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Comment. Math. Helvetici. 55 (1980) 267-293 Birkhauser Verlag, Basel

Generic finite schemes and Hochschild cocycles

GUERINO MAzzoLA

Introduction

Let k be an algebraically closed field of characteristic different from 2 and 3. In
this paper we investigate the schemes N,, n € N, whose k-rational points are the
k-algebra structures & on k" which are commutative, associative and satisfy

a-a,- -+ -a,,,=0 for any ay, a,,...,a,,;€k". Our main result is the fol-
lowing

THEOREM. Forn=1,2,3,4,5, 6, the schemes N, are irreducible and rational
of dimension n”> — n. The structures isomorphic to the maximal ideal of k[T]/(T"*")
define a smooth, open subscheme of N,.

Hence every finite local k-scheme X of k-rank n=7 can be deformed to
Spec (k[T])/(T")). This implies that X admits a desingularization, i.e. a deforma-
tion to Spec (k").

For n=7, we show that there are structures &, € N,, of embedding dimension
[n+1/2] which are not specializations of the maximal ideal of k[T]/(T"*"). From
this it follows that for n =10, there are finite schemes which cannot be ‘‘desing-
ularized.”

In contrast to the Hilbert-scheme method used by A. larrobino and J.
Emsalem [2, 3, 4, 5], our technical tools are N,-scheme S, parametrizing the
commutative Hochschild cocycles associated with structures in N,. The descrip-
tion of S,/N, is discussed in §1 and in §2, where we list explicitely the cocycles we
are interested in.

§3 is entirely devoted to the proof of the above theorem.

§4 presents the above structures &, showing that for n =7, N,, admits at least
two irreducible components.

§5 is an appendix, including two deformation criteria also valid for non-
commutative, associative k-algebras, as well as the Hasse-diagram of the defor-
mations of five-dimensional commutative, associative, unitary k-algebras.

I want to express my gratitude to P. Gabriel for careful reading and in
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268 GUERINO MAZZOLA

particular for some suggestions concerning §3 which made it possible to avoid two
very ugly deformations, one of which I include as a curiosity.

§1. Cocycles

Let k-Alg be the category of associative, commutative k-algebras with unit
elements. We consider the following scheme N, (n=1): for each A € k-Alg, the
A-points of N,, are the multiplications £: A" X A" — A" of commutative, associa-
tive A-algebra structures on A" such that a,a,:---a,,;,=0 for any
a,, a, ..., a,.;€ A" Being bilinear, such a multiplication map £ may clearly be
identified with an element of Hom, (A" ®, A", A")= A™. In this way N, is
identified with a closed subscheme of the scheme underlying k™.

We denote by ey, ..., e, the canonical base of A" and often write ¢ instead of
A", when the space is considered in relation with the multiplication £ For
instance, we write £ for the i-th power of A" under & If £€ N, (k) is a k-rational
point of N,, e(£) denotes the embedding dimension dim, (&¢7?) of &

By structural transport, g€ GL,, (A) acts on N,(A) from the right in such a
way that g:&8>¢ becomes an A-algebra isomorphism: §&8(x,y)=
g '(&(g(x), g(y)). If ¢ and m are two k-rational structures on N,, we shall write
&> 7 if m belongs to the Zariski-closure of the orbit £¢°™ of &.

In order to proceed from N, to N,,,, we set C(§=
{BeHom, (A" ®,4 A", A): B=symmetric and ¢-associative}. For every ¢e€
N, (A), this means that Be C(§) iff B(x, y)= B(y, x) and B(xy, z) = B(x, yz) for
any x,y,z€ A", the products xy, yz being taken in §& We call such a B a
symmetric Hochschild cocycle.

If £eN,(A) and ne N, (A), then a homomorphism f:£-—>n of A-algebras
induces a homomorphism of A-modules C(f): C(n) — C(£) by the usual formula
C(f)(B)(x, y) = B(f(x), f(y)). In particular, if n =& ¢, f being the projection of &
onto & ¢2, then we may identify C(&¢?) with its C(f)-image in C(¢), the subspace
of C(¢) consisting of all symmetric forms vanishing on & X €%+ ¢2X &,

We define the N, -scheme S, of symmetric Hochschild cocycles over N, by its
functor S,(A)={(§ B):£€ N,(A), Be C(¢)}, the structural morphism p:S, — N,
being the projection (£, B)— & Observe that S, is a commutative group scheme
over N,, the p-fibre S(&) ={&}x C(£) being “‘isomorphic” with C(£). Again, GL,,
acts on S, from the right by (¢ B)® = (&8, C(g)(B)).

EXAMPLES. (1) Let 7, € N, (k) be the uniserial structure, for which ef = ¢, if
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p=n and e{=0 if p>n. Then C(1,) = D}, kI, with

O --- 010 ---0
‘ 1 .
0

L=
0
0 0

(2) Let ¢, € N, (k) be the final structure: e;¢; =0, all i, j. Then C(¢,) = M;(k), the
set of symmetric n X n-matrices with coefficients in k.

Let Ex:S, — N,,, be the morphism sending the couple (¢ B)e S,(A) to the
structure n=Ex (&, B) on A""'=@®"'! Ae, such that €16 =0 for i=
,2,...,n+1, and e L€ =€ ;€ +Ble, ¢)e,.; for i,j=1,2,...,n Clearly,
Ex:S, — N, ., induces an isomorphism between S, and the closed subscheme S,
of N, ., formed by the structures ¢ such that e, ;=0 and ¢ """V < Ae,,, (the last
condition holds automatically if &€ N, (k) is k-rational). Moreover, Ex is
equivariant with respect to the embedding GL, - GL,,,, g+ (g ?) Finally,
the composed morphism Exgl:S, XGL,,, 25 N, xGL,,,— N, ., is surjec-
tive since every k-rational structure n € N, , (k) contains a one-dimensional ideal.

In order to show that N, ., is irreducible for n+1=1,2,3,4,5, 6, we shall
construct irreducible curves I" in N, ., such that n©"+ contains some non empty
open subset of I'. If this holds, we shall say that I" lies generically in 1S5+, This
will imply 1> ¢ whenever I'N %114 (3.

PROPOSITION 1. Let ¢, ne N, (k). Then n>¢ iff there is a curve I' in S,
whose image Ex(I") lies generically in %+ and satisfies Ex(I') N\ %51 £ (.

