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On the Euler class of representations of finite groups over real
fields

Beno EckmanN and Guipo MisLIN

Introduction

For representations of finite groups over the rationals Q there is a uniform
bound, depending on the degree m of the representation only, for the order of the
Euler class. This has been proved in [E-M], and the best possible such bound was
shown there to be E,, =denominator of B,,/m if m is even, where B,, is the m-th
Bernoulli number (and, of course, E, =2 if m is odd). The Euler class of a
representation p: G—GL,,(R) is an element of H™(G;Z(p)), Z(p) being the
group of integers turned into a G-module by multiplication with sgn det p and
hence a trivial G-module if and only if p is “orientable.”

In the present paper we discuss analogous bounds for representations realiza-
ble over an arbitrary real field K < R instead of the rationals Q. The universal
bound is expressed in terms of a certain operator €, (m) on finite Abelian groups,
depending on K and m only. éx(m) is defined (cf. Section 3.1), for each prime p,
by its action on p-torsion. This action depends on the degree ¢k (p) of the p-th
cyclotomic extension of K, and on a further invariant yi(p)eNUo attached to
K and p, cf. Section 2.2. The main theorem states that if the representation p
of a finite group G, of degree m, is realizable over K then

Ex(m)e(p) =0. *)

Moreover &, (m) is best possible in that sense.

We mention here some properties of the operator €x(m). If m is not divisible
by ¢k (p), then &, (m) is the identity operator on p-torsion; thus (*) just expresses
the fact (Proposition 2.1) that in that case the p-component of e(p) is 0. If m is
divisible by ¢k(p), one has two different possibilities. Either yx(p)=%; then
& (m) annihilates p-torsion, and (*) tells nothing about the p-component of e(p):
in fact, there is, in that case, no universal bound for the order of the p-component
of e(p) (Corollary 2.4). Or yx(p)<c<; then &x(m) is, on p-torsion, multiplication
by p*<®*% where v, is the exponent of p in the prime decomposition of m.
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320 BENO ECKMANN AND GUIDO MISLIN

If we assume yg(p) <o for all primes p, and if @x(p) divides m for a finite
number of primes p only, then € (m) can be replaced by multiplication with the
integer Ex(m) = lem{n|m=0mod ¢ (n)}. For K=Q, Eg(m)=E,, is the integer
mentioned above. The assumption is fulfilled for all real number fields K.
Statement (*) then tells that the order of e(p) divides Ex(m), for all finite groups
and all K-representations of degree m; and this bound is best possible.

If a representation p: G— GL,, (R) is not known to be realizable over a
subfield of R fixed in advance, we show that (*) still holds if one takes for K a
field containing the values of the character of p (without assuming p to be defined
over K <R). In particular we show (Theorem 3.8) that

Eq)(m)e(p)=0

where Q(x) denotes the field obtained from Q by adjoining the values of the
character x of p.

We also obtain a bound for the order of e(p) of an arbitrary real representa-
tion p in terms of the exponent exp (G) of G (Theorem 3.9):

Zexp (Ge(p) =0

for p: G—GL,,(R), m even.

1. K-representations of finite p-groups

1.1. Let G be a finite group, and K a subfield of the field C of complex
numbers. For a complex character y of G we denote by K(x) the Galois field
extension obtained by adjoining to K all values of x. In case x is C-irreducible,
K(x) is isomorphic to the center of Ag(x), the unique simple component of the
group algebra K[G] on which x is non-zero. If x; and x, are two C-irreducible
characters of G, then Ag(x;)= Ak(x») if and only if x; and x, are Galois-
conjugate over K, which means that there is a o e€Gal(K(y;)/K) such that
X2(8) = oxi(g) for all ge G. The K-irreducible characters of K-representations of
G are the characters of the form

b= s (x) Y ox

o

where y is C-irreducible and the sum is extended over all o € Gal (K(x)/K), and
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where sg(x) denotes the Schur index of x over K (we recall that Ag(y) is a
matrix algebra over a division algebra D, and that si(x)* is the dimension of D
over its center K(x)).

1.2. The following result (cf. [E — M], Theorem 1.3) reduces the discussion of
K-representations of finite p-groups to p-groups of very special types.

THEOREM 1.1. Let G be a finite p-group, and p: G—GL,,(K) an irreducible
representation over K < C. Then either p is induced, or p factors through a faithful
representation p: G—>GL, (K) of a factor group G of G which is of one of the
following types:

C,~, a =0 (cyclic of order p*);

Q,-, a =3 (generalized quaternion group of order 2%);

D,., a =4 (dihedral group of order 2*); or

SD,., a =4 (semidihedral group of order 2%).

