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Affine varieties dominated by C*

By R. V. Guriar

Introduction

The two main results of this paper are Theorems 1 and 2 below.

THEOREM 1. Let V be an affine, non-singular, variety over C, which is
topologically contractible. Then all the algebraic line bundles on V are trivial i.e.
Pic V =(0).

THEOREM 2. Let f:C*>— V be a proper morphism onto an affine, normal
variety/C. Then V is topologically contractible and Pic V = (0).

Actually, using the ideas in the recent proof of the cancellation Theorem for
affine 2-space by T. Fujita, M. Miyanishi and T. Sugi, we can see that in Theorem
2, if V is non-singular, then V=C?. We will give a brief outline of this argument.
The method of cancellation Theorem is geometric. In [20], it was proved that if V
is non-singular in Theorem 2 and if the degree of the map f is not divisible by
120, then V=C?. The method in [20] is mostly topological. We will indicate this
method also. Theorem 2 remains true for Stein-manifold V and analytic map f.

Recently the author has been able to prove the following generalisation of
Theorem 2.

“Let f:C"— V be a proper morphism onto an affine, non-singular variety V.
Then V is simply-connected, H;(V,Z) is finite for all i>0 and Pic V=(0).”

The proof will be published elsewhere.

M. Kang proved in [8] that if V is the quotient variety of C" by a finite group
of automorphisms, then Pic V = (0). We will indicate a topological proof of this by
making use of some strong results of R. Oliver. See [14].

In §2, we will show some evidence for the validity of the conjecture that on a
non-singular, affine surface which is topologically contractible, all vector bundles

! This work formed part of the author’s Ph.D. thesis at the University of Chicago, March 1979.
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Affine varieties dominated by C? 379

are trivial. The analogous statement in the analytic category has been proved by
Grauert for contractible Stein-manifolds of arbitrary dimension.

In Theorem 1, if dim V=1, then it is easy to see that V=C'. We will
therefore assume that dim V> 1. Using a result of D. Anderson [1], we get the
following Corollary of Theorem 2.

COROLLARY 2 (§3). In the situation of Theorem 2, all vector bundles on V
are trivial.

I am very grateful to Prof. M. P. Murthy and Prof. R. Narasimhan for the help
and encouragement they gave me during this work.

§1. Picard groups of contractible varieties

We will begin with the preparation for Theorem 1. Recall that we are
assuming dim V=2, and V is affine, non-singular, irreducible variety/C. Further-
more, V is topologically contractible. By the theorem of resolution of singularities
[7], there exists a projective algebraic variety X with the following properties.

(a) V is a Zariski-open subset of X, X is non-singular.

(b) X—V=UT_,C, where C are closed, irreducible, non-singular sub-
varieties of codimension 1. For any abelian group G, let H*(Y, G) denote the
singular cohomology groups of space Y with coeflicients in G. Recall the
well-known exponential sequence [see 9] 0 — Z — Oy — O% — 0. Here Oy is the
sheaf of germs of holomorphic functions on X and O% denotes the sheaf of germs

of invertible holomorphic functions. The associated long exact cohomology sequ-
ences gives

-+ HY(X, Z)— H'(X, Ox)—> H'(X, O%) »> H*(X, Z). - - -

Since V is simply-connected, so is X. Hence H'(X, Z)=(0). The group
H'(X, OY) is in one-to-one correspondence with the group of invertible sheaves
on X. Since X is non-singular, each of the subvarieties C,,..., C, are locally
principal, hence give rise to elements of H'(X, O%).

LEMMA 1.1. The map H'(X, O*) — H*(X, Z) is surjective.
Remark. By the Hodge decomposition theorem [9] 2dimc H'(X, Ox)=

dime H'(X, C). Hence in our case, Lemma 1.1 will prove that H'(X, O*)~
H*(X, Z).
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Proof of Lemma 1.1. We will in fact prove that the cohomology classes
corresponding to the subvarieties Cy, ..., C, generate H*(X, Z) freely.

Let C=X-V=Uj{_, C. There is a long exact sequence of cohomology
groups corresponding to the pair (X, C).

-+« H¥(X, C) > H*(X)—» H*(C)—> H*(X,C) - - -

In this sequence, the cohomology groups are considered with arbitrary abelian
coefficient group G.