Clearly the condition is sufficient. In order to prove the converse, consider the
subscheme T, of N, ., X P, such that T,(A)={(¢ 7):£-7=0and £V < 7}; here
¢eN,,,(A) is an algebra structure on A"*' and 7 is a direct summand of A" of
rank 1. Clearly, the canonical projection v:T,— N, is proper and surjective.
Therefore we have v(v™'(n®"r+1)) =S If n> & it follows that there is some
(¢, o)e v (n°®~+) lying over £ Let A be a curve in v~ !(n“™+1) running through
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(¢ o) and cutting v~ '(n°%+1). Replacing if necessary (£ o) by some (¢£8, g7 'o)
with ge GL, ,,, we may assume that o = ke,,; and that A< N, , X U, where U is
the open subscheme of P, whose A-points are the supplements of Ae; P - - - B
Ae, in A"*'. Replacing A by the image of A —> T,, §—8"® where u:U—
GL, ., is a morphism such that u*“ = ke,,, for all ue U(k), we are reduced to
the case where A = N, ., x{ke,.,}. In that case we set ' =Ex ' (v(4)). QED.

For a k-rational £ N, (k) we put soc (£) ={x € &:x¢t =0} to denote the socle
of &

COROLLARY 1. Let n€ N, (k) and £€Ex(S,(k)) be such that n> ¢ and
dimsoc (1) = dimsoc (&). Then there is a curve I" in S, such that Ex (I") runs through
& and generically lies in n°%+.

Proof. Keeping the notations of proof of proposition 1, we only have to show
that the curve A < v~ '(n“"+1) constructed in that proof may be chosen in such a
way that (¢, ke,.,) € A. For that it suffices to prove that (¢ ke, ;)€ v '(n®"+). In
fact, consider any irreducible component V of v '(n°™+) which dominates
n+. Consider any point (£, 7)€ V which is contained in no other irreducible
component and lies over n°*+. Then dim (v™"(£) N V) =dim v~ '({) = dimsoc (7).
As v(V) is closed, v (¢)NV is not empty; hence dim (v '(§)NV)=
dim (v"'(£) N V) =dimsoc () = dimsoc (¢) =dim v (¢) and v (& )NV =0v"1(§).
We infer that v !(§)c Ve v (qC) = v (nChen),

Remark. The preceding proposition applies in particular to the case where
n=1,,, and e(§)=2. This follows from a theorem of Briangon [1] stating that
Hilb"*? k{x, y} is irreducible (for the density we refer also to theorem 1 below). In
fact, let the ideal I < k{x, y} in Hilb”*? k{x, y} define a local algebra isomorphic to
k & & Then the theorem implies that I deforms to a “‘generic’ ideal I, defining a
local algebra isomorphic to k @ 7,.,. Consequently, in a neighbourhood of I, this
deformation may be projected to a deformation of £ to 7,,,.

PROPOSITION 2. Let ¢ ne N,(k) be such that dim C(£)=dim C(n) (resp.
e(¢) =e(n)). If T is a curve of N, through & lying generically in n°% (so that n> &),
and if Be C(¢) (resp. if Be C(¢£7?)) then there is a curve A in S, through (& B)
lying over I

Proof. We may suppose that dim C(y)=dim C(n) for all yeI. Let p:S, — N,
be the canonical projection. The first statement to be proved is equivalent to
S(&)=p '(¢§)c p ' (I'N7°"). In fact we shall prove that p~'(I) is irreducible. For
this purpose consider an irreducible component V of p~'(I') containing the
zero-section I'x{0}< p~'(I'). Let (¢, o) be a point of V, which is contained in no
other irreducible component and where p | V has minimal fibre dimension. Then




Generic finite schemes and Hochschild cocycles 271

p ()= C(¢) is contained in V; hence the minimal fibre dimension of pl Vis
dim C({)=dim C(n). It follows that dim(p| V) '(y)=dim C(n) for all yeT,
hence that (p | V)~ '(y)=S(y) and V=p (I'). (In fact we prove that a morphism
of algebraic varieties which has a section, and whose fibres are irreducible of
constant dimension, is universally open.) A similar proof holds for the second part
of proposition 2.

PROPOSITION 3. Let ne N, (k), £e N,(k) and Be C(nx§) such that
B | n X n is non degenerate. Then there is an automorphism of m X & which maps B
into C(n) ® C(§) = C(n x §).

Proof. Let H be the orthogonal projection of £ onto n with respect to B, and
set g= (3 ~1H)EGL(1,®§). Then g maps 7m identically onto n and maps ¢

bijectively onto the orthogonal supplement of n with respect to B. The formula
BE(x, y) = B(gx, gy) shows that n and ¢ are orthogonal with respect to B®. If we
can prove that g is an automorphism of the algebra structure, it will follow that
B# e C(n) & C(§).

In order to prove that g is an automorphism, we first prove that the socle of i
is the orthogonal subspace of n'? in n with respect to B: in fact, we have sx =0
for all xen iff B(sx, y)=0 for all x, ye, and this holds iff B(s, xy)=0.

Then we prove that H maps £ into the socle of 7: indeed, if x, yen and zeé
we have B(Hz, xy) = B(z, xy) = B(zx, y)=0. Finally we observe that H(¢7?)=0.
In fact, if x, y€ £, we have B(z, H(xy)) = B(z, xy) = B(zx, y) =0, for all zen.

Now take xemn and yeé& Then (gx)(gy)=x(y—Hy)=-xHy=0=g(0)=
g(xy). Similarly, if x, y € £, we have (gx)(gy) = (x — Hx)(y — Hy) = (Hx)(Hy) + xy =
xy = xy — H(xy) = g(xy). Finally, if x, yen, we have (gx)(gy) = xy = g(xy).

Remark. Call an algebra-structure € N, (k) colocal if it has a socle of
dimension 1. This is equivalent to saying that the algebra with unit k@ ¢ is
symmetric (= self-injective). Clearly, if n € N, (k), a form A € C(n) is non degen-
erate iff Ex (n, A)e N,.,(k) is colocal.

We therefore say that n is presymmetric if there exists a non-degenerate
A € C(m). The presymmetric algebras are obtained by dividing the maximal ideal
of a local symmetric algebra by its socle.

COROLLARY 2. Suppose £e€N,(k) is such that S(¢&)<S(t,)®™. Then
S(T X £) = S(Ty ) Foem.

Proof. By proposition 3, it suffices to show that

{7,, X E}X(C(71,,,) B C(&)) = S(7 ).
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But our assumption implies that {r,, x £} X(C(7,,) B C(¢)) < S(7,, X 7,,)°" =, and a
general member ¢ of Ex (S(7,, X 7,)) has e({) =2 and is colocal. So by the remark
following corollary 1, S(r,, X7,)< S(7,..,)° "~ (apply corollary 1 to ¢ and
N = Tmin+1 EEX(S(T40))).

