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Comment. Math. Helvetici 55 (1980) 390-397 Birkhauser Verlag, Basel

Ueber die Dimension der Eigenraume des
Laplace-Operators auf Riemannschen Flachen

Heinz Huser (Basel)
Ernst Specker zum 60. Geburtstag gewidmet

1

Eine kompakte Riemannsche Flache ¥ vom Geschlecht g =2 besitzt genau
eine mit der konformen Struktur vertragliche Metrik konstanter Krummung —1:
die Poincarémetrik. Es sei A der zugehorige Laplace-Beltrami-Operator und

& ={feC(P|-Af=Af}, A=o0,

wobei nur reellwertige Eigenfunktionen zugelassen werden. Es ist bekannt ([1]-
3]), dass

Y dim&, =(g—1)t+O0(t'?),  t—>+o.

A=t
Daraus ist zu entnehmen, dass jedenfalls dim &, = O(A'?). Diese bloss infinitare
Aussage kann folgendermassen‘” prazisiert werden:

Es sei
8 =min d(p), d(p) =Max dist (p, q).
pe% qeF

Dann gilt fur A =0:

.+.
dim?g,\<e8()\+%)”2(1+e(38 1)) 1.

ar+1)'

(Zwischen 8 und dem Durchmesser 8* von % besteht offenbar die Relation
5*2<86=<8%).

2. Beweis

0. Wir versehen den Einheitskreis E ={z € C||z| <1} mit der hyperbolischen
Metrik

|dz|*

2=4_________
A" =T L pr

(1)

! Siehe auch [4], [5].
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Ueber die Dimension der Eigenrdume 391

welche die Krimmung —1 besitzt. Es sei p(0, z) die hyperbolische Distanz der
Punkte O, z, und

K,={zeE|p(0, z)<r}.
Fuhren wir geodatische Polarkoordinaten
p=p(0, z2), v =argz

ein, so wird ds* = dp?+sinh? p d9?. Daher erhilt man fur das Flachenelement und
die Beltrami-Operatoren der Metrik (1):

dw = sinh p dp d¥ (2)
2 a 2
A =a—p—2+ctgh pé;-*'Slnhungb—z 3)
3\’ 3\
V=|grad|*= (5;) +sinh ™2 p(?ﬁ&) (4)

1. Wir wahlen auf % einen Punkt p mit d(p) = 8. Weil das Geschlecht von &%
grosser als eins ist, gibt es eine konforme Ueberlagerungsabbildung 7 : E— % mit
w(0) = p. Verpflanzen wir die Metrik (1) mit dieser Abbildung, so erhalten wir
gerade die in der Einleitung charakterisierte Poincarémetrik von %. Es sei I' die
zu 7 gehorige Gruppe der Deckisometrien von E. Dann ist

D={zeE|p(0,z)<p(T0),z)VTeTl}

ein Fundamentalbereich von I', und es gilt fur alle ze D:
dist (p, 7(2)) = p(0, z).

Daher wird Max, ., p(0, z) = d(p) = 6:

D < K;. (5)
2. Wir definieren fir fe &,
f(p, ®)=(f o m)(2) (6)

und beweisen folgendes

LEMMA. Zu jeder ganzen Zahl k gibt es ein lineares Funktional ¢, : €, —C
derart, dass

I ﬂf(p, 3)e™® dd = ¢ (f) Fi.(p).
0

Dabei ist y = F, (p) die einzige Losung der Gleichung
y"+(ctgh p)y'+(A—k?sinh ™2 p) y=0 (7)
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in (0, ) mit lim,_,, p~*'y(p) = 1. Da F, = F_, reellwertig ist, gilt

alf)=c_(f) Vfe&,. (8)
Beweis. Wegen (6) und (3) gilt fur jedes fe&,:

2

0
azf+ctghp—~f+smh rye f+Af 0.

Daraus ergibt sich sofort, dass

27

G(p):= j flp, e™®dy,  p>0,
0

eine Losung der Gleichung (7) ist. Diese Gleichung hat an der Stelle p =0 eine

regulare Singularitat mit den Exponenten k und -k. Daher besitzt sie genau eine

Losung

F.(p)=p"(p), heC0,%), h(0)=1. 9)
(F, ist somit reellwertig und es gilt F_, = F, ). Die Wronski-Determinante

W=FG'-F.G (10)
ist Losung der Gleichung W'+ (ctgh p) W = 0. Daher wird

W(p) = a/sinh p (11)

mit einer passenden Konstanten a. Aus (9)—(11) ergibt sich:
p* "1 G'(p) = k| p™'G + p"* "' Ghi/hy + ap/hy sinh p.
Da G beschrankt ist, folgt hieraus

lim p*"*'G'(p) = «.

p—0
Daraus schliessen wir, dass a =0 sein muss, da sonst G nicht beschriankt sein
konnte. Somit verschwindet die Wronski-Determinante im ganzen Intervall
(0,%):G und F; sind linear abhangig. Damit ist aber das Lemma bewiesen.

