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Comment. Math. Helvetici §5 (1980) 364-377 Birkhauser Verlag, Basel

Homology of SL.(Z[w])

ROGER ALPERIN

In this article we shall describe a simplicial complex which is a natural
structure for the action of GL,(R), the group of 2 X 2 invertible matrices over the
ring R. With strong conditions on R this complex is contractible; it is then
possible to give a presentation of GL,(R) and to compute the homology of
GL,(R) in terms of stabilizer subgroups of the simplices in a fundamental domain
for the action. We shall work in detail with the ring Z[w], w*=w —1; similar
methods apply to the rings Z[0], °=60+1, and Z[A],A>=A +1 but the details
are quite elaborate and will be left for a later time. Initial motivation came from
Quillen’s construction of the tree for SL,(Z) (compare Serre [3]).

§1

Let R be a ring. Consider the set £ of free direct summands of R?. Elements
of & are called lines.

DEFINITION. L,, L,e ¥ are independent if L, +L,=L,®L,= R

Let U(R) be the simplicial complex whose vertices are the elements of £ and
whose q-simplices are determined by a set {L,, ..., L,}, L, ¥ where L, L; are
independent for 0<i# j=gq.

Let R(a, b) be a vertex of U(R) and suppose R(c, d) is independent of
R(a, b).

LEMMA 1. Any line in R? independent of R(a, b) is of the form
L=R(ra+c,rb+d)
for some re R.

b
Proof. Suppose L = R(c’,d’) is independent of R(a, b). Put A=(z d)’

364
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B=(a, b,); A, B are in GL,(R). Let A™'= (a B) Then
C d 0% o

pa=(1 )
s t

for se R, te R* (units of R). Thus ¢'=sa+tc, d'=sb+td; hence R(c',d')=
R(ra+c, rb+d) with r=1t""1s.

LEMMA 2. The lines L, = R(ria+c,rib+d) L,=R(r,a+c, r,b+d) are inde-
pendent iff r,—r,e R*.

b —1
Proof. Let C=(g d) ; then

(r1a+c rlerd>C_(r1 r2)
ra+c r,b+d 1 1/
Hence L,, L, are independent iff r,—r,e R*.

Consider the link of a vertex R(a, b) in U(R), Link R(a, b); this is the full
subcomplex of U(R) containing all lines which are independent of R(a, b). Let R
be the simplicial complex whose vertices are given by the elements of R and in
which a g-simplex is given by a set {r,,...,r,}, neR with r,—reR* for
0=i#j=gq. The next lemma follows easily from the previous discussion.

LEMMA 3. Link R(a, b)=XR.
Put My =sup {m |3r1, oI €RIVIL L I=i<j=m, rl-—rjeR*}.
LEMMA 4. (Lenstra [2]) Mg is finite if R has an ideal (# R) of finite index.

COROLLARY. U(R) is finite dimensional if R is the ring of integers in a
number field and dim U(R) = Mg.

Proof. The ring of integers in a number field has an ideal of finite index, for
example (2). It follows easily that the dimension of a simplex in WU(R) is
=1+dim R = M.

When R is the ring of integers in an algebraic field, and R has a unit of infinite
order then according to a result of Vaserstein [2], SL,(R) is generated by
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elementary matrices. If R is a Euclidean ring then SL,(R) is generated by
elementary matrices. It follows then in case R is Euclidean or R has a unit of
infinite order that WU(R) is connected. The cases excluded by this are the
non-Euclidean rings of integers in imaginary quadratic number fields.

§2

We suppose now that R is a Euclidean ring with respect to the function
| |: R— N. Suppose also that | | is multiplicative and thus gives rise to a function
on the quotients field of R, K. Define

| |:£—N via

|R(a, b)|=|b|. This is independent of the particular representation of the line since
units have value one under the Euclidean function. Let 9U(n, R) be the full
subcomplex of U(R) containing all vertices L of &£ with |L|=n.

Consider now the link of a vertex R(a, b), |R(a, b)|=n, in U(n, R), denoted
Link, R(a, b). This link is the full subcomplex of AU(n, R) containing lines L
independent of R(a, b) with |L|<n. Let R(c, d) be independent of R(a, b). It
follows from Lemma 1 that this link contains only vertices R(ra +c, rb+d) with
|rb + d| = n. Using the Euclidean algorithm we write d = qb + d,, with |d,| <|b| = n;
let ¢,=c—qa. Thus the link contains only those lines R(c,+ra, d,+rb) with
|do+ rb|=n.