In order to determine the degrees of the faithful irreducible K-representations
of these groups of special type, we use two invariants of K:

DEFINITION 1.2. Let K(n) denote the “n-th cyclotomic extension of K’’;
i.e., the field obtained by adjoining to K the n-th roots of unity. Then we write
¢k (n) for the dimension of K(n) over K and we put

vk (p) = sup {a | K(p) = K(p*)} for an odd prime p,
and
Yk (2) = sup {a| K(4) = K(2*" "}

We write sometimes <y for yg(p), if no confusion can arise; there are, of
course, cases with y =,

If p is an odd prime and a =1 is such that K(p*)# K(p**") (i.e., (K(p**"):
K(p~))=p) then K(p**')# K(p**?). This follows from the commutative diagram
of Galois groups (the maps being induced by restriction)

Gal (K(p“f)/K(p“)) —Gal (Q(p"r)/Q(p“)) =Z/p°Z
Gal (K(p**")/K(p*)) —Gal (Q(p**")/Q(p*) =Z/pZ

Similarly, if a =2, then K(2*)# K(2**") implies K(2**')# K(2**?). Note also
that for K< R, ¢x(p) is even for p odd, and (K(4): K) = 2. The following lemma
1S now immediate.
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LEMMA 1.3. (a) For an odd prime p one has, for any K<C,

o (p*) = ¢k (p) if Isasy=1vy(p),
ex(p) P if a=y.

(b) If K<R and p=2, then

1 if a=1
e (2%)=42 if 1<asy+1(y=v«(2),
277 if azy+1.

1.3. We now describe the degrees of the faithful irreducible representations of
the p-groups listed in Theorem 1.1, and their orientability.

PROPOSITION 1.4. Let K be a subfield of R, and let p be a faithful
irreducible K-representation of one of the p-groups G of special type. Then the
degree m of p is:

m = @k (p*) in case G = C,(a=0);
m=2¢x(2°7") in case G=Qu(a=3),
m=¢x(2*7")  in case G=D,.(a=4);
m=@g(2*7) or 2¢x(2*7") in case G=SD,.(a=4).

Moreover, p is orientable (i.e., lies in SL,, (K)) except for G = C,.

Proof. The character ¢ of p is of the form ¢ = sx(x)2ox, o€ Gal (K(x)/K),
where x is faithful and C-irreducible. The faithful and C-irreducible representa-
tions of the groups of special types were discussed in [E-M]; we will make use of
their properties without further reference. The following four cases have to be
considered.

G :sx(x)=1, x is of degree one and K(x)= K(p*). The degree of ¢ is
therefore m =|Gal (K(p*)/K)| = @k (p*).

Q,-: for any K<R, one has sg(x)=2, and x has degree 2. Since K(x)=
K2* )NR and a =3, we have (K(2*'):K(x))=2. The degree of ¢ is thus
given by m =2-2-|Gal (K(x)/K)|=2|Gal (K(2*")/K)| =2¢ (2> ).

D,. (or SD,. respectively): sx(x)=1 and x has degree 2. Again we have
(KR Y:K(x))=2 (or possibly K(2°7')=K(x) in the case SD,.) and thus
m =2 |Gal (K(x)/K)| = @ (2*7") (or possibly 2¢x(2*~') in the case SD,.).



On the Euler class 323

If p is odd, p is certainly orientable. For p=2 we note that, except for the
faithful representation of C, of degree 1, ¢ is a sum of an even number of Galois
conjugate representations ox which are all orientable in cases C,., « =2 and Q,,
a = 3; and which are all non-orientable in the other cases (cf. [E-M]). Hence ¢ is
orientable except for G = C,.

COROLLARY 1.5. Let K be a subfield of R. The degree of a K-irreducible
representation p of a finite p-group G is either 1 or of the form ¢x(p)p®, B=0.

Proof. We consider the alternative in Theorem 1.1.

If p 1s induced from a representation 7 of degree 1, then p =2 and therefore
the degree of p is of the form 2° = ¢x(2)2° (p odd would imply that 7 is a
permutation representation, thus reducible). If p is induced from a representation
7 of degree >1, the degree of 7 is of the form ¢ (p)p®, by induction, and thus the
degree of p has the desired form.

