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Eigenvalue estimates on homogeneous manifolds

by PETER Li

§0. Introduction

In the recent years, much work has been done on studying the first eigenvalue
of the equation

Af = ~Af

where f is a C* function defined on a compact Riemannian manifold. In general,
it is known that [1] the first eigenvalue A, cannot be bounded by either the
diameter or the volume alone. In [3] Cheng showed that A, has an upper bound
depending on the diameter, d, and the lower bound of the Ricci curvature,
(n—1)K. Yau [12] later conjectured that one should be able to estimate A, from
below in terms of d and (n— 1)K also. This conjecture was shown to be true in [7]
for a special case. The general case was later established by Yau and the author
[9].

The purpose of the first part of this paper is to obtain a lower bound for A, on
a compact homogeneous manifold M. In fact, we will prove that A, =?/4d>. This
is rather surprising that homogeneity is strong enough to guarantee a lower
estimate of A, in terms of d alone.

One can improve this estimate of A; by assuming K=0 (i.e. Ricci
curvature =0). Actually, we will show that by a method in [9], if a general
compact manifold is non-negatively Ricci-curved and also the first eigenvalue has
multiplicity greater than one, then A, =w?/d?. In particular, if M is homogeneous,
the multiplicity condition on A, is shown to be automatically satisfied. Hence in
addition if K =0, then A,=m?/d? Further more, this estimate is sharp. If, in
addition, we assume that M is an irreducible homogeneous manifold then
A =nm?/4d>.

In the third section, we will give an estimate on the differences of any two
consecutive eigenvalues of a homogeneous manifold in terms of its lower eigen-
values. The method was also used in [10], [2] and [11]. In fact, if A =)' A, then

2
A — Ay s—r;l- («/A2+ mAAX, +A>+/\1.
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Finally, the last section is devoted to the studying of the spectrum of
differential p-forms. When a homogeneous manifold is also assumed to have
non-vanishing Euler number, we will show that the first eigenvalue for 1-forms A]
has a lower bound depending on d and K. A sufficient condition for a homogene-
ous manifold to have its p™ Betti number no greater than (}) will also be derived.

Throughout this paper we will assume the M is a compact homogeneous
manifold with isometry group G and isotropy subgroup H, unless specified.

§1. Basic estimates

PROPOSITION 1. Let E be a finite dimensional G-invariant subspace of the
space of L? p-forms on M. Suppose dim E =k, then for all w € E and xe M

k
P =1 lwl?
where |w| denotes the pointwise norm of o, and V = volume of M.

. Proof. Let {w;}¥_, be an orthonormal basis of E with respect to the L? inner
product. We define the function

k
F(x)= .Z lo P(x) xeM. (1.1)

Clearly F(x) is well defined under orthogonal change of basis. Let x,€ M be fixed,
then

k

Flxo)= 2, lox[*(xo) = 2. |g*wi(g ™ (x0))

1

M=

|lw; (87" (x0))] geG. (1.2)

i=1

The last inequality follows from the fact that g is an isometry, hence {g*w;}F-;
form an orthonormal basis of E. Since G acts transitively on M, there exists g€ G
such that g(x)= x,. Hence (1.2) becomes

F(xo)= 2, loy(x)| = F(x) (1.3)
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which shows F is a constant function. Integrating both sides of (1.1) yields

k
VeFa)= | Y laP-k (1.4)
M i=1
Therefore
& k
2 lanP(x) = F(x) = F(xo) = (1.5)

and the proposition follows directly.

COROLLARY 2. Let E¥ be an eigenspace of p-forms with eigenvalue A on M.
If w € EX, then

dim E¥}
\'%

ool = lleoll>-

Proof. Since the Laplacian commutes with isometries, E} is a finite dimen-
sional G-invariant subspace, hence proposition 1 can be applied.

Remark. One can also apply the proposition to any G-invariant subspace of
ER.

PROPOSITION 2. If E is a finite dimensional G-invariant subspace of L?
functions on M, then

k
Ifl=3 B forall feE
where k = dim E. Moreover if E# {0}, there exists f,€ E such that

2 _ k 2
Hf()“oo - V “fo“z

Proof. The first part of the proposition is just a special case of proposition 1.
The equality follows from the existence of ‘zonal functions” discovered by E.
Cartan in the case of symmetric spaces. However for completeness sake, we will
sketch its proof.
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Define E, < E to be the subspace
Eo={fe E|f(xo) =0} (1.6)

where xo€ M is fixed. By homogeneity of M and the fact that E# {0}, we have
E,# E. We claim that the perpendicular subspace E; of E, in E is of dimension
1. If not, let f, and f, be two linearly independent functions in E;. On the other
hand, there exists «, B8 €R such that

afO(xO) + Bfl(xO) =0.