COROLLARY 3. We have S(¢,)< S(7,)°".

This results from ¢, = 7, X7, X *++ X7,, n times.

Remark. This corollary more directly follows from the fact that the curve
(A7, L), A€k, is in S, (think of 7, € Hom, (k" &, k", k") to define A71,), and for
A =0, this is (¢,, I,), which has an open orbit in S(¢, ) under Aut (¢, )= GL,.

PROPOSITION 4. Suppose ne N, (k). Let n =Ex (¢, B), (¢, B)e S,. Then
e(f)=e(m)=e(é)+1, and e(n)=e(&é)+1 iff the algebra extension 0 — ke, ,—
n— &—0 is trivial, i.e. iff B(x, y)= f(xy) for some f:£ — k.

Proof. The only point is the implication e(n) =e(£)+1=> n= Ex (£ 0). Now,
since e(n)=e(&)+1, n>Nke,,,=(0). Take a supplement U of ke,,,; in k"*'
containing 2. Then U is a subalgebra of m which is isomorphic to ¢ and
n— UXxke,,,, QED.

In general, the uniserial structure furnishes one irreducible component for N,
and for S, according to the following

THEOREM 1. Let 7, € N,(k) be the uniserial structure.

(i) The orbit TS™ is an open, smooth, rational subscheme of N, with dimension
n’—n.

(ii) Let p:S, — N, be the canonical projection. Then p~'(7$"™) is a smooth open
subscheme of S, with dimension n.

(iii) Let 2={geGL,: all diagonal minors of g invertible} be the big cell of GL,
with respect to the Borel group B(n) of upper triangular matrices and the torus T(n)
of diagonal matrices. Call f (resp. f,) the orbit morphism Q— S, :g+— (7, L,)®
(resp. 2 — N, : g > 78) restricted to (), the notation I, being that of example (1).
Then f, admits a section s such that the multiplication Aut (7,,))XIm (sof,)— 2 is
an isomorphism. If char (k)=p=n+1 or p =0, then f is quasi-finite and the orbit of
(7,, I,) is dense in p~'(75™).

Proof. We first show that the orbit morphism q:GL, — N, : g — 78 is smooth.
We verify the functorial criterion (formal smoothness). Consider a commutative
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square

Spec (A) —— GL,

. a
f’(

Spec (A)’——r-n—> N,

where A=A/I, I’=0, and m is a multiplication on A". We have to find
t :Spec (A) — GL,, such that both triangles become commutative. The datum of s
is equivalent to that of a basis §,,...,35, of A" such that §, = §5. We have to lift
this basis to an appropriate basis of A" :lift §, to s; and set s, = s{!

From this the first two assertions of (i) follow. For the third assertion of (i),
note that a functorial description of U= 7" is this: for any A € k-Alg, U(A) is
formed by the A-algebra-structures on A" which are isomorphic to w @ «®*®
-+ @B w®", w an invertible A-module. To see that p~!(U) is smooth of dimen-
sion n?, let Spec(A)— U be any morphism. We describe Spec (A)Xy S, as
follows. Let w be an invertible direct summand of A" such that (A", m) is
isomorphic to w B w®* @ - - - @ w®". Then Spec(A) Xy S, is the scheme over
Spec (A) attached to the A-module of Hochschild cocycles relative to w @ «®* @
-+ - @ w®". This module is identified with @', Hom, (0 ®, 0®, A)=
0® 2@ - B w® " . To see that dim (U) = n>—n and hence dim (p~'(U)) = n?,
observe that

4 a] 3N
a, a; 0
. . i 1 e itrar
Aut (1,) = ‘ .4 invertible, .az,. , a, arbitrary |
Y *, =polynomial in a,, ..., a,
L\ a, ay

Aut (7,) is a subgroup of B (n), the Borel group opposite to B(n) relative to
. _ . 1 0

T(n). Identify B (n—1) with (O B-(n—1)
Aut (1,)X B (n—1) X B,(n) — 2 is an isomorphism, where B,(n) is the unipotent
part of B(n). The restriction of f, to B (n—1)x B,(n) is an isomorphism onto U
and its inverse s is the section we are looking for in assertion (iii). The rationality
of U follows from this isomorphism.

Finally Aut(t,, I,)= GXu,,,, where G is a smooth unipotent group of

)CB“(n). Then the multiplication
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dimension [n/p], p = char (k), with [n/p]= 0 for p=0. Here we embedd the group
M, +1 Of (n+1)-th roots of unity in GL, by

X

X >

whereas a, is a polynomial in the a,, q<r and p | n+2—gq, whenever p+ n+2-r,
as is easily verified inductively with decreasing indices. This implies that the orbit
of (7,, I,) has dimension n*—[n/p]. QED.

§2. Description of S, and N, for n=5.

For n=5, N, contains a finite number of orbits. We are going to list one
(k-rational) structure a for each orbit, writing a as quotient of the maximal ideal
I=(X,...,X,) of k[X,,...,X,] plus basis (X;,...,X,,...), e=e(a). Let J=
(f1, - - ., f,) = I be an ideal defining a as quotient, and suppose that {f,,..., f,}is a
minimal set of generators for J. Then the numbers n, e, s, dim C(a) are related by
the equation

dim C(a)=n+s—e.
This follows from the exact sequence (V* = k-dual of V)
0—(a/a?)*—> a* > Cla) > H(a)— 0

of k-vectorspaces and from the k-linear isomorphism (J/I1J)* = H?(a, k) sending
a form f:J/IJ — k to the class of the extension 0 > k — k &®, I - a — 0, where
k @, I denotes the fibre sum defined by the maps J— J/1J —L 5k and JSIL
Observe that s = e by the theorem of Krull-Chevalley—Samuel, equality holding iff
a is a complete intersection. It follows that dim C(a)=n for all @ € N,,(k). In each
N,, n =5, we order the structures by increasing cocycle-space dimension.
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Structure Space of cocycles
Nl a1=T kIl
N, | Bi=m2 kI, & kI,
B2= ¢, M3 (k)
3
N; | vi=1, b kI,
i=1
2= (X, Y)I(X2, Y?); ( 0)
) ’ ’ M(k) O
XY XY
{ ) 0O 0 O
a a a
vs=(X, Y)/(X3, XY, Y?); H 62 83
" a» a; €k
(X, X%, Y)
a; 0 as
Y4a= €3 (k)
4
N,| 6,=1, @D kI,
j=1
r 3
a;;, a;; 0 aq,
5, =(X, Y)/(XY, Y2+ X3); a, 0 0 O
2 3 4 a;ekp
(X, X%, X°,Y) 0O 0 0 O
(\ 414 0 0 ay j
( a;; a2 a3 0 ]
83 = (X’ Y)/(XY’ X3’ Y3)7 a12 0 0 0 k
2 2 4 aii (S >
(X, X%, Y, Y% a; 0 as; as
‘ 0 0 az;u O )