If p factors through a faithful representation p of C,., Q,«, Dy or SD,., the
degree of p is @k (p*), 2¢x (2°7") or @ (2°7"), which is 1 or of the form ¢ (p)p®,
B=0. The assertion of the Corollary thus follows.

2. The Euler class of K-representations of p-groups

2.1. For a K-representation p: G—GL,,(K), where K is a subfield of R, the
Euler class e(p) e H"(G; Z(p)) is defined as the Euler class of the flat real vector
bundle over K(G, 1), associated with p@R; Z(p) stands for the G-module Z with
G-action defined by g-1=sgndet p(g). The general properties of this (twisted)
Euler class were discussed in [E-M].

Our main objective is to find universal bounds, depending on the field K<R
and the degree m only, for the order of the Euler class of K-representations of
finite groups. We proceed by dealing first with p-groups and then (Section 3) with
arbitrary finite groups.

2.2. We start with the following simple observation.

PROPOSITION 2.1 Let G be a finite p-group and let p: G — GL,,(K) be a
representation of degree m# 0 mod @y (p). Then the Euler class of p is =0.

Proof. The assumption implies that ¢x(p)>1 and thus p odd (¢k(2)=1). Let
p =", p, with p, irreducible; then e(p) = e(p,)e(p,) - - e(p,). At least one of the
p; must have degree 1, for otherwise m would be divisible by ¢x(p) (Corollary
1.5). Thus the corresponding e(p;) is 0 and whence e(p)=0.
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We may thus, for a p-group G, assume that the degree m of p is
=0 mod ¢k (p). It turns out that the situation is quite different according to
whether yg(p) is finite or infinite.

Let m be even and =0 mod ¢k (p), and assume yx(p)=-oc. Then no uniform
bound can exist for the order of the Euler class of K-representations of p-groups.
This will be illustrated by Corollary 2.4 below. We first prove a lemma concerning
the cyclic group C,.

LEMMA 2.3. Let K< R be an arbitrary real field. There exists, for any integer
>0, a K-representation p of C, of degree lo,(n) and with Euler class e(p) of
(maximal possible) order n.

Proof. C, has a faithful irreducible representation 7 over K of degree m =
¢x(n) (its character is =), ox, where x is faithful C-irreducible and o varies
through Gal (K(n)/K)). For the Euler class e(7) one has e(7)*> = +¢,,(T®C), the
top Chern class of 7&®C; since 7®C is a sum of m faithful one-dimensional
C-representations, ¢, (7®C) has order n, and so has e(r). If we take for p the
[-fold direct sum of such K-representations 7, the order of e(p) will be n and the
degree |- @k (n).

COROLLARY 2.4. Let K<R, and let p be a prime such that y(p)=x<. If m
is even and m =0 mod ¢k (p), then there exists an m-dimensional K-representation
of C,« with Euler class of order p*.

Proof. If p is odd, yx(p) =< implies that ¢x(p)= ¢x(p®) for « =1 and the
result follows from Lemma 2.3. If p=2, ¢x(2*)=2 or 1 for a = 1. Hence for any
even m one can find a K-representation of C,. of degree m and Euler class of
order 2* (cf. Lemma 2.3).

2.3. We now turn to the case vy (p)<<cc, where the situation is different.

THEOREM 2.5. Let K be a subfield of R and p a prime with y = yi(p) <<=<.
For any finite p-group G and any K-representation p: G—GL,,(K) the Euler class
e(p)e H"(G: Z(p)) satisfies

pme(p)=0.

Proof. We first assume that p is irreducible. According to Theorem 1.2 we
distinguish two possibilities.

(a) p factors as G—G -2 GL,,(K) where G is one of the p-groups of
special type and p faithful. If G is of order p®, a <7y then plainly p*me(p)=0;
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thus we may assume a>v. If p is odd, p is of degree m = ¢ (p*) = ¢x(p) - p* ",
and hence p"me(p)=0. In case p=2 and a =y +1, 2% divides 2"m for m even;
thus 2me(p) = 0 (the case m odd is trivial, since then always 2e(p) = 0). It remains
to consider the case p =2, a =y +2. According to Proposition 1.4 the degree of p
is then 2° 7 for the groups C,., Q.; and 2*7 7! for D,., 2*7 or 2*7 ¥ ! for SD,..
For the first two groups, 2¥-2*"Y =2* =|G| annihilates e(p), and for the latter
ones 2¥-2°"Y"!'=2°"1=|G|/2 annihilates e(p) (since the cohomology of D,. and
SD,. with Z-coefficients contains no elements of order 2%).