If dim V=n (recall, n=2), then we have [17, Theorem 6.2.17] H'(X, C)=
H,,_;(X— C). In particular, since V is contractible H,,,_; (X —C)=(0) for i <2n,
and H*" (X, G)=H*""'(C, G) for i =2. We will prove that H,(C, G)~ H,(X, G)
for r <2n by induction on r.

For r=0, we observe that C is connected (since X — G is affine), hence
Hy(C, G)= Hy(X, G). By the relation between cohomology and homology groups,
we get two exact sequences,

0— Ext' (H,_,(C, Z), G)— H'(C, G)— Hom (H,(C, Z), G) = 0

) 1 7
0—Ext' (H,_,(X, Z), G)— H' (X, G)— Hom (H,(X, Z), G)— 0.

The vertical arrows are induced by the inclusion C < X. By induction, the first and
the middle vertical arrow is an isomorphism for some r<2n-1. Hence
Hom (H,(X, Z), G) —» Hom (H,(C, Z), G) for r<2n—1. Since this is true for
every coefficient group G, it follows that H,(X, Z)= H,(C, Z) for r<2n-2. For
r=2n—1, by Poincaré duality, H,,_,(X, Z)=~H'(X, Z). But since X is simply
connected, H'(X, Z) = (0). Also dimg C=2n—2, hence H,,_,(C, Z)=(0). Since
H.(C,Z)=H,(X, Z) for r<2n-—1, it follows by the universal coefficient theorem
that

H(C, G)=H,(X,G) for r<2n-1.

In particular H,,_,(C, Z) = H,, _,(X, Z). Now it is easy to see that the fundamen-
tal cycles of C,, ..., C, generate H,, ,C, Z) freely. Hence by Poincare duality,
the cohomology classes corresponding to Cy, ..., C, generate H*(X, Z) freely. It
follows that the map

H'(X, O*)— H*(X, Z)

is surjective. By the remark following the statement of Lemma 1.1, we now know
that H'(X, O*)~ H?*(X, Z). This means that the invertible sheaves corresponding
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to the divisors Ci, ..., C, generate the group of invertible sheaves H'(X, O*)
(even freely). By the well-known one-to-one correspondence between the algebraic
line bundles on X and the analytic line bundles on X [16], we see that the

algebraic line bundles corresponding to the divisors C, ..., C, generate Pic X.
Clearly the restrictions of these line bundles [C;],...,[C] to V are trivial
because the supports of the divisors Cy, ..., C, do not meet V. All the algebraic

line bundles on V are trivial because of the following.

LEMMA 1.2. Any algebraic line bundle on V is the restriction of a line bundle
on X.

Proof. [10, Lemma 6.2]. Let L be any algebraic line bundle on V and let F be
the associated sheaf of sections. By [3, Proposition 2] there exists a coherent
algebraic sheaf G on X whose restriction to V is isomorphic to F. We will denote
by O the structure sheaf of X (as an algebraic variety).

Consider the sheaf Hom (Hom (G, O), O) = G**. Clearly G**|\, =F because
G|y =F and F is locally free. It suffices to show that G** is locally free. But the
stalk at x of G** is a reflexive, f.g. module of rank 1 over the regular local ring
Oy .. Consequently G** is locally free and we are done.

This completes the proof of

THEOREM 1. Let V be an affine, irreducible, non-singular variety/C. Suppose
V is topologically contractible. Then Pic V =(0). Alternatively, the co-ordinate ring
of V, I'(V), is a unique factorization domain.

§2

In this section V is an affine, non-singular, irreducible surface/C, which is
topologically contractible. Let X be a non-singular, projective compactification of
V such that all the components of X — V are non-singular curves with transverse
intersections. As usual, let P,(X) = geometric genus of X =dim¢ Hz(X, Oy) and
q(X)=dim¢ H'(X, Ox).

LEMMA 2.1. q(X)=P,(X)=0.

Proof. By Hodge decomposition theorem [9], 2¢q(X) =dim¢ H'(X, C).