8,=(X, Y)I(XY, Y*, X%);
(X, X%, X°,Y)

p A ~
A
&8 8 o
— =
W N
o 8 B
w N
oo o f
w
o o
>
o
m
a- J
N
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Structure

Space of cocycles

85 = (X) Y)/(Y2> XS’ XZY);

ay;n Q12 Q3 Qqq
a, 0 a4 O

ek
(X, Xz, Y, XY) a;3 a4 Az O % <
a, O 0 0
0=(X Y, Z2)/(XY,XZ, YZ, s ;
XZ__yZ X2_22). 3(k) O
(X, Y, Z, X% 0
0O 0 0 0
5 0
6, =(X, Y, 2) (XY, XZ YZ X~, .
Y2__22). S(k) O
(X, Y, Z, Y?) 0
0 0 0 O
6:=(X Y, 2)(XY, XZ, YZ Y? 0 0001
82"'(3a ’ )/( ) 5 ) ’ s3(k) 0 O O 0 0
Z, X 0| o 0 0 o
(X, Y, Z, X?
0O 0 0O 1 0 0 O
69=(P4 Mtst(k)
5
NS €1=T;s @ kI]
i=1
r /411 A a3 0 ajs
a, a3 0 0
82‘:_‘()(3 Y)/(XY9 X4_ Y2)9
(X, X2 X, X*. Y) <l ans 0O O a; €k
0 0 0 O
. a15 0 O 0 a55
(/a1 a;; 0 ayy O )
5 ) an 0 0 QAr4 0
€3=(Xs Y)/(XY:X - Y );
< ek
(X X2 X°. Y, Y?) 0 0 0 0 O }laeky
s A 0 ay O
\ 0 O 0 0 O J
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Structure Space of cocycles
(/A1 G, Gq3 a4 O )
A A, Ay ay 0 0
E4= (Xa 2Y)/(X ’ ‘2/ )9 < a13 a14 0 O aij = k }
(X, Y, X, XY, X°Y)
a,, O 0 O
AN/ 0 0O O /
(/11 Q2 Qg3 Qy4 Qgs I
s " i, a3 a4 O 0
es=(X, Y)(X°, XY, Y°);
<)5(’ Xz’ X3’ X4, Y> < A1z QAqa4 0 0 0 ai]- ek
a, O 0 0
\ aqs 0 0 ass 4
(/411 Gy a3 O 0 A
a, 0 0 0 0
€ — (X7 Y)/(X4’ XY, Y3)’
<;’ Y2, X, X2, X?) 1 aiz 0 as; asy ass a; €k
0 0 a3y azs O
. O 0 a35 0 O s
0 0
e, =(X, Y, Z)/(X?, Y2, 72, 00
XY-XZ-YZ), Mi(k) O O
(X, Y,Z,XZ,YZ) 0 00 0O
O 0 00O
(/A1 Q12 Q13 Q4 A3z h
A, Ay A 0 agy
_ 4 w2 2 w3y,
Eg = (Xa ZY)/(i( ) X Ya Y X )’ < as a23 a14 O aij c k
(X, Y, X%, X, XY)
as O 0 0
(\a,, a, 0 0 )
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Structure

Space of cocycles

0 0
0 0
&g = (X’ Y’ Z)/(Xza Y27 Zz: YZ+XZ); s(k) 0 0
(XY, Z XY, XZ) ’
0 00 0O
0O 0 0 0O
/G117 Q2 Gy3 Q4 Q33 )
X, V)X XY, Y?) A;; Ay a; O 0
8 = 2 bl b Y ;
Ox(o, Y, X%, X3, XY) af a4z ay ay O 0 a;ekp
a, 0O 0 0 0
L a23 O O O O P
0 0
— 2 52 0 O
€11 7™ (X7 Y) Z)/(Y ’ Z ’ XY7
X*-YZ); 3(k) 0 O
(X,Y,Z X? XZ) 000 00
0O 0 0 0 0
0 O
0 0
€12 = (X, Y, Z)/(Xzy sz ZZ, YZ), s(k) 0 O
(XY, Z, XY, XZ) 3
O 0 00O
O 0 0 0O
4 all alz a13 O 0 N
es=(X, Y, 2)/(X?, Y? XZ, YZ, Gz G a3 0 0
XY—" Z3); < a13 a23 (133 (134 O a” (S k >
(X, Y, Z, 227 Z3) 0 0 Q34 0 0
.\ O 0 0 0 0 J
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BUDGES Space of cocycles
(/011 Q12 Qg3 0 3
(X, Y, 2I(Y?, XY, YZ XZ, X*+2Z°) fz Gz 0
E14= sy X, , 5 5 5 + ;
<)1(4’ Y, Z, Zz’ Za) { Gi3 Q3 Q433 azq 0 a; € k ?
0 0 a3 0 O
SN0 0 0 0O O J
(/G117 G, a3 a4 O 3
(X, Y, 222, Y, XY, XZ, X*) e
€5s=(X Y, > , XY, XZ, X°);
(;, Y, Z X? YZ) Al a5 a axz 0 0 Jla;eky
ay, O 0 0 O
» 0 0 0 0 0 J
(/G111 Q12 Q3 4y4 Qs N
(X, Y)I(X?, XY, XY?, Y?) iz G G s G
€16 =\ A, 5 , , .
(X, Y, X* XY, Y? 1 a3 ax 0 0 0 Jla;ek}
Ays Qgs
“ V15 dzs J
(/a1 G 43 dyy O 3
2 2 3 a2 4 G 0 O
e =X, Y, DY, YZ, XZ, 2"~ XY, X°); 1l a3 a3 a 0 O Jlla;ek;}
(X, Y, Z, Xz, Zz) 13 23 33 ij
as 0 0 0O O
N0 0 0 0 0 J
( all a12 a13 0 0 N
2 v2 " A2 Gy Gy O 0
e18 = (X, Y, (X", Y°, XY, XZ, YZ, Z°); l ais a,s as; as, a a.ckd
(X,Y,2Z, 2% 2> 13 Q23 A3z Q3q Q43s if
0 0 az ass O
N O O ass 0 O 4
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Structure