(b) p is induced from 7: H—GL,,,(K), where H= G is of index p. Let tr
denote the cohomology transfer. The Euler class of the restriction py satisfies
tr e(py) = pe(p). Since we may assume by induction that pY(m/p)e(r)=0, and
since py is of the form 7@ v, we infer p*(m/p)e(py)=p*(m/p)e(r)e(v)=0. It
follows that

pme(p) = tr (p% e(pu) ) =0.

We now assume that p is reducible, p=p,@p,D - - Dp,, the p, being
K-irreducible. Then e(p)=e(p,)e(p,)- - - e(p.), and

p'me(p)=p m,e(p,)e(py)- - -e(p)+ - - - +p mee(p,)e(py) - - - e(py)

where m; is the degree of p,. Since p; is irreducible, we have p"m;e(p,) =0, and
thus p*me(p)=0.

Remark 2.6. If m is even, m = @i (p)p® - f with (f, p)=1 and yg(p) =y <c,
then there exists a K-representation of C .. of degree m with Euler class
satisfying p”~'me(p)# 0. This follows immediately from Lemma 2.3.

3. Arbitrary finite groups

3.1. We define for a subfield K of R and an integer m >0, an additive
operator €x(m) on finite Abelian groups. If m is odd, €x(m): A— A is multipli-
cation by 2. For m even, €x(m) is given by its action on p-torsion groups as
follows.

(1) €x(m) is the identity on p-torsion, if m# 0 mod ¢k (p).

(2) €x(m) is zero on p-torsion if m =0 mod ¢k (p) and yx(p) ==

(3) €x(m) is multiplication by p**® on p-torsion, if m=0mod ¢x(p), v=
Yk (p)<oc and m = p* -f, f prime to p.
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For instance, if K=R, then €gx(m) is the zero operator for all even m.
If K is a field such that yx(p) <o for all p, and if only finitely many ¢x(p)
divide m, we define a numerical function by

Ex(m)=lecm{n | m=0mod @x(n)}.

Note that, for any prime p, p? divides Ex(m) if and only if m =0 mod ¢k (p®).
In one direction this is part of the definition; conversely, if p? divides Ex(m)
there is an n divisible by p? with m =0 mod ¢k (n) and thus, since ¢ (p®) divides
¢k (n), one has m=0mod ¢k (p®). The prime decomposition of Ex(m) is now
obtained as follows, for KR and m even (Ex(m)=2 if m is odd):

Let m =1Ilp* be the decomposition of m into powers of different primes. By
Lemma 1.3, ox(p®*") = ox(p)p® (y=7vx(p), B=0 in case p odd, and =1 if
p=2); thus, for a prime p with m =0 mod ¢x(p), m even, the greatest power
dividing Ex(m) is p*»*. We thus have

PROPOSITION 3.1. If for K< R and m =1lp* the integer Ex(m) is defined,
then

Ex(m)=2 if m is odd,

Ex(m)=1I'p%*" if m is even, the product 11" being taken over all those primes
p for which m =0 mod ¢k (p).

Remarks. (1) If K=Q, Eq¢(m)=E,, the numerical function considered in
[E-M] (which is equal to the denominator of B,,/m, m even).
(2) Ex(m) is defined for all m if K is an algebraic number field.

COROLLARY 3.2. If for K <R the integer Ex(m) is defined, then the operator
Ex(m): A— A differs from “multiplication with E,(m)” only by a canonical
automorphism of A. In particular, €c(m) and multiplication by Ex(m) have the
same kernel.

We will make use later on of the following special case.

COROLLARY 3.3. Let K=Q(4n)NR and p a prime dividing 4n. Then for
even m the operator €,.(m) has the same kernel on any p-torsion group as
multiplication by 2nm.

Proof. Let m =IIp*™ and n=IIp*"™ be the prime decompositions. Since
p|4n we have, for p odd, ¢x(p) = 2. Further we have vk (p) = v,(n) for p odd and
vk (2) = v,(n)+ 1. Hence, for m even, éx(m) acts on p-torsion by multiplication
with p%»™*%™ if p is odd, and with 2*2™*!1**(™ if p =2 Thus the kernel of
€x(m) on p-torsion is the same as the kernel of multiplication by 2nm.

3.2. We now state and prove our main theorem.
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THEOREM 3.4. Let KR be a real field and p:G—GL, (K) a K-

representation of degree m of a finite group G. Then the Euler class e(p)e
H™(G; Z(p)) satisfies

Ex(m)e(p)=0.

