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Uniquely ergodic quadratic differentials

HowArRD MASUR

Introduction

It has been of interest to know to what extent the Teichmuller spaces of genus
g>1 with the Teichmuller metric has the geometric properties of a hyperbolic
space. An example of such a property is that for every line L and point P not on
L there should be a unique line through P which approaches L in the positive
direction asymptotically. This property is what we study here in the context of
Teichmuller space. This means examining particular examples of Teichmiiller
extremal maps.

For any line L there is an isometric embedding of the unit disc with the
Poincaré metric into Teichmiiller space such that the image contains L. The
uniquely determined image disc is called a Teichmiiller disc. We refer to [9] for
details. If P is on this disc, the existence and uniqueness are trivial as the question
reduces to considering the Poincaré disc. In his Princeton thesis, Kerckhoff [6],
proved uniqueness in the general situation. If L is determined by a quadratic
differential with closed trajectories and these trajectories sweep out 3g-3 cylin-
ders, then an asymptotic line through P will always exist [6]. On any Riemann
surface the quadratic differentials with closed trajectories are a countable union of
sets of positive codimension so it is of interest to study this asymptotic property
for a wider class of quadratic differentials. These are the quadratic differentials
whose horizontal trajectory flow is uniquely ergodic. Our main result is that if L is
determined by a uniquely ergodic g with no closed critical trajectories, then there
is always an asymptotic line through any P.

Thurston [13] and Bers [3], found examples of hyperbolic axes in T,. As
Thurston showed, the horizontal and vertical trajectory structures of the quadratic
differential are attracting and repelling fixed points of the action of a diffeomorph-
ism on a sphere of foliations. Using this characterization one can prove the
asymptotic property for these lines directly. On the other hand, as Thurston

showed, the trajectory flows are uniquely ergodic so our theorem gives a different
proof.
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256 HOWARD MASUR

For a detailed treatment of Teichmiiller extremal maps we refer to [2]. For a
discussion of Teichmiiller geodesics see [8] and [10]. We mention here one bit of
terminology. If g is a quadratic differential, then the positive Teichmiiller ray
determined by q is given by the Teichmiller maps f, with dilatation kg/|q],
—1<k =0. This means for each k the stretch is along the vertical trajectories, the
contraction is along the horizontal trajectories.

§2. A Preliminary counterexample

We begin with the following result.

THEOREM 1. If the line L in T, is determined by a quadratic differential q
with closed trajectories determining one cylinder of homotopy type v, there is a line
L' through P positively asymptotic to L if and only if P is on the same Teichmiiller
disc as L.

Proof. by the remarks in the introduction, we need only consider the situation
of P not on the disc, and suppose L' through P exists. There are two cases
depending on whether or not L’ is determined by the unique normalized differen-
tial with closed trajectoris of homotopy class y on the Riemann surface at P.

Suppose first that it is. The theorem of [9] associates endpoints Q and Q’,
Q# Q' to L and L' on the boundary Teichmiiller space obtained by pinching
along the curve vy. Then Proposition 2 of [10] shows the asymptotic distance
between L and L' is at least as great as the boundary Teichmiiller distance
between Q and Q' which is positive.

Now suppose L' is determined by a q’ not as above. Let B be any simple
closed curve disjoint from y. With respect to the metric |q|'? |dz|, the geodesic in
the homotopy class of B is represented by a union of critical horizontal trajec-
tories on the boundary of the cylinder. Fix an annulus homotopic to 8 near the
boundary. For any k <0 this annulus can be embedded in the image surface under
the Teichmiiller map. This shows the extremal length of 8 is bounded above along
the ray. Now consider the geodesic for g with respect to |q'|'? |dz|. If it is not
represented by horizontal trajectories alone, then as k——1 its length measured
with respect to the terminal differential with unit norm becomes unbounded.
Therefore the extremal length of B8 on the image surface which is at least as great
is also unbounded. However M-quasiconformal mapping change extremal length
by a factor at most M. Therefore 8 must be horizontal and since it was an
arbitrary curve disjoint from vy, q’ has closed trajectories in the homotopy class of
v and we are back to the first case, a contradiction.
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§3. Uniquely ergodic quadratic differentials

To begin the discussion we employ a device of Strebel’s [12]. Given a
quadratic differential q on X, fix a small vertical segment B containing no zeroes
and label the two sides B, and B_. For each xe€ B consider the horizontal
trajectory leaving x on the + side. If the trajectory is dense it returns to 8 a first
time, either to B, or B_. We will assume every noncritical trajectory is dense. Then
X decomposes into a union of rectangles R; as in the following figures. These are

[ 2B

!