Space of cocycles

€197 (X9 Y, Z)/(ZZ, XZ, YZs XY7

€20 (X’ Y) Z)/(Yz, Zza YZ) XZ’ X3a

X3, Y3, <1 a5 a,; as;z 0 O a;€kp
2
(X’ Y7 Z7 X27 Y ) a14 0 0 O
L NO ay,s O 0 /
/41 Q2 Qi3 Qyq Qgs )

X?Y); \ a3 Q3 4a4s; 0 aijEk >
<X3 Y’ Z’ Xz, XY) al4 a15 0 0
. (115 0 0 0 y
0
en=(X, Y, Z W(X?, Y2, Z2, W2, XY, 0
XZ, YW, ZW, XW—-YZ), M; 0
(X, Y, Z W, XW) 0
0O 0 0 0 O
0
£,=(X Y, Z, W)/(Xz, Yz, X7, 0
XW,YZ, YW, ZW, Wz, XY-ZZ); M 0
(X, Y,Z, W, Z% :
0
0O 0 0 0 O
0
823 = (Xs Ys Z’ W)/(X29 Y27 Z2’ W2, 0
XZ, XW, YZ, YW, ZW); Mi(k) O
(X's Y, Za Wa XY) 0
0O 00 0O
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Structures
/311 Q2 dy3 Qg dgs
€24~ (Xs Y’ Zs W)/( Y2, Zz, Wz, XY, Ay Ay Az arg
XZ, XW, YZ, YW, ZW, X*); I a3 ayy as as a; € k

(XY, Z, W, X?)

Q
IS
)
¥)
N
Q
w
IS
[~
&
IS
o o O O

Er5 = P5 S‘K(k)

§3. The irreducibility of N,, N,, N;, N,, Ns, N;.

We proceed in three steps. In the first, we show that S,, S,, S5 are irreducible,
and hence so are N;, N,, N5, N,. In the second, resp. third we show that N, resp.
N are irreducible.

First step. It is clear that S,, S, are irreducible since a; =17, B =72, B2 = ¢,,
and corollary 3 applies. In S5, observe 73> 7y, and dim C(75) = dim C(v,), hence
by proposition 2, every cocycle over vy, is a specialization of a cocycle over 7.
Since a general member B e C(y;) is non-degenerate, Ex (vy;, B) is colocal with
embedding dimension two. Hence by corollary 1 and the remark following this
corollary, there is a curve I' in S; through (v;, B) and generically over 75",
Finally, v, = ¢3, so by corollary 3, we conclude that S; is irreducible.

Second step. The cocycles of S(8,) are specializations of cocycles over 7, since
by the first step 7,> 8, and dim C(8,) =dim C(7,) and proposition 2 applies.

Each C(8;) and C(85) contain non-degenerate forms, so the argument used for
S(7y;) above works again: The cocycles of S(85) and of S(8s) are specializations of
those over 7,.

Observe that §,— 7, X 7, so corollary 2 applies to S(8,). The cocycles in S(5-)
are specializations of those in S(85). We have 83 = ¢; X 7,, so the cocycles in S(8g)
are specializations of those lying over 7, by corollary 2. We are left with C(8).
We shall show within the third step that the structure &, = Ex (8¢, B) for general
B e C(8¢) is a specialization of 75. From this it follows that Nj is irreducible.

Third step. Let £€e Ns(k) be of embedding dimension =2. Then either an
extension Ex (¢ B), Be C(§), is trivial or its embedding dimension is still =2. In
the latter case, by the remark following corollary 1, Ex (¢, B) is a specialization of
Te; in the first case, this is trivial. Since by corollary 3, all cocycles over ¢s are
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specializations of cocycles over 75, we are left with the investigation of cocycles
lying over structures g with e(g;) =3. or 4.

In embedding dimension four, note that C(g,,) = C(g,,) = C(&,3) = Mi(k). So
by proposition 2 and since &,,> €,,> €,3 for trivial reasons, it is sufficient to
consider a general cocycle in C(e,,). Look at the specialization 75— &,, defined
by the base change X =e;, Y=-¢,/A, Z=-e5/A%, W=1¢,/A*, XW =es/A>. Call this
variable structure 75(A), so 75(1) = 75 and 75(0) = £,,. We have

r /b, b, by bs Abs ]
b, by b, bs O

C(rs(\) >3] b, b, bs 0o |lbek},
b, bs 0

C\Abs 0 0 0 |

whence all the structures Ex (&,,, B), where

b, b, by b, 0
b, by b, bs 0
B=| b, b, bs 0 0 ],
bya bs 0 0 O
0 0 0 0 O

are specializations of 7,. They are described as follows: Let X, Y, Z, W, be the
canonical basis of E =k* and S, T the canonical basis of F = k. Identify I, and B
with the bilinear forms they define on E X E with respect to X, Y, Z, W. Then
Ex (&,;, B) is this multiplication:

(i) EF=FF=0,

(ii) For x, ye E, we have xy = I,(x, y)S+ B(x, y)T.

Write B(x, y) = I,(og(x), y), 0, € GL (E). With respect to the basis X, Y, Z,
W, og has the matrix

by bs 0 0
b b b5 0
B\ b, b, b, bs

by b, by b,
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whose characteristic polynomial is
xs =det (05 —pul)=(b,—p)* - 3bs3bs(b,— IL)Z + 2b2b§(b4“ p)+ b§b§ - blbg-

Let Z be the 20-dimensional affine space consisting of pairs of symmetric
4 x 4-matrices. Consider the morphism z:A’XGL,— Z:(by, b,, bs, by, bs; g) —
(I§, B®). We show that z is dominant. This implies that for general B we get the
general extension Ex (g,,, B) of &,,. Now, if (I§, B®)=(l,, B'), B’ being defined
by b;, by, bs, by, bs (like B), then Xp = Xs- Hence, for fixed B, the possible B’
define a one-dimensional variety in A°. On the other hand, the stabilizers of I,
and of B have a finite intersection, if B is sufficiently general. So the generic fibre
of z is one-dimensional, and z is dominant.