But this implies af,+ Bf, € E,, which is a contradiction. Hence there exists f,€ E
such that E,® (f,)=E and ||fil,=1. Let {f,}*., be an orthonormal basis of E
with f, = f,. By equation (1.5), we have

ig fi(xo) = % (1.7)

However f,(x,) =0, for a =2, therefore f5(x,)=k/V which proves the proposi-
tion.

Remark. Let us denote H,, to be the isotropic subgroup of G which leaves x,
fixed. Then f, is invariant under the action of H, and hence takes constant value
on each orbit of H,. This was the original definition of zonal functions. We will
call f, the zonal function of E at x,,.

COROLLARY 4. Let E? be an eigenspace of functions with eigenvalue A. Then
for a fixed point x,€ M, there exists a unique f,€ E5 which satisfies

dim EY\'2
0 il = fotxo) = (F222)
(i) |fol,=1
(iii) f, is invariant under H,
(iv) [fole=f*(x) forall feE}
v) (fo® E,=E.
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§2. The first eigenvalue for functions

In this section we will utilize corollaries 2 and 4 of the above section to obtain
a lower bound for A,. A sharp estimate can be obtained if in addition we assume
the homogeneous manifold M is non-negatively Ricci-curved.

THEOREM 5. Let EY, be an eigenspace of functions on M. Suppose f,€ E\ is a
zonal function we obtained in corollary 4. Then

IVfolP(x)+ Af2(x) < Allfol2 for all xeM.

Proof. Let x,€ M be a point such that f,, is a zonal function at x,. Consider
g € G such that g(x,) = x. Then the action of g on f, is given by

g foly)=fo(g(y)) forall yeM. (2.1)

One can complete {f,} to {f,}*_, an orthonormal basis for E} with f,=f, and
f. € E,y, for « =2. We may also assume that

g fo=afy+ bf, a, beR. (2.2)
Since ||g - foll. =1, we have a®+ b*=1. By the fact that g is an isometry

‘anP(x) + )\f%(x) = W(g : fo)‘z(xo) +A(g - fo)z(xo) = b2|Vf2|2(x0) + )\azﬁ(xo)-
(2.3)

The last equality follows from (2.2) and the fact that f, attains its supremum at x,,.
a’+b>=1 implies

IVol2(0) + Afa(x) = Af3(xo) + bV (x0) = Af3(xo) 1= Allfollz + B[V E[IE = AllfollZ]-
(2.4)

Now we claim that the second term of the right hand side of (2.4) is non-positive.

In fact, if we consider the subspace E = {df | fe E}} of 1-forms, then it is easy
to see that since A#0, E is a subspace of dimension k =dim EJ. Also E is
invariant under G by the fact that d commutes with any ge G. Hence by
proposition 1,

> K oae _ Akyan 0
IVAlE = v VA==, A5 forall feEX. (2.5)



352 PETER LI

On the other hand, corollary 4 gives

k
Ifolk: = - (2.6)
Therefore
2 ,\k _ 2
llszlloo ~‘T,’ - AHfon (2-7)

which proves the theorem.

COROLLARY 6. The first eigenvalue A, for functions on a homogeneous
manifold satisfies w*/4d*<\,, where d = diameter of M.

Proof. By theorem 5, we have

\Y
VRl f"i =2 (2.8)
Jllfollw—fo
Integrating along the shortest geodesic y joining x, and N the zero set of f, yields
d- )\”ZZJ—————“—W?‘ ~=sin" (———-—f(’(x(’))=1r. (2.9)
\/Hfo\\w- fo Hfoﬂoo 2

The corollary follows.

Remark. The gradient estimate in theorem 5 is the same as the one obtained
in [9], where we had to assume M is non-negatively Ricci-curved. In general
without the assumption Ric,, =0, the conclusion of theorem 5 is false. It is hence
rather surprising that the homogeneity condition alone gives such strong gradient
estimate.

If M is assumed to be non-negatively Ricci-curved and also if dim E} =2,
then by following the method in [9] one can derive a sharp lower bound for A;.

