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Ueber die Dimension der Eigenrâume des
Laplace-Operators auf Riemannschen Flâchen

Heinz Huber (Basel)
Ernst Specker zum 60. Geburtstag gewidmet

Eine kompakte Riemannsche Flâche $F vom Geschlecht g ^ 2 besitzt genau
eine mit der konformen Struktur vertrâgliche Metrik konstanter Krummung —1:

die Poincarémetrik. Es sei A der zugehôrige Laplace-Beltrami-Operator und

^={/eC2(f)| -Af=\f}, k^o,
wobei nur reellwertige Eigenfunktionen zugelassen werden. Es ist bekannt ([1]-
3]), dass

Daraus ist zu entnehmen, dass jedenfalls dim %K — O(À1/2). Dièse bloss infinitâre
Aussage kann folgendermassen(1) prâzisiert werden:

Es sei

8 min d(p), d(p) Max dist (p, q).

Dann gilt fur À^O:

(Zwischen 8 und dem Durchmesser ô* von 3* besteht oflfenbar die Relation

2, Beweis

0. Wir versehen den Einheitskreis E {z eC | \z\< 1} mit der hyperbolischen
Metrik

1 Siehe auch [4], [5].
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Ueber die Dimension der Eigenraume 391

welche die Krûmmung —1 besitzt. Es sei p(0, z) die hyperbolische Distanz der
Punkte 0, z, und

Fiïhren wir geodâtische Polarkoordinaten

z), # argz

ein, so wird ds2 dp2 4- sinh2 p d#2. Daher erhâlt man fur das Flàchenelement und
die Beltrami-Operatoren der Metrik (1):

do) sinh p dp d# (2)

d2 d d2

4=-^ + ctghp —+ sinh"2p—^ (3)
dp dp diJ

d\2yj (4)

1. Wir wâhlen auf ^ einen Punkt p mit d(p) 8. Weil das Geschlecht von &
grôsser als eins ist, gibt es eine konforme Ueberlagerungsabbildung ir:E-^>£F mit
tt(0) p. Verpflanzen wir die Metrik (1) mit dieser Abbildung, so erhalten wir
gerade die in der Einleitung charakterisierte Poincarémetrik von &. Es sei F die
zu 7T gehôrige Gruppe der Deckisometrien von E. Dann ist

D {zeE\ p(0, z)^p(T(0), z)VTeF}
ein Fundamentalbereich von F, und es gilt fur aile z gD:

dist(p,7r(z)) p(0,z).

Daher wird MaxZGD p(0, z) d(p) 8:

DaK8. (5)

2. Wir definieren fur fe%K

f(p,iï) (foTT)(z) (6)

und beweisen folgendes

LEMMA. Zu jeder ganzen Zahl k gibt es ein lineares Funktional ck : <£x—»C

derart, dass

Dabei ist y Fk(p) die einzige Lôsung der Gleichung

y" + (ctgh p)y' + (À - k2 sinrT2 p) y 0 (7)
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in (0, o°) mit limp__*0 p~|k|y(p) 1. Da Fk F_k reellwertig ist, gilt

<*(/) c_fc(/) V/e£x. (8)

Beweis. Wegen (6) und (3) gilt fur jedes fe%k:

f+th /+ sinrT2p^f+ctghp /+ sinrTp 5
dp dp dtr

Daraus ergibt sich sofort, dass

*d#, p>0,

eine Lôsung der Gleichung (7) ist. Dièse Gleichung hat an der Stelle p 0 eine

regulâre Singularitât mit den Exponenten k und -k. Daher besitzt sie genau eine

Lôsung

Fk(p) plklhk(p), hk g C2[0, oo), fck(0) 1. (9)

(Fk ist somit reellwertig und es gilt F_k Fk). Die Wronski-Determinante

W=FkG'-F'kG (10)

ist Lôsung der Gleichung W + (ctgh p) W= 0. Daher wird

W(p) a/sinh p (11)

mit einer passenden Konstanten a. Aus (9)-(ll) ergibt sich:

p|fc|+1G'(p) |k| p]k[G + pm+1Gh'k/hk+ap/hk sinh p.

Da G beschrânkt ist, folgt hieraus

limp|k|+1G'(p) a.

Daraus schliessen wir, dass a 0 sein muss, da sonst G nicht beschrânkt sein

kônnte. Somit verschwindet die Wronski-Determinante im ganzen Intervall
(0, oo) : G und Fk sind linear abhângig. Damit ist aber das Lemma bewiesen.

3. Da die rechte Seite der zu beweisenden Ungleichung grôsser als eins ist,
dùrfen wir gleich annehmen, dass

1, n^l. (12)

Wir zeigen nun: Es gibt eine Eigenfunktion /eWx derart, dass

> l, (13)|

Vp>0, |fc|*£fi-l. (14)
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In der Tat: Es gibt Eigenfunktionen fu f2n e 3?x mit

Machen wir fur die gesuchte Funktion den Ansatz

/=!«,/,. <*,eR> (15)

so folgt aus dem Lemma:

/(p,#)elk*d#=(î ck(f})a)Fk(p).