Remarks

(1) With the above notation, it is easily seen that the multiplication
(1) EF=FF=0,

(i1) For x, ye E, xy = B4(x, y)S + B,(x, y)T with

1 A 01 00 0 0
A AZ—iA 0 O 0 iA 0 A
Bi=log o o o] 2™ B=Yy o 0 o0
1 0 00 0 A 0 0

defines a one-parameter family (B,), i Of structures which is generic among the
extensions of €,;. By an elementary but very long calculus, one finds the following
curve Iy, ={1¢(t): t € k\{0}} in N¢ which defines a specialization 74— B,: If ey, e,,
es, €4, €s, €4 is the canonical basis of k® we derive 74(t) from 74 by the new basis

X= a,e; +ae,t+ase;+ase,+ases
= b,e,+ bse;+be,+ bses
Z= Ccie;tcue,+ Cses
= dse,+ dses
XW
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where

a,= {2

a,=ANA-ir

as=3AQRA=)t =N A=)

a, =52 +IA) P HINTT I A - DRA- D HEA (A = i)

as=5A°(A — i)t *° +5:A%(148A% — 148iA +3)t7°2

+ AN = D)2 =207 = A (A — i)

b,=1t’

by, =2A%(A— i)t

b,=2A% (A — i)t 2 +Liar 3!

bs=2A*(A— )2t = AT B+ A = D(BA+ 512 +HIA (A —=i)*°

=t

ca =202\ — i)t

Cs=2A2A =Dt 0+ IAG =200 =34 (A — i)

d,= 3!

ds = 3A3(A - i)t-52

(Check!)

(2) In contrast to this complicated specialization, it is easy to desingularize the
local k-algebras k[B,] having B, as maximal ideal.

Call a k-algebra A weakly coupled iff ASk[X,,..., X}/ I+J+
(Xt oL, Xmth) where

(j) all the m; satisfy m; > 1,

(jjy) the ideal I is contained in the ideal I, generated by the monomials in
several variables,

Gjj) for i#l, X, X 'el,
(jv) the vectorspace J is contained in };_; kX ™.

PROPOSITION 5. A weakly coupled k-algebra A with e(A)=s is a speciali-
zation of the direct product of s+ 1 algebras. In particular, if I =1, then A is
desingularizable.

Proof. Write A as set of the k-linear combinations formed by
14, X, X7,...,X™ i=1,...,s, by mixed monomials f;,...,f, defining a basis
for I,,/I. The relations among these generators are determined by J.
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Choose in C=k* X k[X,,..., X J/(XT,..., X))+ the system of generators
1C’ )(i,lz)\ll +X9 Xi,ZZX?—-AXi’ e vy Xi.m.~1 = Ximl“l _Axr"z’ Xi,m(= —AX:nl_la
i=1,...,s and f,...,f, where A€k\{0} and 1; denotes the i-th primitive

idempotent of C. The relations from J are transported into this system of
generators by the isomorphism X"+ X, . Now it is clear that the structure A,
gotten from C by dividing through these relations among the X;,. tends to A if
A—0. For I=1_,,, either m;>2, all i, and the (s+1)* factor of A, is again
weakly coupled with I=1_,. Or else, we have m, =2, without loss of generality.
Then either X is linearly dependent of X, ..., X,, and the embedding dimension
diminishes, or X, is independent, and the (s+1)* factor can be deformed to a
non-local structure by deforming the subalgebra k[X;]/(X3) to k x k. In either
case, the induction works since new weakly coupled algebras with I=1_,, are
produced. Finally, we get a specialization of k™ to A, n=rank of A, if I=
I.;.. QED.

In particular, the generic extensions of £,; which may be defined by the two
bilinear forms

1 0 Al 0

0 1 0 Ay

as above, are desingularizable.

In embedding dimension four we are left with the cocycles Be S(e,,). We
have &,, = 7, X ¢3, so corollary 2 solves this case. This concludes the discussion of
embedding dimension four.-

The most interesting case is embedding dimension three. We first discuss the
algebras €3, €14, £,5 having non-vanishing third powers.

An extension o = Ex (g3, B) on &,;® ke, has multiplication ge,=0, a - b=
a b+ B(a, b)es for a, be £,5. Choose the basis X, Y, Z, Z -2, Z - Z - Z, e, in o.
Now, this new structure o has Z7:= Z:Z-Z in its socle, so
o' S Ex(d'/kZ3, y) where e(o'/kZ?)=3, and (0'/kZ>)>=0. So the algebras
lying over &, (i.e. coming from S(g,3)) are structures coming from cocycles lying

over algebras of embedding dimension three and having vanishing third powers.
These are discussed below.
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Since €,,— 8, X 7,, by corollary 2, and because §,-cocycles are specializations
of 7,-cocycles (cf. 2" step) we recognize the cocycles over €,, as specializations of
cocycles over 7s.

As g, ¢, X 73, corollary 2 applies to view cocycles over &3 as specializa-
tions of cocycles over 7s.

We are left with the structures of embedding dimension three and having
vanishing third powers (together with their cocycles). There are two subsets 1%
set={g;s, £17, €19, E20}, and 27 set={e,, &y, £,1, £1,} Of this set of algebras which
we treat differently.

The first set is easy, because €,5— 73X 7y,, €19 T1 X 83, €59 71 X 85. The
cocycles in S(85), S(8s) are specializations of S(7,) by the discussion of S,. As S;
is irreducible S(7;) specializes to S(8;). Hence by corollary 2, S(g,5), S(&,9),
S(z,0) are specializations of S(7s). As to &,,, note that dim C(g,,) = dim C(g;s), so
if we show that £,5> €,,, proposition 2 applies to get the cocycles over &,,. For
any A € k\{0}, consider the structure (X, Y, Z2)/((Y?, X>, XZ,A\Z*-YZ, Z* - YX)
with basis (XY, Z X? Z%. If one puts X'=Y+A’X-AZ, Y'=Y, Z'=
Z—(1/2M)Y, one sees that this structure is isomorphic to £,5. But for A =0 we get
€17, as desired. This ends the discussion of the first set of structures.

In view of M5(k) = C(e,/e7) = C(e,) = C(gg) = C(g,,) = C(g&,,) and by prop-
osition 2, it suffices to show that

holds, and that Ex (S(7s)) specializes to Ex (S(g,)) in order to handle this last set
of structures.

Consider the family &,(A) > (XY, 2)(X?, Y?* Z*, AXY—-XZ-YZ) with
e4A)>¢e, for A#0 and £,(0)>¢e, thus &,>¢. The family
gs(M) 3 (X, Y, Z2)/(X?, Y?, Z*, \YZ+XZ) specializes to &4(0)=>¢€,,, and
go(A) > g for A#0. To get go> &4, note that £, > (X, Y, Z2)/(Y?, Z?, XY, X*—
XZ) which clearly specializes to €,;.