THEOREM 7. Let M be a compact manifold (not necessarily homogeneous)
with Ricci curvature bounded below by (n—1)K. Suppose A, is the first non-zero
eigenvalue for

(1) Ap=—A¢ when M=
(i) Apg=—A¢ and d¢/ov=0 when OM+#,

where 3/dv denotes the outward unit normal to M. Assuming also dM is convexed.
If dim E) =2, then A, =m?*/d*+min {(n-1)K, 0}.
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Proof. First we show that there exists ¢ € E} such that
sup ¢ = |inf ¢|. (2.10)

Since dim E} =2, let ¢, and ¢, be two linearly independent eigenfunctions in
E} . We may assume that

sup ¢; > |inf ¢;| i=0,1. (2.11)

Consider the functions defined by

¢ =(1=eo—te;  tel0,1] (2.12)
and

®D(t) =sup ¢, +inf ¢,. (2.13)
Clearly ¢, € EY and @(¢) is a continuous function in t. By (2.11), we know that

@(0) = sup ¢q +inf ¢, >0
and

®(1) =sup (—¢,) +inf (—¢,;) =—inf ¢, —sup ¢, <O0.
Therefore there exists t€[0, 1] such that
0= @(t) =sup ¢, +inf ¢,

which proves the claimed.

The rest of the proof follows the same way as in Theorems 10 and 12 of [9],
with a slight modification as follows: Let y be a shortest geodesic joining the
supremum and infemum points of ¢. Consider vy, and vy, as parts of y joining the
supremum point and the zero set, and joining the infemum point and the zero set
respectively. Since y has length no greater than d, either vy, or vy, has length no
greater than d/2. Assume [(y,) =d/2. Integrating the gradient estimate along vy,
and using the fact that |inf ¢|=sup ¢ the theorem follows.
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COROLLARY 8. Let M be a compact homogeneous manifold without bound-
ary. Then

77_2
Ay 2;1—2+min {(n—-1)K, 0}.
Proof. In view of theorem 7, it suffices to show that dim E} =2. However if
E} ={(f), by proposition 1
f? = const

which contradicts the fact that f is the first eigenfunction.

Remark. Theorem 7 yields a sharp estimate for A,. If one considers M =
S'(r)x N where N has non-negative Ricci curvature. It is well known that the
eigenvalues of M split into sums of eigenvalues of S'(r) and N. Hence for r
sufficiently large

MM = M (81 () = .

On the other hand d*(M) = d?*(S'(r)) + d*(N) = w?r*+ d*(N). Therefore

d*(N)

r2

M(M)x d*>(M)=n*+

which tends to 7> as r—>. This shows the sharpness of theorem 7.

DEFINITION. M = G/H is said to be a compact irreducible homogeneous
manifold if G is a compact isometry group of M and the isotropy subgroup H acts
irreducibly on the tangent space of M.

THEOREM 9. Let M be a compact irreducible homogeneous Riemannian

manifold. Suppose EY is an eigenspace of functions on M. If f,e EY is a zonal
function of EY, then for all xe M

Vol 0+ 200 =2 £ B
n n

Proof. It is known that [5] an irreducible homogeneous Riemannian manifold,
M, can be isometrically minimally immersed into the standard sphere by any of its
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eigenspaces. In fact, the immersion @ : M—S*!(r)cR* is given by &=
(ag,, ..., aqp,) where {¢;}*_, is an orthonormal basis of E} and A = n/r*.
First we will show that for any fe EY,

A Ak
VfP=— Form o 2.14
ViP=] L el=105 (2.14)
We may assume that f = ¢,. By the fact that & is an isometry, we have
do(X)=1 (2.15)
for all unit vector X € T X M. This implies
k
o® Y (Xe)=1. (2.16)
=1
By choosing X appropriately, we conclude that
]' 2 2
—=(Xe)*=|VfI". (2.17)
On the other hand, since ®(M)< S*~', we have
k n
o’ )@= r2=x. (2.18)
i=1

Hence combining with (2.17) gives

wiP=2 (3 o)

Now Theorem 9 follows from the proof of Theorem 5 where we substitute A/n
instead of A.

COROLLARY 10. Let M be an irreducible homogeneous Riemannian mani-
fold. Then the first eigenvalue A, for functions satisfies
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Proof. Follow the proof of Corollary 6 but using Theorem 9 instead of
Theorem 5.