Since X is simply connected, q(X)=0. From Lemma 1.1, the map
H'(X, O*) — H*(X, Z) is an isomorphism. Also by Lemma 1.1, since H*(X, Z) is
a free group generated by the cohomology classes of the components of XV,
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the homorphism H*(X, Z) — H?*(X, C) is an injection and the image in H*(X, C)
generates H?*(X, C) over C (again by the proof of Lemma 1.1).

On the other hand, the image of the composite map H'(X, O*) - H*(X, Z) —
H?*(X, C) is contained in the component H'(X, 2') of H?(X,C) in the Hodge
decomposition H?*(X, C)=H?*(X, O)®H'(X, 2)YDH’(X, 2%). It follows that
P,(X)=(0).

Now X is a simply-connected, non-singular, projective surface with q(X)=
(0)=P,(X). In a recent article I. Dolgalev asks the following.

QUESTION. Let X be a non-singular, irreducible, projective surface/C with
P,(X) =0, which is simply-connected. Is it true that X is not of general type? (For
definition of surface of general type, see [4]).

In our situation, X is a compactification of a contractible affine surface. Hence
we ask the

QUESTION. Is a projective, algebraic compactification of a contractible,
non-singular surface rational?

Let Aq(X) be the group of 0-cycles of degree ) modulo rational equivalence and
Alb (X) be the Albanese variety of X. Let SA,(X)=Kernel [A,(X)— Alb (X)].
Then, with the notation of this section (V not necessarily contractible), P. Murthy
and R. Swan proved [10, Theorem 2] that if SA,(X) is finite, then all the vector
bundles on V are direct sums of line bundles.

On the other hand, it is proved in [2] that if P,(X)=0 and X is not of general
type then SA(X)=(0). It follows that if either of the above questions has an
affirmative answer, then from Theorem 1, we get the

COROLLARY. Let V be an affine, non-singular, contractible surface/C, then
all the vector bundles on V are trivial.

It is easy to see that if V is an affine, non-singular, irreducible curve, then
Pic V=(0) iff V is rational. Unfortunately, this is not true if dim V=2 (even if all
the vector bundles on V are trivial). In [S], Dolgacev constructs an example of a
non-singular, projective surface X/C such that X is simply connected, P,(X)=0
and X is not of general type, and not rational Then Pic X is finitely generated. If
the divisors D,, D,,..., D, geate Pic X, then any affine open subset V of
X -1 (Supp D;,) will have Pic V=(0) and then by the results mentioned
above, all the vector bundles on V are trivial but V is not rational.
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§3
In this section we will prove Theorem 2. We begin with some general results.

LEMMA 3.1. Let C"— V be a proper morphism of complex affine n-space
onto an affine variety V/C. Then the fundamental group of V is finite. If d is the
degree of the map f (i.e., the number of inverse images of a generic point of V, this
number being clearly finite), then the order of the fundamental group of V divides d.

Proof. Let V2> V be the universal cover of V. Since C" is simply connected,
there exists a continuous map C"-% V such that f= - ¢. After removing the
singular locus of V and then applying the Purity of Branch locus [18], we see that
there exists a proper subvariety, S, of V such that C* —f"'(S)— V—S is a finite
unramified covering. We have a commutative diagram

C'—fY(S)S V-—nmY(S)
F®=yom
V-S

Since V-7 '(S)-®> V—S is also a covering map, it follows by general properties

of covering spaces [17] that ¢ :C" —f~1(S)— V—x"1(S) is also a covering map.

It follows that degree of flc 15, = (degree of ¢lc s 1s)) - (degree mlv_.-1(s))-
From this the lemma follows.

Remark 1. In the analytic case, if there is an analytic proper map C"-5 V
onto an analytic space V, then exactly the same proof shows that the fundamental
group of V is finite and its order divides the degree of the map f. Also note that
C" can be replaced by any irreducible, simply-connected analytic space (and in
the algebraic case by an irreducible, simply-connected algebraic variety), and the
map f is proper with finite fibres.

LEMMA 3.2. With the same notation as in Lemma 3.1, Pic V is finite provided
V is normal.