Now if xe K, put R, ={re R||x—r|=1}. Let R, be the simplicial complex in
which a g-simplex is determined by a set {r,,...,r}, rneR,, rl—rleR*, 0=
i# j=gq; this is the full subcomplex of # containing the vertices R,.

LEMMA 5. Link, R(a, b)=R,, x =d,/b.

Proof. The vertices in Link, R(a, b) are R(c,+ra, dy+rb),|d,+rb|=<|b| or
equivalently |do/b+r|=1. Thus there is a 1—1 correspondence between the
simplices of the link and the simplices of R,, x = dy/b. The incidence relation on
R, is designed so as to agree with that for the link.

We make the observations below which will be of use later.
LEMMA 6. R, =R,.,x€K, aeR.

LEMMA 7. R, =R, x€K, ue R*,
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There are two types of elements of K which we need to distinguish. If x e K
and R, ={r||x—r|<1} then x will be called of type I; otherwise x is of type II.

§3

In this section we analyze the structure of the complexes # and R, for the
ring R=Z[w], w®>=w— 1. The simplices of ® are given by sets {r,, ..., r,}; we
shall at times denote this by r+u{sy,...,s,}, reR, ueR* r=r+us,0=i=q.

LEMMA 8. (a) Every 1-simplex of R is uniquely of the form r+ »'{0, 1},
0=i<3.

(b) Every 2-simplex of R is uniquely of the form r+ »'{0, 1, 0}, 0=i<2.

Proof. Given a 1-simplex, {r,, r;}, we may write this as ry,+(r,—r,){0, 1},
r,—r,€ R*. Notice that {0, —1}=—1+{0, 1} and this provides the required form.
For a 2-simplex we may suppose that it has the form r+u{0, 1, n} with 7§,
n—1€ R*. Then it follows easily that n=w or n = ’. Notice that {0, 1, w’}=
o {0, 1, ®}. Thus every 2-simplex has the form r+ u{0, 1, w}; in order to get the
proper restriction on u notice the relations:

{0, Lo}=-0+0{0, 1,0}  ©H0,1,0}=-1+{0, 1, 0}.

For the uniqueness part suppose that r+uo = s + vo where o is {0, 1} in part
(a) or 0={0, 1, w} in part (b) and u, v are restricted suitably. We obtain then a
relation o =v"'(r—s)+ v 'u - 0. Thus we may suppose that there is a relation
o =p+ 7o and show that =1 and p =0. This is quite simple in case (a). In case
(b) we observe that p must be one of 0, 1, w. If p=1 then either r=—1 or 7= w?;
both of these are excluded by the form. If p=w then either w+7=0 or
o + 7w = 0; one checks that this is impossible.

COROLLARY. If R=Z[w] then R is contractible.

Proof. View R embedded in C as a lattice, then the simplices r+ {0, 1, },
r+{0, 1, w} provide C with a simplicial structure tessellated by these two types of
simplices.

Now for the structure of &, we may using Lemma 6 assume that 0 € R, ; our
only concern is with x € K— R. View R embedded in C and hence also K. The
norm N:K— Q, which is the square of the usual absolute value on C, provides
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the multiplicative Euclidean function on R. Using Lemma 7 we may assume that x
belongs to the region below.

If x e K— R belongs to this region and is not on one of three solid arcs then it
is of type 1. Following the labeling of the three regions we describe R,. For region
A which includes the two solid arcs we have R, ={0, 1, w, »?}; for region B which
includes the third solid arc R, ={0, 1, w, 1 + w}; for region C, R, ={0, 1, w}. The
complexes R, have the following structure:

- B) A ) %w
o%w 1%60 0 1
1 (R
Notice that for xe K— R of type II, R, is a union of two 2-simplices.

§4

THEOREM. U(Z[w]) is contractible.

Proof. We filter U(Z[w]) by the subcomplexes U(n, Z[w]) according the
norm. Let &, ={L € £||L|= n}. We shall establish that U(n, Z[w]) is contractible
to Z[w](1, 0) by induction on n. Notice first that %(0) = Z[w](1, 0) and that U(1)
has Z[w](1,0) as a cone point; suppose inductively then that U(n—1, Z[w]) is
contractible for n>1. We have

U(n—1, Z[w]=U(n, Z[w])— U st(L).