Figure 1 Figure 2

rectangles in the natural coordinates of g. In figure 1, a trajectory leaving a point
x € R; N B on the + side returns on the — side, in figure 2 it returns on the + side.
There are possibly rectangles of both types. The total height of the rectangles of
the second kind leaving and returning to B, is the same as the height of those
leaving and returning to B_. These rectangles R; are identified to each other along
various pieces of the top and bottom horizontal edges. The endpoints of the
identifications are the zeroes x; of gq.

If all rectangles are of the first kind we may define a map T : B — (3; for x € 3,
T(x) is the first return for a trajectory through x leaving on the + side. If there
are rectangles of the second kind we must define T:B,UB_— B,UpB,. For
x € B, if the first return is to B_(B,), T(x) is the corresponding point on B,(B_).
There is a similar definition for x € B_. It is possible to define T at the vertices of
the rectangles to be either right or left continuous depending on the type of the
rectangle. If all rectangles are of the first kind, T is defined to right continuous
and is called an interval exchange map.

Now B and B, U B_ may be given the measure p defined by |q'/?||dz|. It is
clear w is invariant under T and we say T is uniquely ergodic if it is the only
invariant measure up to scalar multiples. Although a different vertical interval
determines a different map T, an invariant measure for one induces an invariant
measure for the other. Therefore it makes sense to say the quadratic differential is
uniquely ergodic.
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We now formulate a topological definition. Two quadratic differentials q, and
g, on X have topologically equivalent horizontal trajectory structures if by a finite
sequence of homeomorphisms homotopic to the identity and a finite number of
operations of collapsing and expanding of compact critical segments, the horizon-
tal trajectories of q, can be transformed to the trajectories of g,. In [5], p. 232,
the definition is given of the strong equivalence of two measured foliations. The
definition here is the same except that we do not require vertical distances to be
preserved.

PROPOSITION 1. The quadratic differential q on X is uniquely ergodic if and
only if the only topologically equivalent quadratic differentials are real multiples.

Proof. If v is another (nonmultiple) invariant measure for T then v defines a
vertical measure for the topological foliation defined by the horizontal trajectories
of g. The main theorem in [5] says this measured foliation is realized as the
horizontal trajectories of a quadratic differential g’ on X. Conversely, topologi-
cally equivalent quadratic differentials define the same map T but different
invariant measures.

Remark. It is possible for topologically inequivalent quadratic differentials to
define the same first return map, for instance if they correspond under a
homeomorphism of the surface.

An important and seemingly difficult question is whether almost all interval
exchange maps are uniquely ergodic. See [14].

EXAMPLES. 1. As mentioned in the introduction, Thurston found
homeomorphisms which fix transverse foliations. These foliations define a uni-
quely ergodic quadratic differential. 2. Any interval exchange map with two or
three intervals is uniquely ergodic. Starting with an interval exchange map one
can always construct quadratic differentials inducing that interval exchange map.
We will give an example of such a construction in §4. Keynes and Newton [7]
found nonuniquely ergodic interval exchange maps with dense orbits.

We define the critical graph I' of a quadratic differential to consist of the union
of the compact critical segments.

THEOREM 2. Suppose the line L is determined by a uniquely ergodic q and I'
contains no simple closed curves. Then for any P not on L there is a (unique) line
through P positively asymptotic to L.

