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The first k-invariant, Quillen’s space BG" and the construction of
Kan and Thurston

JOHANNES HUEBSCHMANN

1. Outline

In this paper we shall use the interpretation of group cohomology in terms of
crossed n-fold extensions [7].

Let Y be a connected CW-complex with a single 0-cell; we assume m, (Y)=0
for 1<k<n, n=2 (nothing is assumed for n=2). Then we have an exact
sequence

ey : 0— (V) —> m (Y, Y ) 2 (Y, Y2 2
N (Y2, Yl)..‘l’i_, a (YY) — 7 (Y)—> 1

where each g; is obtained from the exact homotopy sequences of the correspond-
ing pairs of spaces in the obvious way. Now the action of m,(Y") on w,(Y? Y?)
(on m,(Y, Y?') in case n=2) and that of m,(Y) on the remaining groups turn e,
into a crossed n-fold extension [7§3] (that the relative 1, is a crossed m,(Y!)-
module is due to J. H. C. Whitehead, see [6 p. 39]). In view of the main Theorem
of [787], ey represents a class [ey]e H" (7, (Y), m,.(Y)).

THEOREM 1. The class [ey] is the first (non-trivial) k-invariant of Y.

This offers an answer to a question in [2 p. 301]. Furthermore, we obtain, as a
consequence, a description of the n’th cohomology group which recovers the
description in [5 p. 75] (Theorem 14.1"):

COROLLARY. Let A be a m,(Y)-module, and let the crossed n-fold extension

Oewn(Y)_)Crr—l'—) U “>C1_>F—9771(Y)'91

represent [ey ], with C,_,, ..., C,, F free (ey itself is such a representative). Then
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the group H"(Y, A) (local coefficients) is the cokernel of the induced map
Homg (C,_,, A)>Homg (C,_;, A) (Cy=F); here G=m,(Y) resp. G =F (in low
dimensions), and Homg (F, A)=Der (F, A).

We shall use Theorem 1 to determine the first k-invariant of Quillen’s
( ) -construction: Let G be a group, and let E be a perfect normal subgroup.
Now E has a universal central extension [11 p. 43]

e:0—>HyE)»X—E—1.

Using the universal property of e, we extend the action of G on E to a unique
action of G on X, turning X into a crossed G-module, whence we obtain a
crossed 2-fold extension

d

ec.g): 00— Hy(E)— X —>G > Q > 1

where Q = G/E. In view of the main Theorem in [787], e g, represents a class
[e gy ]€ H(Q, Hy(E))= H*(m(BG"), my(BG™)). Here BG™ is Quillen’s space
[10].

THEOREM 2. The class [eq. g)] is the first k-invariant of BG™.

By a recent result of Kan and Thurston [8], to any connected space Y there
may be associated a group G together with a map x : BG— Y such that (i) the
kernel E of the induced map G — m,(Y) is perfect, and (ii) the map x extends to a
(possibly weak) h-equivalence BG'— Y. Theorem 2 shows how the first k-
invariant of Y is determined by G and E. Note that [¢_g,] may be non-zero. As
to the vanishing of [e g,] we have

THEOREM 3. The class [eq, k] is zero, and Q (resp. G) acts trivially on
H,(E) if and only if the induced map H,(E)— H,(G) is a split injection (i.e.
admits a left inverse).

A particular example arises in algebraic K-theory: If A is a ring with unit, in
view of the above, the class of

er 10— K, (A)— St(A) > GL(A)— K (A)—>1

is the first k-invariant of BGL(A)". For commutative rings, this was also an-
nounced in [3].



316 JOHANNES HUEBSCHMANN

THEOREM 4. The class [e,]e H*(K,(A), K5(A)) is zero.

I am indebted to K. Dennis who provided me with the crucial argument for
the proof of Theorem 4. In fact, he has shown that the induced map H,(E(A)) —
H,(GL(A)) is a split injection [4 Cor. 8]. Hence Theorem 4 is a consequence of
Theorem 3. I am also grateful to K. Brown; he read an earlier version of the
paper and conjectured Theorem 3.

2. Proofs

Proof of Theorem 1. It is known [1] that the first (non-trivial) k-invariant of Y
is the Eilenberg- Mac Lane invariant I, € H" "' (7 (Y), m,.(Y)) [5]. If C is the
crossed standard resolution of m,(Y) [789], we may lift the identity map of m,(Y)
to

c.---—Cc,,, —C, —/8 - - F > (YY) —>1
eY:O_—_)wn(Y)—_—_)an(Y’ Ynhl) >0 7771(Y1)""_)771(Y)""—‘)1.

Now ¢ is Eilenberg-Mac Lane’s cocycle. This, together with the main Theorem in
[7 §7] proves Theorem 1.

Proof of Theorem 2. In view of Theorem 1, the Eilenberg-Mac Lane class
resp. the first k-invariant [zg- is represented by

é: 0 — m,y(BG") — my(BGY, (BGYH)Y) — 7, (BGM)') — 7 (BG") — 1.
But é is clearly equivalent to

e+ :0— 7T2(BG+) -—> 772(B6+, BG) - ﬂl(BG) —> 771(BG+) - 1,

since there is an obvious morphism (1,...,1):é— e* of crossed 2-fold exten-
sions. We complete the proof by showing that é and e g, are essentially the
same crossed 2-fold extension:

The group m,(BG™, BG) is m,(Z), Z the homotopy fibre of BG — BG™. Since
Z is acyclic (this is just the universal property of the ( )"-construction),
H,(m(Z))=0= H,(m(Z)). It follows from Lemma 2 in [9] (p. 215) that

0— m(BG")— m,(BG", BG)—> E —>1
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is the universal central extension of E.
Proof of Theorem 3. By the Theorem in [7 §10], [e; g,] is zero if and only if
there is a group extension 1— X 5D Q — 1 together with a morphism

(1, ) : (X, D, j) = (X, G, 9) of crossed modules inducing the identity map of Q. It
follows that [es g,] is zero if and only if there is a commutative diagram

0—> H,(E)—> X E—>1

|1

0 —> H,(E) D—>G 1,

such that conjugation in D induces the crossed G-structure on X; here i denotes
the inclusion E < G.

It is clear that Q (resp. G) acts trivially on H,(E) if H,(E)— H,(G) is a split
injection. Hence we may assume that Q acts trivially on H,(E). Consider now the
commutative diagram

Hz(G» H,(E)) — Hom (H,(G), H,(E))

H?(E, H,(E)) —> Hom (H,(E), H,(E))

with the obvious maps. Inspection of (**) shows that we have a diagram (*) if and
only if H,(E) — H,(G) is a split injection. Hence the condition of the Theorem is
necessary. Now, if we have a diagram (*), conjugation in D induces an action of G
on X; since this one extends the action of G on E given by conjugation, it agrees
with that one we used to define the crossed G-structure on X, as there is only one
such G-action on X. This last fact is a consequence of the universal property of
the universal central extension. It follows that the condition of the Theorem is
also sufficient.

Remark. The same arguments, applied to the Kan-Thurston construction,
may be used to prove the following classical result (which seems to be folk-lore):

THEOREM. For a given connected space Y, the Hurewicz map m,(Y)—
H,(Y) is a split injection if and only if 7w, (Y) acts trivially on w,(Y) and if the first
k-invariant of Y is zero.
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