Le%#,

where st (L) is the open star of L in U(n, Z[w]). Thus U(n, Z[w]) is obtained
from AU(n—1) by attaching the Cone (Link, L), Le %, to U(n—1) along the
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Link, L. Now the Link, L corresponds to one of the complexes R,, xe K—R,
which if x is of type I has all of its vertices in U(n —1); however if x is of type II

there is a unique vertex L' in Link, L which belongs to &,. We diagram this by
the picture:

We have notices here that if L if of type II then for the vertex L' in Link, L there
must be exactly two 1-simplices meeting at L' in the link. Now to complete the
picture we examine Link, L'; the link of L’ contains «, 3, L and another vertex
deU(n—1), 8# v, arranged as in the diagram. Now to contract U(n) we first
contract L to L' along the edge joining them for every pair L, L' € &, which are in

each other’s links. We obtain then a complex with the same homotopy type as
U(n), V(n). Now

Y(n)y=auUn-1) |J Cone (Link, (L))

Le%¥',

where £/ is the subset of &, containing all type I vertices and one from each pair
of type II vertices as above. The Link, (L) is unchanged for type I and for the
type II the link has the same homotopy type. Now %(n—1) is contractible so we
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obtain

U(n)=V(n)= V Susp(Cone (Link, (L)).

Le¥',

Hence, since each link is contractible we have that 4 (n) is contractible. It follows
then that 9 is contractible.

We denote by U'(Z[w]) the first barycentric subdivision of U(Z[w]).

COROLLARY. U(Z[w]=U%'(Z[w])— U cgst (L)

Proof. According to the corollary of Lemma 8, the simplicial complex R is
contractible. We have R =Link (L) for any L € #. Notice:

%E%’E(%'— | st (L)) U U Cone (Link (L))

Le¥ Le&

Now the Link (L) above is computed in %’ but its homotopy type is unchanged,
1.e., it’s contractible. Thus

U=u"—- | st(L)

LeZf

1s contractible.

The complex U'—|J, .est(L) may be described as follows: Consider the
partially ordered set (by inclusion) of subsets of £ of the type

{LO>---an}a qu

for which L, L; are independent for 0=<i# j=gq; then U'— |J, cest (L) has the
homotopy type of the realization of this poset, say ¥(Z[w])).

§5

LEMMA 9. For the complex U(R), R = Z[w],

(a) every vertex is GL,(R) equivalent to {R(1, 0)};

(b) every 1-simplex is GL,(R) equivalent to {R(1, 0), R(0, 1)};

(c) every 2-simplex is GL,(R) equivalent to {R(1,0), R(0, 1), R(1, 1)};

(d) every 3-simplex is GL,(R) equivalent to {R(1,0), R(0,1), R(1,1),
R(1, w)}.
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Proof. The first two parts of the lemma are easy. For part (c), any 2-simplex is
equivalent via GL, to a simplex which must have the form {R(0, 1), R(1,0),

0

1
R(1, @)}, @ € R*. Multiplication by the matrix (O _1) converts this 2-simplex

o
to the required form. For 3-simplices we may by the action of GL, bring this to
the simplex

{R(0, 1), R(1,0), R(1, 1), R(1, a)}.

with a, @« — 1€ R*. According to the proof of lemma 8, a=w or o’. If a=w’

0 1
then multiplication by the matrix (1 O) on this simplex converts it to the
required form.

COROLLARY. The fundamental domain for the action of GL,(Z[w]) on

Y(Zlw)) is a single 2-simplex.
=N

Proof. Recall the description of ¥ (Z[w]) at the end of the previous section.
Using the previous lemma now, the fundamental domain for GL, on ¥(Z[w]) has
vertices A={0,1),(1,0)}, B={0,1),(1,0),(1,1)} and C={(1,0),(0,1),
(1, 1), (1, w)}. (We have given only the generators for the lines in A, B, C))

COROLLARY. The fundamental domain for the action of SL,(Z[w]) on
Y(Z|w)) is the 2-complex