Proof. Let S be the singular locus of V. Let P be a point of V—S and m
the maximal ideal of P in R=T(V), the coordinate ring of V. Then R, 1is

regular. Suppose m,, ..., m, are the maximal ideals of k[x,, ..., x,] lying above
m. The integral closure of R, in the quotient field of k[x,...,x,] is
Nioy klxy, .. X, = R, say. Then R, is a finitely generated R, -module and

Rwis a regular ring. Hence the depth of R. as an R, -module is equal to
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n=dim Rn. Since R., is regular, it follows that the projective dimension of R,, as
R..-module is 0. Hence R,, is a projective and consequently a free R,, -module.

This shows that the coherent algebraic sheaf my(Oc-) restricted to V—3S§ is
locally free of rank d. Now let L be any line bundle on V. By projection formula
Tx(m*L) = L ®p, m4(O¢) [6]. But w*L is a trivial line bundle on C", because all
line bundles a.e trivial on C". Therefore

W*(W*L) = W*(Oc") = L®0V W*(Oc")-

Since 74(Oc-)|v_s is locally free, by taking d** exterior,

A (W*(Oc")1\/~s) = Ldlv-—s ®ov~s/\ (7%(Oc¢ )y —s).

Since the sheaf on the left hand side is locally free of rank 1, we see that L?|,_g is
trivial. From this it follows that L¢ is trivial on V because of the following.

LEMMA 3.3. Let V be a normal, affine, irreducible variety and L a line bundle
on V. If restricted to the regular points of V, L is trivial, then L is trivial on V.

Proof. Let {U;} be a covering of V such that L|,is trivial for all i. Let
fi :(Llu)unu, = (Lly)unu, be transition functions for L. Here f; are invertible
regular functions in U, NU.

We know that L|y_g is trivial. {U; N(V —8S)} is a covering of V —S. There exist
regular invertible functions g; € I'(U, — S) such that f; = g/g; in (U,—S)N(U, - S).
But since V is normal, the function g; will be regular on the whole of U,. Also,
since on a normal variety the zeros of a regular function form a subvariety of pure
codimension 1, it follows that g; is a unit in I'(U;). Clearly f; =g/g in U, NU,
This means L is a trivial bundle.

Remark. If there is a proper, analytic map C*-5> V onto V and V is normal
then an exactly similar proof will show that the group of analytic line bundles on
V is finite.

Suppose now we have a proper morphism C"-5> V, onto an affine variety/C.
We know by Lemma 3.1 that the fundamental group of V is finite. If V is the
universal covering space of V, then it is possible to show that V has the structure
of an affine variety such that the covering map V — V is a morphism. Also the
map ¢ in the proof of Lemma 3.1, ¢ :C* — V is also a morphism. To prove that
V is contractible, it suffices to show that V is contractible, in view of the following
lemma in J. Milnor’s Morse Theory [11]. For completeness’ sake we will repro-
duce the simple proof.
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LEMMA 3.4. Suppose V is a C—W complex of finite dimension whose
universal covering space V is contractible. Then the fundamental group of V has no
element of finite order.

Proof. Let (V) (resp. m,(V)) denote the homotopy groups of V (resp. V)
w.r.t. a fixed base point. For i > 1, one knows 'n'i(f/)z (V). If V is contractible,
(V) =(0) for all i. Also the cohomology group H*(V, Z) can be identified with
the cohomology group H*(m,(V), Z). If 7,(V) contains a non-trivial cyclic
subgroup G, then for a suitable intermediate covering V of V, we have (V)=
G. Therefore H*(G, Z)= H*(V, Z) = (0) for k >m + 1, where m is the dimension
of V. But a cyclic group has non-trivial cohomology in arbitrarily high dimensions,
a contradiction.

Thus, with the notation of Lemma 3.1, to show that V is contractible, we can
assume that V is simply connected. Therefore, H,(V, Z) =(0). Assume now that
V is normal. To prove that V is contractible, it suffices to show that H,(V, Z)=
(0) for all i >0 because of the following theorem of Whitehead [17; Cor. 7.6.24].

THEOREM (Whitehead). Let V be a path connected topological space. If
m(V)=(0) for all i, then V is contractible.

But by Hurewicz Theorem [17, Theorem 7.5.5], (V) =(0) for all i if and
only if (V)= (1) and H;(V, Z)=(0) for i >0. Any affine variety is a Stein space
[13]. For a Stein space of dimension n, R. Narasimhan has shown that H,(V, Z) =
(0) for i>n and H,(V, Z) is a torsion free group [13]. We can prove

THEOREM 2. Let C"-5> V be a proper morphism onto an affine, algebraic,
normal variety/C. If V is simply connected, then H*(V, Z)=(0) and Pic V= (0). In
particular, for n =2, V is contractible and Pic V = (0).

