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The first k-invariant, QuHlen's space BG+ and the construction of
Kan and Thurston

JOHANNES HUEBSCHMANN

1. Outline

In this paper we shall use the interprétation of group cohomology in terms of
crossed n-fold extensions [7].

Let Y be a connectée! CW-complex with a single 0-cell; we assume irk( Y) 0

for l<k<n, n^2 (nothing is assumed for n 2). Then we hâve an exact

séquence

eY : 0 7n() n(, ^
•••-^-^(Y2, y^-ÎU^yi) >7ri(Y) >1

where each d} is obtained from the exact homotopy séquences of the correspond-
ing pairs of spaces in the obvious way. Now the action of /rr1(Y1) on ^(Y2, Y1)

(on ir2(Y, Y1) in case n 2) and that of tt^Y) on the remaining groups turn eY

into a crossed n-fold extension [7§3] (that the relative tt2 is a crossed tt^Y1)-
module is due to J. H. C. Whitehead, see [6 p. 39]). In view of the main Theorem
of [7§7], eY represents a class teY]eHn+1(^1(Y), 7rn(Y)).

THEOREM 1. The class [eY] is the first (non-trivial) k-invariant of Y.

This ofïers an answer to a question in [2 p. 301]. Furthermore, we obtain, as a

conséquence, a description of the n'th cohomology group which recovers the

description in [5 p. 75] (Theorem 14.lr):

COROLLARY. Let Abe a ir^Y^module, and let the crossed n-fold extension

represent \_eY\ with Cn_2,..., Cl9 F free (eY itself is such a représentative). Then
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the group Hn(Y,A) (local coefficients) is the cokernel of the induced map
HomG (Cn_2, A)^HomG (Cn_l5 A) (Co F); hère G tt^Y) resp. G F (in low

dimensions), and HomG (F, A) Der (F, A).

We shall use Theorem 1 to détermine the first k -invariant of Quillen's
)+-construction: Let G be a group, and let E be a perfect normal subgroup.

Now E has a universal central extension [11 p. 43]

Using the universal property of e, we extend the action of G on E to a unique
action of G on X, turning X into a crossed G-module, whence we obtain a
crossed 2-fold extension

E) :0 >H2(E) >X —

where Q G/E. In view of the main Theorem in [7§7], eiG E) represents a class

[e(G E)]e H3(Q, H2(E)) HXtt^BG+X tt2(BG+)). Hère BG+ is Quillen's space
[10].

THEOREM 2. The class [e(G, E)] is the first k-invariant of BG+.

By a récent resuit of Kan and Thurston [8], to any connected space Y there

may be associated a group G together with a map x •' BG—>Y such that (i) the
kernel E of the induced map G—»7r1( Y) is perfect, and (ii) the map x extends to a

(possibly weak) h-equivalence BG*->Y. Theorem 2 shows how the first fc-

invariant of Y is determined by G and E. Note that [e(G E)] may be non-zéro. As
to the vanishing of [e(G E)] we hâve

THEOREM 3. The class [eiGE)] is zéro, and Q (resp. G) acts trivially on
H2(E) if and only if the induced map H2(E)-*H2(G) is a split injection (Le.

admits a left inverse).

A particular example arises in algebraic K-theory: If A is a ring with unit, in
view of the above, the class of

eA : 0 -> K2(A) -> St(A) -* GL(A) -> K,(A) -* 1

is the first k -invariant of BGL(A)+. For commutative rings, this was also an-
nounced in [3].
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THEOREM 4. The class [eA]6H3(K1(A),K2(A)) is zéro.

I am indebted to K. Dennis who provided me with the crucial argument for
the proof of Theorem 4. In fact, he has shown that the induced map H2(E(A)) —»

H2(GL(A)) is a split injection [4 Cor. 8]. Hence Theorem 4 is a conséquence of
Theorem 3. I am also grateful to K. Brown; he read an earlier version of the

paper and conjectured Theorem 3.

2. Proofs

Proof of Theorem 1. It is known [1] that the first (non-trivial) k-invariant of Y
is the Eilenberg- Mac Lane invariant lYeHn+1(7r1(Y), 7rn(Y)) [5]. If C is the
crossed standard resolution of ttx{Y) [7§9], we may lift the identity map of tta(Y)
to

C: >Cn+l > Cn >

eY:0 >7

Now £ is Eilenberg-Mac Lane's cocycle. This, together with the main Theorem in
[7 §7] proves Theorem 1.

Proof of Theorem 2. In view of Theorem 1, the Eilenberg-Mac Lane class

resp. the first k -invariant ÏBG+ is represented by

ê : O -* tt2(BG+) -* tt2(BG+,

But è is clearly équivalent to

e+ : 0 -> tt2(BG+) -> tt2(BG+, BG)

since there is an obvious morphism (1,..., 1) : ê —> e+ of crossed 2-fold extensions.

We complète the proof by showing that ê and e(G E) are essentially the
same crossed 2-fold extension:

The group tt2(BG+, BG) is tt^Z), Z the homotopy fibre of BG -> BG+. Since

Z is acyclic (this is just the universal property of the )+-construction),
H1(tt1(Z)) 0 H2(7t1(Z)). It follows from Lemma 2 in [9] (p. 215) that

0 -» tt2(BG+) -> tt2(BG+, BG) -> E -> 1
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is the universal central extension of E.

Proof of Theorem 3. By the Theorem in [7 §10], [eiG E)] is zéro if and only if

there is a group extension 1 —» X —» D —» Q ^» 1 together with a morphism

(1, a) : (X, D, /) —» (X, G, d) of crossed modules inducing the identity map of Q. It
follows that [e(G E)] is zéro if and only if there is a commutative diagram

0 > H2(E) > X > E > 1

II 1 !¦ <•>

0 > H2(E) > D > G > 1,

such that conjugation in D induces the crossed G-structure on X; hère i dénotes
the inclusion E ci G.

It is clear that Q (resp. G) acts trivially on H2(E) if H2(E)-^H2(G) is a split
injection. Hence we may assume that Q acts trivially on H2(E). Consider now the
commutative diagram

H2(G, H2(E)) > Hom (H2(G\ H2(E))
| | (**)

H2(E, H2(E)) > Hom (H2(E), H2(E))

with the obvious maps. Inspection of (**) shows that we hâve a diagram (*) if and

only if H2(E) -* H2(G) is a split injection. Hence the condition of the Theorem is

necessary. Now, if we hâve a diagram (*), conjugation in D induces an action of G
on X; since this one extends the action of G on E given by conjugation, it agrées
with that one we used to define the crossed G-structure on X, as there is only one
such G-action on X This last fact is a conséquence of the universal property of
the universal central extension. It follows that the condition of the Theorem is
also sufficient.

Remark. The same arguments, applied to the Kan-Thurston construction,
may be used to prove the following classical resuit (which seems to be folk-lore):

THEOREM. For a given connected space Y, the Hurewicz map tt2(Y)->
H2(Y) is a split injection if and only if ttx(Y) acts trivially on tt2(Y) and if the first
k-invariant of Y is zéro.
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