Remark. The set of q on X with nonempty I' is of measure zero in
H°(X, Q%% so if the conjecture on almost all interval exchange maps being
uniquely ergodic is true, almost all quadratic differentials will satisy the hypothesis
of the theorem. Our example in §4 will show the hypothesis to be necessary.
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Proof of Theorem 2. We will first prove the theorem in the case that I' is
empty. By the main theorem of [5], there is a unique quadratic differential q’ on
P whose horizontal structure is measure equivalent to that of g. In this case this
means there is a homeomorphism of the horizontal trajectories homotopic to the
identity which also preserves the vertical distances between trajectories. Now ¢’
may not have unit norm but taking terminal quadratic differentials along the line
L' determined by q' we can find one with unit norm. Since the terminal quadratic
differential determines L' as well we may assume g’ has unit norm to begin with.

Pick small vertical segments 8 and B’ for q and q’ joining the same horizontal
trajectories and having one endpoint in common. Since q and q' are measure
equivalent, the first return maps T and measures p on 8 and B’ are the same. The
rectangles R; and R/ have the same height and are identified in the same way;
only their lengths are different. Now let e > 0. We must show for K large enough
the points at distance 3 log K on L from the base point are within € of points at
distance 3 log K along L' from P.

In all estimates to follow O(e) refers to any function such that O(e)/e =B as
€ — O where B depends only on the base points and not on K.

Since T is uniquely ergodic, for any continuous f on B or B, UpB_ (B’ or
B UB"), 1/n Y125 f(T'(x)) converges uniformly to § fdu as n —os, [15, p. 136]. A
routine approximation shows the same to be true if f is replaced by the
characteristic function of an open interval. Pick N large enough so that all n= N,

1 .
w LXeT () - u(R)|<e (1)

for each i and any x € 8. Of course the same holds for R/ and B'. For any 6 >0,
we can find intervals o <8 and ¢'c B’ joining the same trajectories of equal
length less than & such that for any x € o, T'(x)¢ o and T’(x) not a vertex of R,
for 0<j=N-1 and —N+1=j<0. We require the same condition on o’

Consider the induced return map and decomposition for these intervals giving
rectangles S; and S/ of equal height. For x € S; let v;(x) be the number of visits of
x to R, before returning to o. This is the same as the number of visits of x to R}
before returning to o’ for x € S;. We wish to compute the lengths denoted | | of S,
and S!. Then

S|= Y |R|v,(x), and |SI|= ) |R!|v(x)
i=1 i=1

where the sum is over all rectangles R, and R/. Let v=}7",v. Then by (1)
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|v,/v — w(R;)| < e. Therefore

=X IRl YIRIwR)-¢) YIR|Z

el IRI YIRIWR)+e) 3 IRy

i=1 i=1 i=1

1 . R
s im0 T ER
Therefore |
%=1+O(E) as e€—0. 3

Let y be a vertex of a rectangle S; and |y| the distance to a zero along a
trajectory. Let y’ be the vertex for Sj. Then an argument exactly as above shows
Iyl/ly'l=1+O(e).

We would like to map S; to S} by an e’ quasiconformal map preserving the
zeroes which is linear along the edges so the maps would glue together to a map
between the surfaces. The lengths and heights have ratios which are e,
However the positioning of the zeroes presents difficulties and here is where we
must let K — « for then the heights of S; and S} go to infinity. The first case of
the theorem follows from the lemma.

O(e)

LEMMA. Let R, and R’ be two rectangles with vertices A;, Ali=1,...,4 such
that I(R)/I(R)=|A,A,|/|A1AL=e°® as e€—>0. Suppose there are points
P,, P, on the top (A,A,) and bottom (A;A,), Py, P, similarly on R’ such that
|A,P,|/|A Py =e®® and |P,A,|/|P, Ay =e®® with similar equalities for P, and
P%. Finally suppose the heights h(R,)=h(R.) satisfy |A;A,|/h(R.)=O(e) as
€ — 0. Then there is an ¢°© quasiconformal map R, to R’ which is linear on all
sides and sends P, to Py, P, to P,.

Proof. By dividing each rectangle in half we may assume there are no points
P, and P, on the bottom. With a simple affine stretch we may assume |A;A,|=
|A1A%|. Therefore let the A; and A! have coordinates (0, b), (a, b), (a,0), and
(0, 0) in the z and w planes, resp., and suppose P; and P} have coordinates (c, b)
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and (c’, b) resp., where c/c’'=¢®® and (a —c)/(a—c’) = e°©. The quasiconformal
map Is

u=x[(%—l)%+l], v=y O=x=c

u=a+(x~—a)[(c“a—l)z+l], v=y c=x=a.
c—a b

Here w=u+iv, z=x+1iy. One checks easily that this has the desired mapping
properties. Now for x=c¢

c’ y c' X
uxz(—g—l)~6+1, v, =1, uy=(-c-—1)g, v, =0.