Proof. Since H,(V, Z)=(0), H*(V, Z)=Hom (H,(V, Z), Z). From the expo-
nential sequence, we get H'(V, O*)=~ H?*(V, Z). Here O* is the sheaf of germs of
invertible holomorphic functions. To show that H*(V, Z) = (0), it suffices to show
that H'(V, O*)=(0), i.e. all analytic line bundles on V are analytically trivial.

We have already seen by the remark following Lemma 3.3 that the group of
analytic line bundles (and also the group of algebraic line bundles) is finite. To
complete the proof of Theorem 2, we need

LEMMA 3.5. Let V be any irreducible algebraic variety/C (resp. irreducible
analytic space). If L is an algebraic (resp. analytic) line bundle on V which is not
trivial but some power of which is trivial, then V has a non-trival unramified
covering.
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Proof. We will indicate a proof for the algebraic case; the proof in the analytic
case is very similar. We can assume that L is not trivial but LP? is trivial for some
prime p. Let {U;} be a covering of V by affine open sets such that L|, is trivial for
all i and let ¢;:(L|y)unu — (Llu)unu be the transition functions. The ¢; are
regular, nowhere zero functions in U; N U,

Since LP is trivial, there exist regular nowhere-zero functions g on U; such
that (g/g)=¢f on U. We can find elements «; in a suitable extension of the
quotient field of I'(U;) such that aP=g,. Let U, be the affine variety whose
co-ordinate ring is I'(U)[e;]. Then there exists a natural morphism U, — U,
which is unramified (since g; are units in I'(U;)). We can patch up the U, to obtain
a variety V and a morphism V — V which is unramified and using the fact that L
is not trivial, one sees that V is irreducible.

The proof of Theorem 2 is therefore complete. We note that a statement
analogous to Theorem 2 in the case of a proper analytic map C" — V can be
proved by a similar method. We state it as

COROLLARY 1. In the proof of Theorem 2. Let C" 1> V be a proper, analytic
map onto a Stein space V which is normal. Then if V is simply connected,
H?*(V,Z)=(0) and all the analytic line bundles on V are trivial.

In particular, if n =2, then V is contractible and the group of analytic line
bundles on V is trivial.

D. Anderson showed in his University of Chicago thesis [1; Theorem 4.17],
that in the situation of Theorem 2, any vector bundle is the direct sum of a trivial
bundle and a line bundle. From this and our Theorem 2, we get

COROLLARY 2 TO THEOREM 2. If C>— V is a proper morphism onto
an affine, normal variety/C, then all the vector bundles on V are trivial.

Now let G be a finite group of automorphisms of C". Then C"/G =V has the
structure of an affine, normal irreducible variety/C such that the natural map
C" — V is a morphism. Recently R. Oliver has proved the following wonderful
result [14]: “Let G be a compact Lie group acting on R", then the quotient space
R"/G is contractible”.

Using this result and our Lemma 3.1 and 3.5, we obtain

COROLLARY 3. Let G be a finite group of algebraic (or analytic) automorph-
isms of C" and let V=C"/G. Then any line bundle on (resp. any analytic line
bundle on) V is trivial.

In view of R. Oliver’s result and our Theorem 2, we can ask the following.
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QUESTION. Suppose C" — V is a proper morphism (or proper analytic map)
onto a normal, affine variety V (resp. onto a normal Stein space V). Is V
contractible?

Remark 1. The condition of properness for the map f in Theorem 2 is
essential as shown by the following example. We consider the complex affine
smooth surfaces, V, given by —xy+z° =1 in C? (by change of coordinates one can
see that this is isomorphic to the complex 2-sphere). If we put x =u(2+uv), y =
v, z=1+uv, then the coordinate ring, C[x, y, z]/(xy+z>—1), of this surface is
isomorphic to C[u(2+ uv), v, uv]. Since this is a subring of Clu, v], we get a
morphism C?>-5 V, which is not proper. Clearly the ring Clu(2 + uv), v, uv] is not
a UFD. It is easy to see that the Picard group of V is infinite cyclic. The map f is
generically one-to-one, hence V is simply-connected by Lemma 3.6. But V is not
contractible.

