X3, S4°x;5= Xy

(4) H*(E;):Sq°x:5= X33, Sq4°X 5= X17, $q" X3 = X37

(5) H*(Eg):5q°x:5= X3, S4° X5 = X17, S4* X33 = X7, $4° X7 = Xpq.

Note that E4, E; and Eg are not primitively generated; in fact, x,5; may be

chosen such that Ax,s contains x2®x, as a summand [8].
We now prove Theorem 5.

Proof. Our restrictions imply n=2'+2'"'k —1>2"—1. Therefore k > 0.

We induct on L If [ =0 and k is even, Kane [4] proves Q** =0. If [ =0 and k
is odd, k =2m+1, then we must prove Q*"**<im Sq’, if 4m+2>2"—-1. We
need the following Lemma:

LEMMA 5. Let A be a commutative finite dimensional Hopf algebra over (2)
with Sq"' A" decomposable. Then given a generator y € A°*® with y*># 0, we have
y>¢im Sq'D where D = I(A)>.
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Proof. By the Borel structure theorem A is isomorphic as algebras to a tensor
product of truncated polynomial algebras of heights a power of 2. Hence, A/I(A)?
is isomorphic to a tensor product of truncated polynomial algebras of heights 2
and 3. Let

7 A— A/I(A)?

be the projection. Then = is an algebra map over the Steenrod algebra. Hence if
y>e€ Sq'(I(A)?), then 0 # m(y)*> € Sq'(wI(A))>. Since degree w(y)” is even, we may
write

m(y)*=Sq" Z w(b;)m(c,),

where deg w(b;) is even, deg w(c;) is odd. Then Sq' A°**" decomposable implies

)

m(y)?= ), w(b)Sq' 7 (c,).

i=1

Hence m(y)?* belongs to the ideal generated by the even generators. This is a
contradiction. Q.E.D.

We now turn to the proof of Theorem 3. For [ =0 we must prove Q*"*?c
im Sq'.

Let B(n) be the A(2) subHopf algebra generated by elements of degree =n.
Following Torsion I [5], an element X € Q*™*? has primitive degree r if there is a
representative x € B(r+1), x¢ B(r), Ax € B(r)® B(r).

By induction assume all 4m +2 dimensional generators of primitive degree
less than r lie in image Sq'. Given X of primitive degree r with representative x,
note that Sq*"x is decomposable because degree Sq*™x is greater than the degree
of the highest generator.

Hence the projection Sq*™[x] in H*/B(r) is decomposable primitive. Hence
Sq*m[x]=[yF =Sq'Sq*"[y]. But for degree reason Sq*"[y] is decomposable. It
follows that [y]*e Sq'D. This contradicts the lemma unless [y}’ = 0.

We conclude Sq*™"[x] is zero. Therefore Sq*"xe H*I(B(r)) and ASq*"xe
B(r)® B(r). By an argument in Torsion I [5], Sq*"x is decomposable in B(r).

Applying Theorem 2 to the factorization Sq*™**=Sq*Sq*™ there is a secon-
dary operation ¢ defined on x with

Ap(x) =x®x +im Sq*>+ I(B(r)) H* @ H* + H*® I(B(r))H*.
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If x¢im Sq' + B(r) there is a te PH,,,., with {t, x)#0 (t,im Sq'+ B(r))=0.
Hence (t*, ¢(x))# 0 which is a contradiction.

Therefore %eim Sq'+B(r). Now by induction QB(r)<im Sq', hence xe
im Sq', and Sq'x =0. This completes the case [=0.

Assume by induction that for n=2'+2"""k’—1>2~—1, I'<[ that

QZ"+2"”k'—l cim SqZ"
—_— b

and

I oyl
SqZ QZ +2 k 1:0.

Let xe Q**2"'* ' p=2"42"'k—1>2%—1.
There is a factorization

!
Sq2'+2‘”k — Z qu‘ai.

1=0

Now because n=2'+2""'k —1>2"—1, 2'*'k must have 2" in its dyadic expan-
sion. Therefore since degree o; =2'""k it follows that «;x has degree >2""'—1>
n. We conclude «;x is decomposable for each i.

Let x be an r primitive representative for X and assume by induction that all
2'+2"'k —1 dimensional generators of primitive degree less than r are in the
image of Sq*. Then a,[x]e H*/B(r) is primitive decomposable. For i >0 «,[x] is
of odd degree, hence «o;[x]=0. For i =0 ay[x] is of even degree, hence

ao[x]=[yl = Sq"'Sq***""*[y].

But deg Sq* "> "% [y]>n.

Therefore Sq**?"'*~2[y] is decomposable, and [yPPeSq'D. By Lemma 5,
[yP=0. .

For all i, therefore o;[x]=0. Hence o,x € H*I(B(r)) and Aa,x € B(r)® B(r).
By the argument of theorem 2.2.1 of [5], a;x is decomposable in B(r).

Now suppose x¢im Sq> + B(r). Then there is a primitive te Hy(X; Z,) with
(t, x)# 0 and (t,im Sg* + B(r)) = 0.

We claim tSq* =0 for i<l Suppose not. Let t,=1Sq*, and let x,¢
H?*#"'% =271 be dual to . {t,x;)#0. Then %#0 and 0#(t, x;)=(tSq>, x,) =
(t, Sq*'x;). This implies Sq*' Q***""*~ ' # 0 which contradicts our inductive assump-
tion. Hence the claim is proven.
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Applying Theorem 2, there is a secondary operation ¢ defined on x with

l
Ad(x)=x®x+ ), im Sq* + H*QH*I(B(r))+ H*I(B(r))® H*.

i=0

It follows that (>, ¢(x))# 0 which is a contradiction. Therefore x € im Sq* + B(r)
which implies

X €im Sq* + QB(r)>**"'* 1,
By induction on the primitive degree
(Q(B(r))2'+2'”k——1 gim qul,

so Xeim Sq*? Q*"'* ',
It follows that

-1

Sq*x €im Sq*Sq*Q*"'* ' =}, Sq¥BQ* !,

=0
and deg 8,Q%"'*"'=2' mod 2'*'. By induction Sg*8,Q* '*' = 0. We have shown
Q>+ '<im Sq”,
and
Sq* Q>+ k=0,

This completes the proof of Theorem 3.
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