Since y/b=1 and c¢'/c—1= O(e) we have u, =e?®. Recalling a/b is O(e) we
have u, = O(e) so the map is e““ quasiconformal. We get similar estimates for
x =c¢, proving the lemma.

The above proof fails if I' is nonempty. For then there are segments of I" on
the top or bottom of some §; giving two or more dividing points. As K — o the
lengths have fixed ratio with corresponding lengths on S/. Instead we have to map
neighborhoods of I" onto each other by e°® quasiconformal maps for each K and
map their complements as before. The compact trajectories will in general not
correspond.

Let | be the sum of the orders of the zeroes contained in I'. Since I' contains
no closed curves there are [ +2 trajectories leaving I" which are arbitrarily long.
Consider a neighborhood U of I as in the following drawing.

The boundary of U consists alternately of horizontal and vertical trajectories. We
choose the horizontal trajectories leaving the graph to have common length h.
Then the horizontal trajectories on 8U have length 2h plus possibly one or more
lengths of the pieces of T.

For h fixed and large the vertical segments on 8U must be short and in fact,
can be made arbitrarily small. For large enough K depending on h, we give them
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each length h/K, half on each side of the horizontal trajectory. Along the ray L at
distance 3 log K, the corresponding trajectories leaving the graph I'y have length
K™ '?h and the vertical pieces on 8U have length K'?h/K = K~'?h. By renor-
malizing the terminal quadratic differential gx we can take all lengths to be h.
Consider then this neighborhood Uk of I'y on the terminal surface. Each Uy
embedds conformally in the Riemann sphere in such a way that gx dz? is the
restriction of (z' + p(z)) dz* for some polynomial p(z) of degree at most [ —2 (See
Lemma 3.15 of [5]).

If we let h—>o with respect to |qV*dz| and set gx = Kqx/h®> then the
segments leaving I'y have gx length 1 and the critical segments have lengths
which approach zero. In particular then by taking h, K large enough we can make
Gk dz? arbitrarily close to z'dz? on Uy.

On the surface defined by P take a similar neighborhood of I taking h'=h
and for the vertical segments v' = v. Then for large K, g% dz*=(z'+ p,(z)) dz* on

% with p,(z) near zero. Now since the vertical lengths on 8U% are equal to the
vertical lengths on Uk and the horizontal lengths differ only by lengths on Ik
and I'x which approach zero, 8U% can be made arbitrarily close to §Uxk in the
z-plane. We may therefore map Uy to U by an e®® quasiconformal map which
is linear along the pieces of dUk. A complete justification can be given by
mapping the two regions to the upper half-plane. The desired boundary map
satisfies an M condition where M—1 as h, K—> . One can then apply an
Ahlfors-Beurling extension. [1].

We continue with the proof of the theorem. Given € >0 we fix the neighbor-
hoods in the above discussion so that there is an e°® quasiconformal map
between them for all large K. This means in particular the length h above is fixed.
Now we proceed as in the first case. We can assume the rectangles S; and S/ are
as in the following drawing (drawn for S;).

I — . —— — —

A4 As

The “missing” rectangle QPQR is part of Ug. Since h is fixed, o and ¢’ can be
picked small enough so that

|A1A,]/|ALAY,  |A,O|AL0,  |RA|/R'AY,  |PQ|/|P'Q|

are all 1+ O(e) while |OP|=|O'P'|, |A;A,|=|A1A}| and again |AA,|/|AA,]=
O(e).
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Again we may assume |A;A,|=|A1A%|. We map I to I' and II to II' by affine
maps which are e°® quasiconformal. Now we map III to III' as in the lemma.
Here the base corresponds to y =0, the top to y=b. The map is

u=x[(£“1)z+1] O=x=c
c b

w=d'+(x~ d)[(d’—c— —z- ]
u=a+(x—a)[(cs—z— % ]

v=y.