Remark 2. In Theorem 2, if the degree of f is a prime number p, then we can
see that Pic is trivial (for arbitrary n). To see this, let I be any invertible ideal in
the coordinate ring, I'(V), of V. Let A =1(C"). Then I” will be a principal ideal
in I'(V). IA=aA. Let I’ =(b). Then I’A =bA. But since all units in A are
constants, we can assume that «” =b. This forces either I to be trivial or
Q(A)/Q(I'(V)) to be Galois extension. In the latter case we use Corollary 3
above.

§4

In this section, we will briefly outline the proof of

THEOREM 2'. Let f:C*— V be a proper morphism onto an affine, non-
singular surface/C. Then V =C>.

Proof. All the important ideas in this proof are due to T. Fujita, M. Miyanishi
and T. Sugi See [21,22]. Let I'(V) denote the coordinate ring of V. Theorem 2
says that Pic I'(V)=(0). Since I'(V) is a subring of I'(C?), all units in I'(V) are
constants. Also since the morphism f is dominating, the Kodaira dimension K(V)
of V is —ec. Now the Main Theorem of Fujita, Miyanishi, Sugi which enables them
to prove the cancellation Theorem for affine 2-space is, “Let V be an affine,
irreducible non-singular surface such that I'(V) is a UFD, all units in I'(V) are
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constants and K(V)=—oc, then V=~C?. The proof of Theorem 2’ is thus com-
plete.

Remark 1. The proof of cancellation Theorem works for arbitrary perfect
field k. One can prove the following characteristic p >0 analogue of Theorem 2'.

“Let f: A>— V be a proper morphism onto an affine, non-singular surface V.
If the degree of the function-field extension [k(A?):k(V)] is not divisible by p,
then V= A? (here A? denotes the affine 2-space over the perfect field k). The
proof of this more general result is by induction on [k(A?):k(V)] by making
repeated use of the Main Theorem of Fujita, Miyanishi and Sugi.

Remark 2. We want to indicate briefly a topological proof of Theorem 2’
which was given in [20]. Theorem 2 implies that V is contractible. C. P.
Ramanujam defines the “fundamental group at infinity of V’. For this, we embed
V in a projective, non-singular surface X such that X — V is a divisor with normal
crossings. If X—V=U/_; D, where D, are the non-singular components of
X -V, then we take a “nice’ tabular neighbourhood T of D= U]_; D, in X.
Then for “small” neighbourhoods T, the fundamental group of T— D is indepen-
dent of X and T, which we call the “fundamental group at infinity of V’’. One
sees easily that C* has trivial fundamental group at infinity. Then using the fact
that f is proper and using an argument similar to Lemma 3.1, we prove that the
fundamental group at infinity of V is finite.

Next we observe that the cohomology classes of the curves D, generate
H?*(X, Z) freely. By Poincare duality, it follows that the intersection matrix
(D; - D;) is unimodular. This forces, that the fundamental group at infinity of V is
perfect i.e. equal to it’s commutator. But the boundary of T, 8T, is a 3-
dimensional compact orientable manifold whose fundamental group is the funda-
mental group at infinity of V.

We have now H,(8T, Z)=(0) and 7,(8T) finite. It follows that the universal
covering space of 8T is a homotopy 3-sphere on which 7,(8T) acts fixed point
freely. This implies that the group #,(86T) has periodic cohomology with period 4.
Now the list of finite groups with periodic cohomology of period 4, given by J.
Milnor in [12], shows that either #,(8T) = (0) or it is the group SL(2, 5), of order
120. In proving that #,(87T) is finite, we actually observe that the order of =(87)
divides degree of the map f (i.e. [k(C?): k(V)]).

Finally we invoke the beautiful result of C. P. Ramanujam [15] “If V is a
contractible, affine, non-singular surface which is simply-connected at infinity,
then V~C?”. Using all these results, we now get the following slightly weaker
statement than Theorem 2'.

“Let f:C*>— V be a proper, morphism onto a non-singular affine surface V. If
120 does not divide, the degree of f, then V=C?". For details, see [20].
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