C,

Proof. Given a vertex {R(a, b), R(c, d)} we may multiplying a, b, ¢, d, by
u = (ad — bc)”' assume that the matrix (Z ;) is in SL,(Z[w]). Hence this vertex

is SL, equivalent to A ={(0, 1), (1, 0)}. For any vertex containing exactly three
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lines there is an SL, equivalent having the form {(0, 1), (1,0), (1, a)}, a € Z[w]*.
Multiplication by ((1) (1)), (:))2 8’) or (—8) 0?2) converts (1,—-1), (1, w) or
(1, *) to (1, 1) and preserves A. Thus any vertex containing three lines is SL,
equivalent to B ={(0, 1), (1, 0), (1, 1)}. Finally any vertex containing four indepen-
dent lines is SL, equivalent to {(0, 1), (1, 0), (1, 1), (1, @)}, @, a — 1 € Z[w]*. Hence
a=w or —w’; these two vertices C;, C, corresponding to a =w and a =—w’
respectively are easily seen to be inequivalent.

§6

Let R = Z[w]; the vertices in the fundamental domain for %(R)/SL,(R) are
A={R(0,1), R(1,0)} B={R(0,1), R(1,0), R(1,1)}, C,={R(1,0), R(0,1),
R(1,1), R(1, w)} and C,={R(1,0), R(0, 1), R(1, 1), R(1, —w?)}. Put I' = SL,(R);
denote by I, the stabilizer of the vertex v. Each vertex is determined by a
collection of pairwise independent lines £(v). Consequently we have
homomorphisms

I, ”"ng(u)

(25 denotes the symmetric group on the set S) with kernel denoted K,.
0 0 1
In case v = A then I', contains (((;) 2) =g and 7= ( ) 0) which induces
—w -

the transposition of the elements of A. Consequently there is an exact sequence
0—»Z—I,—3,—0.

It is easy to see then that ', is the dicyclic group of order 12:
r,={(o, 7!72———‘0'3:(0'7)2)

In case v =B then an analysis yields the fact that I'; contains the matrices
-1 0 0 1
S =( 0 — 1) together with ¢ = (_ ) 1) which induces a 3-cycle on the lines in

B. We have an exact sequence
0—-2Z,>Iy—2Z;—0

so that I is a cyclic group generated by ¢ of order 6.
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In the last case where v = C,; or C, then it is easy to see that K. is cyclic of
-1 0 . : : .

order 2 generated by ( 0 1). It is not difficult to see that the image of I'- in

3 4, contains no transpositions; however there are 3 cycles and double transpos-

0 1
itions. In I', a 3 cycle 1s afforded by t= ( ) and a double transposition by

-1 1

r= ( 02 (6)) We find that I'- is the binary tetrahedral group:
w

Ie,=r| ==

0
The group I'¢, is alca™’, « =( w).
w 0

From this information it is then easy to describe the stabilizers of the edges
and 2-simplices in the fundamental domain for SL,(R). We summarize this data:
(I', =N, etc.) Iyg =(t>) is cyclic of order 2, 'y, =(r) is cyclic of order 4,
Ige, =(t) is cyclic of order 6, 'y, ={ara™"')=(10") is cyclic of order 4, I'zc, =
(ora™"y=(t"") is cyclic of order 6, I'npc, = Fapc, =(t*) is cyclic of order 2.
Observe that ara™ ' =to*, and ara™'=1t"".

We have the fundamental domain as below.

so that x(SL,(R))=3%+s+23+2—3—3i—¢e—¢e—3+3+3=0. Since I'c,c,=Is we
may regard the fundamental domain as a single 2 simplex

=N

Using the presentation of @', I'c,, [, we may obtain a presentation for
SL,(Soule [5]) viz.,

2

SL,=(o, 1, t|T?*=c’= (o1’ = =({""or)’ =" =(tr""0)).
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§7
If X is an acyclic space on which a group I" acts there is a spectral sequence

El,=H/(I,C)=>H,. I, 2)

+q

where C, are p-chains on X (Serre [4]). If I" acts with fundamental domain X
then

C,=®ZIRZ
i ZT,

where p; are the p-simplices in X and I’ ». 1s the stabilizer of p; in I Thus

E}q=® Hy([,, 2).

Now in the case X = ¥ (Z[w]) with fundamental domain as above, I's, I'c, I'c,
are all subgroups of the three sphere $> and hence have periodic homology of
period 4.

PROPOSITION. If G is a finite subgroup of S* then H,.,,(G)= H,(G)
k=1,2,31=0; H,(G)=0 l=1; Hy(G)=Z,, H(G)=0.