Here P and P’ have coordinates (c, b) and (c¢’, b’) and Q and Q' have coordinates
(d, b) and (d', b'). Estimates as in the lemma and (3) show that the map is ¢“
quasiconformal finishing the proof.

§4. A counterexample
Theorem 2 fails when there are closed curves in I" as a neighborhood like U

does not exist. Consider an interval exchange map with two intervals. Attach
rectangles R, and R, as indicated in the drawings

dl g a9 h
f
R, ccDdC b g
A e e 5 .
R
R, 2
(¢4] g o2} h

The points A, B, C, D are simple zeroes for the quadratic differential and the
rectangles are attached along a, b, ¢, d, e, f, g, and h. Assign some lengths to these
segments and to the rectangles to form a surface of genus 2 and a differential q as
in the following figure. If |aya,|=1 and «, is irrational, the trajectories f and h
are dense. Since this is an interval exchange map on two intervals, the flow is
uniquely ergodic [4]. The segments a, b, d, e form a curve vy,, while ¢, d form v,.
We show there are points P with no lines asymptotic to the line L determined

by q.
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As before, we can make the vertical and horizontal segments on 8V long and
equal by taking K large. It is easy to see then that for K, <K,, Vg embedds
naturally in Vi . Also, 6V bounds a torus Ty with one hole and for fixed K,
8Vk and 8Vy, bound an annulus Agx whose modulus — © as K — . Cut this
annulus along the horizontal trajectories leaving the graph, dividing Ak into two
simply connected regions. Map each to the upper half-plane. We get two regions
each as in the following figure.

S R

As K—x, the lengths |PQ|, |QR|, |RS|, |ST| and |OT| become unbounded while
|OM]|, MN| and |NP| are fixed. Consider the maps

The image of the two together in the w-plane is as follows.
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The quadratic differential is now 1/w* dw?. The inner boundary is 8§V, and
collapses to 0 as K — oc. There is therefore for each K a canonical way of filling in
Ty to a punctured torus T, and gx to a quadratic differential g, which is 1/w* dw?
in local coordinates at the puncture.

One proves by the method used in Theorem 3 in [10] that for every
convergent sequence in the Bers embedding of T, of points on L, there is a
B-group with a noninvariant component representing T,.

Now the differential g, on T, also has critical closed curves in the homotopy
classes vy, and y,. We may vary q, and T, by varying the lengths of the segments
a, b, ¢, d and e, giving a new punctured torus T, and a quadratic differential q, on
T, with a pole of order 4 and closed critical trajectories in the classes y; and v,.
We construct the interval exchange map with these new lengths giving a compact
surface and a quadratic differential q’ with the same measured foliation as q. (The
lengths of the rectangles are essentially arbitrary.) The line L' determined by ¢’
cannot be asymptotic to the line L determined by g. Suppose there are M
quasiconformal maps, M — 1 between the surfaces on L and L'. This would give
a conformal map between T, and T,. The proof of this fact is precisely the same
as the proof of Proposition 2 in [10]. Finally, suppose q' on this surface is any
other quadratic differential. Then the horizontal foliations F' of q' and F of q are
not measure equivalent. However, as in the proof of Theorem 1, the curves vy, v,
must still be critical for q’ if L' is to be asymptotic to L. This forces the first return
map to be a two interval exchange map and hence uniquely ergodic. Now let
B. — F be a sequence of simple closed curves converging to F in the sense of
measured foliations (see [5] or [13]). The curves B, are represented by geodesics
with respect to q'. Suppose the vertical lengths v, of 8, — 0 as n — . Then there
are subsequences which converge to trajectories of q'. Since these trajectories are
equally distributed, as q’ is uniquely ergodic, the B8, are equally distributed in the
limit as well, and one concludes B, — F', a contradiction.

Therefore v, is bounded below and the extremal length of 3, on the surfaces
on L' goes to infinity uniformly as K — oc. However, for each K we may take S,
close to F so that the extremal length of B, is close to the extremal length of
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gk dz? on the terminal surface. However this latter is 1/K by Proposition 3 of [6],
giving a contradiction.
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