Das homogène System

Ick(/>r0, |fc|^n-l

besteht aus 2n~\ linearen Gleichungen fur die 2n Unbekannten ar Daher besitzt

es eine nicht triviale Lôsung a1?. a2n e C, und somit wegen (8) sogar eine réelle

Lôsung mit Xaf=l. Die zugehôrige Funktion (15) hat nun die gewùnschten

Eigenschaften.
4. Fur dièse Funktion / deflnieren wir jetzt

A(r)=[ f2dio, B(r)=f Vfdœ. (16)

Dann ist nach (2)

çr çr
A(r)=\ a(p)sinhpdp, B(r)= b(p)smhpdp (17)

Jo Jo

mit

a(p) f 72(P, *) d^, b(p) f V/)(P, «) dd, (18)
Jo Jo

und wegen (4) gilt:

Aus (14) folgt nun aber, dass

f2tr/d/\2 2f2iTf2
Jo \dd/ Jo

Daher folgt aus (19):

b(p) ^ n2(sinh p)~2a(p) ^ n2(sinh r)~2a(p) fiir
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und somit

(20)

Aus

A(î2) 2fàf+2Vf, âf=~kf
und (3) folgt

Daraus und aus (18) ergibt sich:

a"(p)+ (ctgh p)a'(p) + 2\a(p)

oder, nach Multiplikation dieser Gleichung mit sinhp:

(a'(p) sinh p)' + 2Àa(p) sinh p 26(p)sinh p.

Hieraus folgt durch Intégration:

a\r) sinh r + 2AA(r) 2B(r). (21)

Nach (17) ist aber

A"(r) a\r) sinh r + a(r) cosh r. (22)

Aus (20)-(22) ergibt sich:

A"(r) + 2AA(r)^2n2(sinh r)~2A(r). (23)

5. Es sei jetzt

R 8 + y, (24)

wobei y>0 spâter geeignet gewâhlt werden wird. Dann folgt aus (23):

A"{r)- ixA(r)^0 in [8, R] (25)

mit

fx 2(n2 sinh"2 R - A). (26)

Wir nehmen zunàchst an, dass /m>0 und setzen

A(r) F(r) cosh VjLt(r-ô). (27)

Dann ist

F(ô) A(8), F(8) A'(8) a(8) sinh 8 s*0, (28)

und aus (25) ergibt sich:

F\r) cosh \/ju(r - 8) + 2^F(r) sinh Vfx(r - ô) ^ 0 in [8, R]. (29)
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Setzen wir weiter

F'(r)=fc(r)cosh-2VjUL(r-S), (30)

so wird h(8) F'(ô)^0, und aus (29) ergibt sich, dass h'^0 in [Ô, R]. Folglich ist
h 2*0 in [8, JR]. Daraus folgt nach (30), (28) und (27):

A(jR) 2* A (8) cosh V/x(jR - 8) A(ô) cosh

Nach (5), (13) und (16) ist aber A(ô)^l und somit

A(K)^coshVjLLy. (31)

6. Nun schâtzen wir A(R) nach oben ab: Sei

r {Te T | T(D) n KR # 0}, m - card T.
Dann gilt

m, (32)

da die Fundamentalbereiche T(D), TeF\ die Kreisscheibe KR ûberdecken. Weil
dièse Bereiche paarweise nicht ûberlappen und wegen (5) in KR+2s enthalten
sind, so gilt:

m\ d(o^\

Daraus folgt wegen

m < cosh (R + 28) cosh (y + 38). (33)

Aus (31)-(33) schliessen wir nun, dass V|ULy<y + 3ô. Daraus und aus (26) ergibt
sich:

n2sinh-2JR<A+i 1-f—) R 8 + y. (34)
2\ y /

Dabei hatten wir angenommen, dass jul>0. Wenn aber jut^O, so ist nach (26)

sogar n2sinh~2R^A. Somit gilt die Ungleichung (34) ausnahmslos fur jedes

y>0.
7. Fur A^O, y>0 gilt:
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mit

a=— 77ï75^3ô. (36)

Aus (34) und (35) folgt nun:

<—j, y>0. (37)

Jetzt wird y>0 so gewâhlt, dass die rechte Seite minimal wird. Dièses y ist
Lôsung der Gleichung

i+--4=o.
y y

Hieraus folgt

^y + a (38)

-a) (39)

Aus (39) folgt zunàchst y < 1 und somit

Daher wird wegen (38)

ey(l+-)<l+- + (e- l)(y + a) 1 + e(y + a). (40)\ y) y

Aus (39) und (36) ergibt sich:

^g4|/4. (41)

Aus (37), (40) und (41) folgt endlich:

Damit ist aber wegen (12) unser Satz bewiesen.
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