In particular, if E, (K) is defined (e.g., if K is a number field) the order of e(p)
divides Ex(m).

Proof. Let G(p) denote a p-Sylow subgroup of G. Since the cohomology
restriction from G to G(p) is injective on the p-primary component, it suffices to
prove the theorem in the case where G is a p-group. If m is odd, 2e(p)=
Ex(m)e(p)=0. If m is even and m# 0 mod ¢x(p), e(p) =0 by Proposition 2.1. It
remains to consider the case m even, m=0mod ¢x(p): If yk(p)=2, then
Ex(m)e(p) =0 by definition of Ex(m). If y=yx(p)<oc, we have p*me(p) =0 by
Theorem 2.5; since, for a p-group G, p*me(p) and p* """ e(p) have the same
order, we infer €, (m)e(p)=0. In case Ex(m) is defined, Ex(m)e(p)=0 by
Corollary 3.2.

Remark 3.5. The operator €, (m) in Theorem 3.4 is best possible in the
following obvious sense. Suppose &% (m) is another such operator (i.e., a natural
transformation of the identity functor on the category of finite Abelian
groups, such that €4 (m)e(p) =0 for all K-representations p of degree m of finite
groups) then

ker (x(m): A— A)<ker (€x(m): A—A) ()

for all finite Abelian groups A. In order to prove this we observe that it suffices to
check (*) in case A is a cyclic p-group; for that case (*) is an easy consequence of
Lemma 2.3 and Remark 2.6 together with the definition of €x(m).

In particular, if K is a number field, we obtain the following.

COROLLARY 3.6. Let K<R be a number field. Then the least common
multiple of the orders of the Euler classes e(p), where p ranges over all
K -representations of degree m of finite groups, is equal to Eg(m)=
lem{n|m =0 mod ¢k (n)}.

3.3. If a representation p: G— GL,,(R) is not known to be realizable over
some subfield K =R fixed in advance, one can still obtain a bound on the order of
e(p), depending on the character field Q(x) (i.e. the field obtained from Q be
adjoining the values of the character x of p). We need first the following lemma.



328 BENO ECKMANN AND GUIDO MISLIN

LEMMA 3.7. Let p: G—GL,,(R) be a real representation of a finite p-group
G. Then p is equivalent to a representation defined over Q(x), where x is the
character of p.

Proof. If p is odd, all C-irreducible characters ¢y of G have Schur index 1 over
Q, and therefore p is defined over Q(x) (cf. [R]). In case p =2, the Schur index
so(¥) is one or two; by [F; Prop. 4.2], so(¥) = sg(¢) and therefore sk (¢) = sg(¢)
for any subfield K <R. It follows that an R-representation of a 2-group whose
character takes values in K < R, is realizable over K.

THEOREM 3.8. Let p: G—GL,,(R) be a real representation of an arbitrary
finite group G. Then the Euler class e(p) satisfies

Eg,)(m)e(p)=0

where Q(x) denotes the field obtained from Q by adjoining the values of the
character x of p.

Proof. Let p’' denote the restriction of p to a p-Sylow subgroup of G, and
denote by x’ the character of p’. From Theorem 3.4 and Lemma 3.7 we infer that
Eq,ne(p’) =0 and, as Q(x") =Q(x), Eqy)e(p’) =0. The assertion of the theorem
now follows, since the cohomology restriction from G to a p-Sylow subgroup is
injective on the p-primary component.

3.4. Using Corollary 3.3 we can get bounds for the order of Euler classes of
arbitrary real representations, in terms of the exponent of G.

THEOREM 3.9. Let G be a finite group of exponent exp (G) and p:G—
GL,,(R) a real representation of even degree m. Then the Euler class satisfies

Zexp (Ge(p) = 0.

Proof. Since the cohomology restriction from G to a p-Sylow subgroup is
injective on the p-primary component, we may assume that G is a p-group. Then
p is realizable over Q(exp (G)) NR since the character of p takes its values in that
field (Lemma 3.7). If p is odd, we apply Corollary 3.3 with K=Q(4 exp (G))NR
and obtain 2m exp (G)e(p) = 0; thus (m/2) exp (G)e(p) =0, e(p) being a p-torsion
element. If p=2 and exp (G)=<2, then G is an elementary Abelian 2-group and
thus even exp (G)e(p) =0. If p=2 and exp (G) =4n =4, we infer from Corollary
3.3 (with K=Q(4n)NR) that 2nme(p) =0, whence the assertion.
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