To handle the structures in Ex(S(e,)), consider the specialization 75— g,
given by the family x =e;, y=(1/A)e,, z=(1/A%e;—(1/A%es, u=(1/A%)e,, v =
(1/A%)es of bases which define a family (75(A)), . Of structures isomorphic to 75
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for A# 0, and such that 75(0) = &;. The cocycle-spaces are

[ bl b2 b3 - bs Ab4 Abs h
b, b, b, Abs O
C(rs(A)) =l bs—bs b, bs

0 b,ek
Ab,  Abs 0 0 0
0

alli=1,2,3,4,5

hd

Hence we can lift the curve (7(A)),cxin N5 to a curve in S5 passing through every
couple

b, b, by—bs 0 0
b, by, by 0 0

e, | bs—bs b, bs 0 0 |l bek all i=1,23,4,5,
0 0 0
0 0 0

in S(e;). The algebra-extension defined by such a couple has the following
description. Set E =ke, @ ke, D ke; and F = ke, D kes D keg, such that k°®=
E@F. Call A, B, C the three symmetric bilinear forms on E X E defined by the
matrices

0O 0 1, /0 1 O b, b, bs;—bs
(O 1 O), (1 0 1), ( b, b, b, )
1 0 0/ \0O 1 0/ \b;—bs b, bs
with respect to ({e;, e,, e;). Then the multiplication is FE=FF=0, xy=
A(x, y)es+ B(x, y)es+ C(x, y)es for x, ye E. We want to show that it is sufficient
for our purpose to consider the coefficients b,=b;=0, b,=1 and bs = b,. Call this
structure a(b,).

We now investigate the structures a(A, B, C) defined by an arbitrary triplet
(A, B, C) of symmetric bilinear forms on E X E in the above way. Since Ex (S(g,))
is contained in this 18-dimensional irreducible set X of structures, we shall show
that the set X N(Up.cis @(b.)%) is dense in X. Now, dim (a(b.)°NX)=17 if
b.ek’ is sufficiently general. In fact, for general b. we have a(b)®NX=
a(b.)*C% . Viewing a structure a(A, B, C) as a three-dimensional vectorspace

V of symmetric bilinear forms on E X E plus a basis of V, the action of GL; X GL,
on a(A, B, C) becomes this: the first factor acts canonically on V. For general V,
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its orbit in the Grassmannian of all 3-dimensional subspaces of the space of the
symmetric bilinear forms of E X E is 8-dimensional. The second factor simply acts
as base-change.- Clearly, the subspace V defined by «a(b.) also has an 8-
dimensional orbit for general b., whence a(b.)°"*®=8+9=17. Hence it
suffices to find a GL¢-invariant rational function on X which is not constant on
the set {a(b,):b,€k}. If a =a(A, B, C)€ X, consider the equation

0= f.(A, p, v) =det (AM, + pMg + vMc),

where M,, Mg, M. are 3X3-matrices representing A, B, C in the basis
(ey, €5, e3). For general «, this is the homogeneous equation of an elliptic curve
E, <P,. Clearly, all ¢€ XNa®" define isomorphic curves. So “the” modular
invariant j(E,) is a GL¢-invariant rational function. We calculate this function as
a rational function of b, for structures a(b,) in the following way: we have the
cubic equation

0=Ff,0A, , ¥V)=2Ap%—4b,u*v+2Auv —4b,uv? +2b,A v —b, v’ — A°
(by)

For b, # 0, the point P with homogeneous coordinates (0, 1, 0) is not a point of
inflection of E,,. Hence there are four projective lines through P which are
tangent to E,_,,, in points different from P. Call P,, P,, P;, P, the four points on
the line u =0 cut out by the four tangents. Let A = A(P,, P,, P;, P,) be the cross
ratio of these four points, then the rational function j=(A*—A +1)>/A(A —1)% is
a well-known parameter for the four-points set {P;, P,, P;, P,} on u =0 yielding
“the” modular invariant of E,.,,. The homogeneous coordinates (A;, 0, 1), i=
1,2,3,4 of P, stem from the solution A; of the equation

0=A*—4b,A>+(4bT+3)A%~b,A

which means the vanishing of the discriminant of the quadratic equation 0=
fawn(A, i, 1) in . Putting u=—4b;, v=4b7+3, w=—b,, we get

3 (v =3uw)?
w((uv)*—4(v>+ u*w) —27w?+ 18uvw)

j
which clearly is non-constant in b;. QED.

Together with theorem 1, we conclude:

THEOREM 2. The schemes N,, n=1,2,3,4,5,6 are irreducible, rational of
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dimension n®— n, the orbit of the uniserial structure 7, forming a smooth subscheme
of N,.

COROLLARY 4. Let Alg, be the scheme of associative, unitary k-algebra-
structures on k" (85.). Let Alcom, be the closed subscheme of commutative
structures, and denote by Alcomloc, < Alcom, the reduced subscheme of local,
commutative structures. Then for n=7, Alcomloc, and (a fortiori) Alcom, is
irreducible.

§4. Counterexamples

For n> 6, the schemes N, are no longer irreducible. In fact, fix a subspace
Ec k™ of dimension e. Let S k" be any linear supplement (= complement) of
E. Suppose e(e+1)/2=n—e, and pick a surjective linear map B :Sym, (E) — S,
where Sym, (E) denotes the second symmetric power of E. Then we get a
structure E(S, B) in N, by the rules:

(i) The product Sk" vanishes.

(ii) If x, y € E, then xy = B(x ° y), where x o y is the class of x ® y in Sym, (E).

Since E(S, B)? =S, the morphism

E?,7):G(E)— N, : (S, B)— E(S, B)

is injective, where G(E) denotes the irreducible scheme whose k-points
are the above couples. Because of dim G(E)=31e(e+1)(n—e)+e(n—e),
dim (E(?, ?)(G(E))) =Zn*—n means that we consider couples (e, n)e NXN
satisfying
(i) the linear inequality n—e =0,

(ii) the parabolic inequality e*+3e—2n =0,

(iii) the elliptic inequality ne”—e*+3ne—3e*—2n*+2n=0.

These inequalities are clearly satisfied for any couple (e, n)=(e,2e) and
(e,n)=(e,2e—1) for e=4. Hence for any n=7, the irreducible subset
E(?, 2)(G(E)) of N, is not dominated by the (n*>— n)-dimensional orbit of 7,. So:

PROPOSITION 6. For n=7, N,, and hence Alcomloc,, ., is not irreducible.