Remark. If we integrate the inequality

Vol 0+ 2 2 =2
n n

over M, we obtain

Ao+ Mol - V- Il 2.18)
Hence
(n+ 1) ol = VIS 2.19)

for all zonal functions in any eigenspaces of M. Moreover equality holds if
M =S8"(r). In fact, if (n+1)||fol5= Vlfol> then combining with proposition 2:
n+1= k. However since @ : M"—S* '(r) = S"(r) is an isometric immersion, this
implies that M" is a constant curvature manifold with curvature = 1/r%. It is not
hard to see that the only constant positive curvature irreducible homogeneous

space which can be isometrically immersed in $™(r) via its eigenspace has to be
S™(r) (see [6]).

§3. Higher eigenvalues for functions

In the following theorem we show that A,, can be estimated from above in
terms of A, i=m—1. In [10] and [2], the authors utilized the fact that the
coordinate functions are harmonic and gave upper bounds for A,, on domains and
minimal submanifolds in R". Since the coordinate functions of a minimal sub-
manifold in S™ are eigenfunctions, Yang and Yau [11] found upper bounds for A,,
using similar philosophy as mentioned above. It turns out that a similar method
carries through when M is homogeneous, which depends heavily on proposition 1.

THEOREM 11. Let A=Y"'\. Then

2
Am _/\m—-l S—r_}; (VA2+ mAAl +A)+)\1
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Proof. Let {¢,}5_, be an orthonormal basis of the first eigenspace Ej , and

{e;},! be the set of first m™ orthonormal eigenfunctions (including constant
function). Then

Ap, = —AN¢, for 1=a=k

and
We define
m-—1
Uyi = QoPi — Z Qi Pj (3.2)
1=0
where

am-j = J@a@i@j = aaﬁ.
Clearly

Jumcp,-z() forall 0j=n-—1. (3.3)
Hence by the variational principle for A,,, we have

V 2
A = ” u2| for all a, i

i

However
J"Vuailz = “’J UgiAUy; = — J Ui [”‘()\1 + M) @i + 2V, Ve,)

- Z Qi@ ] A)J ZJum-(V(pw Vo). (3.4)

i=0

Therefore

25. uai<V(pa9 V‘Pl >

AmSAI.{’-Al-— juil

(3.9)
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which implies
—2 Z f uai<vcpa’ chl)

Am*/\l——Am--lS e
Y fus

But

-2 Jum(V%, Ve =2 J—Zcpa%(cha,V@.-H 3 J2aai1¢j<V¢a, Vo)

a,i,j

= Z% J‘“W(CPi), V(e + 2 jaaij(v@a’ Viewpr)) (since ay

a,i,j

= Z Jaaij)\lcpaqoicp,- (since Z @2 = constant).

a,i,j
=\ ) aZ;
o,i,j
Also
Z Ju(zu Z J‘ a(P: -2 Z J¢a¢iaaij¢j+ leaaijaail¢j@l
a,l o,i a,i,j o,t, ),
k
= Z(Pa Z J@?_z Z a?xij+ Z.aiij:_vr‘n’_ ”aczxij'
i=0 a,i,j o, f a,l,j

Hence, if we let A=Y _,.a2. then

o, i,j ou)

MA
)\m - Am—l - Al = - . (3.9)
m_a
v
On the other hand
¥ 1/2 1/2
¥ | [ uatVon Vool =X ([uz) " (9o ve?)
3 1/2 r 1/2
=(2 [ua) (2 [ e ver)
" 1/2 [ 1/2
= ( . uii) (Z (Z \V%F) chi|2>
* 1/2 k 1/2
- 2 |7 (ak
(Z ““‘) ( v ZA)

(3.6)

= a(x;i)

(3.7)

(3.8)

(3.10)
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The last equality follows from Proposition 1 and the fact that [|Ve_|[>=A,.
Substituting this into (3.6), we get

-2 Vo, Vo,
Eﬁf%.( Por V1) ko

Am_Aml_Als[§i|juai<V@a’ ch;>|;r '

2k)\1A( J’ \)*1 2k)\,A< 2 )
v \Z | | uaVew Ve v Ga) tv3D)
4Ak
= VA (3.11)
Combining (3.11) with (3.9) yields
) A VA 4Ak}
A —Am—1— A;=min {km VA VA (3.12)

Observe that as a function of VA, A, VA/km — VA is an increasing function on
[0, km] and approaches © as VA tends to km. Also 4Ak/VA is a decreasing
function on [0, km] and approaches © as VA tends to 0. Hence the minimum
between the two functions is bounded by their common value taken at

_ V16AK*(A+mA;)—4Ak
2A1 '

VA

Therefore

2
A ~)\mg1—)\1$;(\//\2+ mAA, + A).

§4. First eigenvalues for differential forms

The celebrated Hodge theorem tells us that the p™ Betti number is given by
the dimension of the space of harmonic p-forms. Clearly the Laplace-Beltrami
operator A =8d+dd depends heavily on the metric. Yet the notion of Betti
numbers are purely topological. This phenomenon explains why the study of the
first eigenvalues for differential forms is much more difficult than for functions.
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The only known result in estimating lower bounds for A% is due to Gallot and
Meyer [4]. They had to assume that the curvature operator is bounded below by a
positive number. However this assumption automatically implied the vanishing of
the Betti numbers, which is the famous vanishing theorem of S. Bochner.