3. Da die rechte Seite der zu beweisenden Ungleichung grosser als eins ist,
dirfen wir gleich annehmen, dass

dimé, =2noder2n+1, n=1. (12)

Wir zeigen nun: Es gibt eine Eigenfunktion fe€ &, derart, dass

L fPdo=1, (13)

flp, 9)e*®*d3=0 Vp>0, |kl<n-1. (14)

0
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In der Tat: Es gibt Eigenfunktionen f,, ..., f,, € €, mit
J fldo=6, 1<j1<2n.
D

Machen wir fur die gesuchte Funktion den Ansatz

2n
f=2 of, o€R, (15)
i=1

so folgt aus dem Lemma:

2n

2
| Fo, et ad = (1 cuthrag ) Futo).
0 =1
Das homogene System

2n

Y o(f)ey =0, |kl<n-1

j=1
besteht aus 2n — 1 linearen Gleichungen fiir die 2n Unbekannten «;. Daher besitzt
es eine nicht triviale LOsung «a, . . ., a5, € C, und somit wegen (8) sogar eine reelle
Losung mit ) af=1. Die zugehorige Funktion (15) hat nun die gewunschten
Eigenschaften.

4. Fiir diese Funktion f definieren wir jetzt

A(r)= J fPdo, B(r)= j Vf dw. (16)
Dann ist nach (2)
A(r)= J;ra(p) sinh p dp, B(r)= [rb(p) sinh p dp (17)

mit

2

m 2
a@)=[ P9, b= (o9 av, (18)
und wegen (4) gilt:
o, [Paf
b(p)=sinh 2 — ) d9. (19)
o] (2

Aus (14) folgt nun aber, dass

2 af)2 211"‘
— dﬂ?nzj 2d9.
J;) (819 0 f

Daher folgt aus (19):

b(p)=n3(sinh p) 2a(p)=n3(sinh r)?a(p) fir 0<p=<r,
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und somit

B(r)=n?*(sin r) *A(r).
Aus

APy =2faf+2Vf,  Af=-Af
und (3) folgt

—(22—f2+ctgh p—fQJrsmh ey > f2+2/\f2 2VF.
Daraus und aus (18) ergibt sich:
a"(p)+ (ctgh p)a’(p) +2ra(p) = 2b(p),
oder, nach Multiplikation dieser Gleichung mit sinh p:
(a'(p) sinh p)'+2Aa(p) sinh p = 2b(p) sinh p.
Hieraus folgt durch Integration:
a'(r)sinh r+2AA(r) =2B(r).
Nach (17) ist aber
A"(r)=a'(r)sinh r + a(r) cosh r.
Aus (20)—(22) ergibt sich:
A"(r)+2AA(r)=2n?(sinh r)2A(r).
5. Es sei jetzt
R=68+y,

wobei y >0 spiter geeignet gewahlt werden wird. Dann folgt aus (23):

A"(r)—unA(r)=0in[§, R]
mit
p=2(n?sinh™2 R—\).
Wir nehmen zunachst an, dass w >0 und setzen
A(r)= F(r) cosh \/pd('r— 5).
Dann ist
F(8)= A(8), F'(8)=A'(8)=a(8)sinh =0,
und aus (25) ergibt sich:
F'(r) cosh v u.(r— 8) + 2+ wF'(r) sinh \/u(r —-8)=0in[§, R].

(20)

(21)

(22)

(23)

(24)

(25)

(26)

(27)

(28)

(29)
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Setzen wir weiter
F'(r)= h(r)cosh™>Vu(r—29), (30)

so wird h(8) = F'(8) =0, und aus (29) ergibt sich, dass h'=0 in [, R]. Folglich ist
h=0 in [8, R]. Daraus folgt nach (30), (28) und (27):

A(R)= A(S) cosh V(R —8) = A(8) coshVuy.
Nach (5), (13) und (16) ist aber A(8)=1 und somit

A(R)=cosh Vuy. (31)

6. Nun schitzen wir A(R) nach oben ab: Sei

I"'={Tel'| T(D)N Kg# J}, m=card I'"".
Dann gilt
A(R)<m, (32)

da die Fundamentalbereiche T(D), Te I, die Kreisscheibe K uberdecken. Weil
diese Bereiche paarweise nicht tiberlappen und wegen (S5) in Kg,,s enthalten
sind, so gilt:

mj dwsj dow =2m(cosh (R+28)—1).
D K

R +28

Daraus folgt wegen
J do =4m(g—1), g=2:
D

m <cosh (R +28) = cosh (y +38). (33)

Aus (31)-(33) schliessen wir nun, dass v wy <y+38. Daraus und aus (26) ergibt
sich:
1 358\

nzsinh“2R</\+§(1+—;>, R=6+y. (34)
Dabei hatten wir angenommen, dass w >0. Wenn aber u <0, so ist nach (26)
sogar n’sinh > R<\. Somit gilt die Ungleichung (34) ausnahmslos fiir jedes
y >0.

7. Fir A =0, y>0 gilt:

/\+%(1+3;8-)2s()\+%><1+§)2 (35)
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mit

_ 38
A+1)"2

Aus (34) und (35) folgt nun:

a 33. (36)

2n<ed(A+1) ”2ey(1+§), y>0. (37)

Jetzt wird y>0 so gewahlt, dass die rechte Seite minimal wird. Dieses y ist
Losung der Gleichung

1+2-2=0.
y Y

Hieraus folgt

=y+a (38)

< e

y =3((a*+4a)"*~a) (39)
Aus (39) folgt zunachst y <1 und somit

1
ey=1+y(1+%+- --><1+y(1+5+---)=1+(e~l)y

Daher wird wegen (38)

ey(1+—;l)<l+§+(e—l)(y+a)=1+e(y+a). (40)
Aus (39) und (36) ergibt sich:
36+1
y+a=3a"*((a+4)"*+a'?)<iaq'? ((36+4)”2+(38)"2)<W, (41)

Aus (37), (40) und (41) folgt endlich:

e(36+1) )

<e® +11’2( P
2n<e®(A+3) 7|1 AT

Damit ist aber wegen (12) unser Satz bewiesen.
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