PROPOSITION 7. For n=10, Alcom,, is not irreducible.

Proof. Choose the fundamental affine neighbourhood U, < Grass,,_, , consist-
ing of the supplements of {0} --- x{0}xk in k". This induces an algebraic
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choice of a basis for any Re U,. Hence every R bears the nilpotent structure
E(S, B)(R) defined by E(S, B) and by the base-choice. Finally, pick a vector
1€ k™\R. These dates define a unique local structure (S, B)(R,1) having 1 as
unity and E(S, B)(R) as maximal ideal. The irreducible subset L(E) of Alcom,
consisting of these structures has dimension n+(n—1)+3e(e+1)(n—1-e)+
e(n—1—e). The condition dim L(E)=n? is the singular cubic inequality

n‘e—e*+3ne—4e’—2n*—3e+4n-2=0 (*)

So L(E) is not dominated by the orbit of k*" as soon as the following hold:
(i) the linear inequality n—e—1=0,
(i) the parabolic inequality e’+3e—2n+2=0,
(ili) the cubic inequality (*) above.
It is clear that all couples (e, n) = (e, e +4) for e =6 satisfy these inequalities,

and that (e,n)=(5,11) is a solution of minimal embedding dimension
five. QED.

§5. Two criteria for deformation of finite-dimensional algebras and the Hasse-
diagram of the deformations of commutative algebras of dimension five.

In this paragraph, we are dealing with the scheme Alg, whose functor on the
category k-Alg takes the values

Alg, (A)= {ge(A") * @, (A"), € defines on A" the structure}
" of an associative, unitary A-algebra
where (A") * = A-dual of A".
Like in §1. GL, acts upon Alg, by structural transport from the right. We
carry over to Alg, the notations of §1 concerning this action.
The first deformation criterion is concerned with central idempotents. Let Zip,,
be the scheme whose functor on k-Alg takes the values

(&), é€Alg, (A), ie A", and i is central}

Zip, (A)= {and idempotent for the structure &

LEMMA (P. Gabriel). The projection p:Zip, — Alg, is an étale morphism.
(For the definition of an étale morphism, cf. [8; (IV, 17.1.1)].)

Idea of proof. The only non-trivial point is the verification that p is formally
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smooth, Let B be local, artinian in k-Alg. Take an ideal I € B with I>=0, and let
¢ be a B-valued structure in Alg,. The undirected graph of £ has vertices S
representing a complete system of simple £&-modules. For i# j, there is an edge
between S; and S; iff either Ext, (S, S;) or Ext, (S, S;) doesn’t vanish. The
connected components of this graph correspond one-to-one to the primitive
central idempotents of £ The lemma now follows from the fact that Ext,,, (S, S;)
doesn’t vanish if Ext, (S, S;) doesn’t. QED.

THEOREM. Let & m be two k-rational structures in Alg,. Let £=§¢,X&,, &

being k-rational in Alg,, i=1,2. Then n> &, iff there are k-rational structures =, in
Alg,, i=1,2, satisfying n,> &, i=1,2, and such that n=mn, X n,.

Idea of proof. Let the structures m,, n, have the required properties. Then
trivially n, X n,> &, X &,. For the converse, observe that there is a GL,-action on
Zip, by (£ i)8:=(¢8 g '(i)) for geGL, (A) and (¢, i) e Zip, (A) such that the
symbol > of dominance makes sense on Zip, too.- Let n> £ Call i, the central
idempotent corresponding to the factor &,. From the lemma it follows that there is
a central idempotent i, in n with (n, i,)> (¢ i;). Let ni, denote the structure of
the direct factor of n generated by the central idempotent i,. Then it follows by a
standard argument that mi, > &, and that n(1, —i,)> &(1,—i). QED.

The following criterion is concerned with semi-simple modules. It is quite
useful while deforming non-commutative structures and has been used in [7]. We
omit the proof since it is routine work in deformation theory.

THEOREM. Let & &' be two k-rational structures in Alg,. Suppose that (i) to
(iii) hold:

(i) We have &> ¢'.

(ii) Both structures & resp. £ have subalgebras L resp. L' which are isomorphic
to k'. Here we don’t require coincidence of unities of L and & resp. of L' and ¢'.

(ili) There is only one equivalence class of subalgebras of & isomorphic to k'
under the action of Aut (&¢). Under these conditions, for every left-sub-L-module M
of & there is a left-sub-L'-module M' of ¢ which is di-isomorphic to M.

To finish this paragraph, we would like to include the Hasse-diagram of the
deformations of commutative algebras of dimension five. Here an arrow X —Y
means that Y deforms to X. Most of the deformations in the diagram are trivial.
Let us merely point out two non-trivial ones:

(1) Ag— A,,. For A €k\{0}, take the Ag-base 1, X=1%1,0)+X+Y, X2,



vy =.(M ‘Z ‘X X)M ‘Z X X

Oy =(¢X 2Z LA ‘ZA ‘ZX ‘AX)Z ‘A X1
\. AZ A XNZAXPIxy=8y
V =0GZ A X ZA ZX)IZ ‘A X 1

\./

V=0GZ A X-ZA AX ZX)Z ‘XA X (KX ‘e X AMA X ="y

_— 1

Yy =(AX o X ZAMA XA (AX ‘e & ‘XA X]1=%v

A\\/
Uy = (X + & AX)/[X ‘X M = (Z AMZ AP CEXOIX] (X ‘AX ,ME\C. X x ="y
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Sy = f:\E: =(.A Nxvf X1 x X XMA XPIxAxy="Ly

QC\T,? x (X)X GXIXTAxo = \
;

WX X Axd GAMAPI X X)X xy="VY

LA

V =X)IXT x4 x xy

T~

V=X xYxYxO

"8IV Ul S2INJONIIS SANEINWIWOD JO SUONBWIOJAP JO WeIFRIp-3ssel] Y],
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X3, Y=A(X-Y). The relations among X and Y are defined by the singular
cubic X?>+A2X2-Y2=0 and the union of two lines XY =0.

(2) Ag— A,,. For A €k\{0} we take the A,-base 1, X=T, X? X3 Y=
A (T/A?)?+(T/A?)> +(T/A?)*). The relations among X and Y are defined by the
singular cubic Y?+ X?—AXY =0 and by the hyperbola XY —A?Y +AX?=0.
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