The objective of this section is to establish a lower bound for A; on
homogeneous manifolds. In most cases, we have to impose additional assumption
about the geometry in order to avoid the topological difficulty mentioned above.

THEOREM 12. Let E} be the eigenspace of p-forms with eigenvalue A. Then
there exists wy € E¥, such that

1= d[min {k, (;)} X (A= (n— p)pr)]er inf |, | (—I‘(—/x min {k, (;) })”2

where k =dim E% and

- {(n— 1)~ x (lower bound of Ricci curvature), if p=1

lower bound of the curvature operator, if p>1.

Proof. Consider an orthonormal basis {w;}r_, for the eigenspace E%. A formula
of Bochner gives

lvwi‘zz)\‘wi‘2+%4lwi|2_F(wi)- 4.1)

Summing over all i and using (1.5) of Proposition 1 yields
Z Vo[> = A Z |y |* Z F(ay). 4.2)

However it is known that [4]

F(w)=p(n—p)K, lo; . (4.3)
Hence
Y Vo P=(A—p(n-p)K,) 2. loP=(A-p(n-p)K,) —f; : (4.4)

However Lemma 9 of [8] implies

1V || P<|Veor P 4.5)
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Therefore

k 1/2
I¥ bl =02 = 0= 1K, 172 () @.6)

By Theorem 12 of [8], we can choose w,€ EY to satisfy

min {k. () ool =1, ol @

Letting w, = w, and integrating (4.6) along the shortest geodesic y joining inf |wy|
and sup |wo| = ||woll. yields

A= p =PI () =1V ool = | I ol

k

= ||l — inf [wo| = 2 —inf |wy|

V X min {k, (;’>}

This proves the theorem.

COROLLARY 13. Let M be a compact homogeneous manifold with x(M)#
0.Then the first eigenvalue for 1-forms A satisfies

1
M=—s+(n-DK.

Proof. Since K, = K, theorem 11 gives
1=d[n(A}—(n—1K]">+inf |w| x (V'?)

However x(M)# 0, implies w, has to vanish somewhere, hence inf|wo|=0.
The corollary follows.

COROLLARY 14. Let M be a compact homogeneous manifold. Then the first
eigenvalue A, for functions satisfies

1
=——+(n—-1)K.
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Proof. Let E be the first eigenspace for functions. Since E ={df | fe E} } is a
G-invariant subspace of eigen 1-forms, Theorem 11 applies. Moreover, at the
supremum point of f, df =0, hence inf |wy| = 0.

COROLLARY 15. Let M be a compact homogeneous manifold. Suppose

% > (;)p(n - p)K,.

Then the p™ Betti number b, satisfies

b, < (;)

Proof. If b, >(7), then since the dimension of p-tensors on an n-dimensional
vector space is (3), at a fixed point x,€ M, there exists w,€ E§ which vanishes at
Xo. By theorem 11, we have

t=d|-()ptn-pik, |

which is a contradiction to the assumption.

Remark. Corollary 15 actually shows that if the dimension of the first eigen-
space for p-forms is greater than (}), then

A=

l (” p)pr
d2<

COROLLARY 16. Let M be a compact irreducible homogeneous manifold. If
M is not parallelizable, then

Al 2—’1%15+ (n—1)K.

Proof. 1t suffices to show that if the dim E, =< n then there exists w € E, such
that w =0 at some point. If not, say for all w € E),, w never vanish, we want to
find a contradiction. Let us first fix a point x € M. By the irreducibility condition of
H,, {h*w(x)} spans TH¥M = cotangent space of M at x, for any fixed w € E} . On
the other hand, since h*w (he H,) is also an eigen 1-form and dim (T¥M) = n,
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dim E}, must be at least n. Therefore dim E; = n. However by the assumption
that all w € E,, do not vanish, this implies that there exist n linearly independent
sections of the cotangent bundle of M. Hence M is parallelizable which is a
contradiction.

Combining with the remark above, this proves the corollary.
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