Proof. The action of G on S* implies that the homology of G is periodic of
period 4. The determination of H;(G) is well known (See Cartan-Eilenberg [1]).
If G is a cyclic or dicyclic then H,(G)=0[1]. Otherwise G is one of the binary
polyhedral groups. In this case S$*>/G is an orientable 3-manifold; using Poincare
duality H,(G)=torsion Hy(G)=0.

PROPOSITION. If G is a cyclic group of order n then

Hy(G)=Z  HJ(G)=2Z, H(G)=0, kodd.

COROLLARY. The homology of SL,(Z[w]) in dimensions greater than zero is
annihilated by 24.

Recall from §6 that I', =(o, 7| 7> = 0> = (07)?),

Ie,=(r|P=r="r’) and I'g=alga™.
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LEMMA. I'y/I' is cyclic of order 4 generated by the image of 7, say T and
27=6. I'c,/T is cyclic of order 3 generated by the image of t and 2t =t 't.

The table below indicates the effects on the first homology of the indicated
maps

Inclusion Map

1st Homology Map

Fac,— 1A Z4—‘3—)Z4
I'ac,— T, Z4‘L‘>Z3
Fac,—1's 24—1“"’24
Fac,— T, Z4—L—>Z3
I'c,e,— 1, 26—1)23
I'e,e,— 1, Zé__i_>23
FCac,,— 1T Zz‘—z"‘)zat
FAC,(‘Z—>FCI Zz‘—()—’z.%
I'ace,— 1, Z?_‘L)Z,%
I'ac,c;= LA, Zz"‘z—)z4
FAC,CZ‘“)FAQ Zz—3—>Z4
Fac,e,—1Tc,c, Zz“_iﬁzs

We analyze the spectral sequence in the steps below.

(1) Ej ,~“>E},. This map corresponds to H,(Z,)—H,(Z,)® H,(Z,)® H,(Z)
from the stabilizer of the 2 simplex to the stabilizers of the edges. This is
injective; hence E3,=0.

(2) Since all the edges have cyclic stabilizers E} ~">E] , is zero for p even.
Thus E7,=0 for p even.

(3) If p=1 (4) then E} ,~~>E,, corresponds to the map

H,(Z)® H,(Z,)®H,(Z,)— H,(I'c,)®H,(I'c,®H, (')
or

ZBZ,DZ2,—-2,DZ,DZ,

(a, b, c)—>(a,2a,b—c)
so that the kernel is of order 8 generated by (3, 0, 0) and (0, 1, 1). The image
of d,:E},—E], is generated by (3,2,2) so that E} =Z,®Z,/(1,2)=2,

generated by (0, 1, 1).
(4) If p=3 (4) then E},p——‘f—‘—>E(’,,p corresponds to the map

Z,®ZDZ,—>2,,02,,9Z,;
(a, b, c)—>(4b+6¢c,—6a—4b,3a+3c).
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If (a, b, c) is in the kernel then 4|a+c, 12|2b+3¢, 12|3a+2b. One finds
then that the kernel is generated by (2, 3, 2) which is precisely the image of
E;,—E;j, Hence E;, =0 for p=3 (4).

(5) B2, =0 k=1.

(6) If p=1 (4) then Ei,p—-d—‘—eEé,p is the same as in the map in step 3

Z®DZ.DZ, 47, DZ.BZ,

The kernel is of order 8 so that the image is of order 12, hence Ej,=
cokernel of d,=Z;,.
(7) If p=3 (4) then Ej, is the cokernel of

E} ,—“>E},
which from step 4 is the cokernel of

Z,DZBZ,—~Z,,BZ,,DZ,,
(a, b,c—(4b+6c, —6a —4b,3a +3c¢)

If x,y, z generate Z,,, Z,,, Z,, respectively then the cokernel has relations
—6y+3z, 4x—4y, 6x—3z or equivalently 6x+3z and 10x+2y. Conse-
quently, Ej ,=Z,,0Z,BZ, for p=3 (4).

(8) If p=2 (4) then E] ,—— E;, is zero. It follows now that E*=E” and the
next result is then immediate.

THEOREM. For I' = SL,(Z] w)),

(Z n=0
Z, n=1(4)
H.(I=1 z, n=2 (4)
Z,,DZ, n=3 (4)
0 n=0(4), n#0
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