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A-Structure en K-théorie algébrique

CH. KRATZER

Au congres de Nice (1970), D. Quillen [15] a annoncé I’existence d’une
structure naturelle de A-anneau sur le groupe K(X; A) des classes d’homotopie
pointée [ X, BGL(A)"] pour tout anneau commutatif A. La structure de H-espace
de BGL(A)" a été rapidement éclaircie, entre autres par D. Quillen [15] et J.
Wagoner [21]. Quelques années plus tard, J.-L. Loday [13] a explicité la structure
multiplicative, et ce travail consiste en une présentation de la structure de
A-anneau, ou plus précisément de K,(A)-A-algebre, car K(X; A} est un anneau
sans unité.

Au moyen d’un homomorphisme entre I’anneau de représentation R, (G) du
groupe G et K(BG; A), on réduit I'existence d’une structure de “Ky(A)-A-
algebre a homotopie pres” sur BGL(A)", a celle d’une structure naturelle de
A-anneau sur R, (G). Ce dernier point, di a R. Swan [20], est aussi présenté dans
le cadre de la géométrie algébrique, notamment [3] et [14].

On peut remarquer que la A-structure obtenue est parente de la construction
habituelle en K-théorie topologique. Plus précisément, elle passe au cas d’un
anneau topologique et coincide avec la structure classique de A-algebre sur les
classes d’homotopie [ X, BU].

Par la théorie générale des A-anneaux [1], on définit des opérations d’ Adams
" sur K(X; A), k# 0 qui sont des homomorphismes de A-anneaux. On montre-
ra que ces opérations sont aussi multiplicatives par rapport au produit gradué de
la K-théorie de A. Puis on déduira comme exemple d’application que les groupes
de K-théorie algébrique d’un anneau parfait de caractéristique p>0 sont p-
divisibles et sans p-torsion. Enfin, on déterminera a titre d’exemple les opérations
d’Adams * sur la K-théorie des corps finis a partir du calcul de D. Quillen [16]
de cette derniére.

Il faut remarquer que parallelement H. Hiller [8] a étudié la méme question et a
obtenu des résultats analogues. D’autre part, certains résultats de ce travail ont
été annoncés dans [11].

Je tiens & exprimer ma reconnaissance a tous ceux dont les conseils et la
collaboration m’ont permis d’achever ce travail: J. Boéchat, M. Karoubi, M.
Kervaire, C. Soulé et spécialement S. Maumary qui a bien voulu me guider tout
au long de ce travail.

233



234 CH. KRATZER

Sauf mention du contraire, tous les espaces, applications, homo-
topies, . . ., sont pointés.

1. Rappels de K-théorie

Soit A un anneau commutatif avec unité. On désigne par GL(A)=
li._rrlgGLn(A) le groupe général linéaire, et par E(A)=l_i_rE,;E,,(A) son sous-
groupe distingué, parfait, engendré par les matrices élémentaires; on notera
encore BG l'espace classifiant du groupe G, c’est-a-dire ’espace d’Eilenberg-
Mac Lane K(Gj;1). La construction “+” [15], [13], [7] appliquée a BGL(A)
relativement 8 E(A) définit une application continue f: BGL(A)— BGL(A)"
induisant un isomorphisme Hy(f): He(BGL(A); f*¥)-—= Hy (BGL(A)*; &) pour
tout systtme de coeflicients locaux £ sur BGL(A)", et un épimorphisme:

m(f): GL(A) = m(BGL(A)) » m(BGL(A)") = GL(A)/E(A).

Ces propriétés caractérisent BGL(A)" a homotopie prés. On définit les groupes
de K-théorie algébrique par

K,(A)=m,(BGL(A)") pour n=1.

La somme directe des matrices @ : GL(A)X GL(A)— GL(A) définie par:

o, Si i=2t—1, j=2e-1
(a@B)q = {Bw si = 2t, ] =2e
0 sinon

induit une structure de H-espace associatif et commutatif 3 homotopie prés sur
BGL(A)* [15], [21]. Le produit de Kronecker (ou tensoriel) des matrices:

& :GL,(A) X GL(A) = GL,(A); (o, B)—>a @B
définit des applications

®,, : BGL,(A)x BGL,(A)— BGL(A)"; (e, B)—»a Q@ B-a ® 1,-1,Q B

[13

(ou le signe “—" s’entend au sens de la structure de H-espace de BGL(A)").
Comme ces applications sont compatibles 2 homotopie preés avec les inclusions
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i,: BGL,(A)— BGL, ,,(A), elles induisent par passage a la limite une applica-
tion

® :BGL(A)*x BGL(A)" — BGL(A)*,

dont la restriction a tout compact, méme a tout “squelette” BGL,(A)" X
BGL, (A)" est bien définie a homotopie prés (noter que BGL,(A)" peut étre
compris soit comme I'image de BGL,(A) dans BGL(A)", soit comme le résultat
de la construction““+’ appliquée a BGL,(A) relativement au sous-groupe
distingué parfait E,(A) si n=3). Nous dirons que deux applications continues
f,g: X — X' sont faiblement homotopes si, pour tout compact K de X, les
restrictions f|x et g|x sont homotopes. On notera [ X, X'] ’ensemble des classes
d’homotopie faible d’applications f: X — X'. On vérifie ensuite que I’application
& :BGL(A)* x BGL(A)" — BGL(A)" est distributive (2 homotopie faible pres)
par rapport a la structure de H-espace de BGL(A)", et par conséquent induit une
structure d’anneau commutatif (sans unité) sur le groupe

K(X; A)=[X; BGL(A)'].

On a enfin une structure de K,(A)— algebre sur K(X; A): on définit une action a
homotopie pres:

Ky(A)x BGL,(A)— BGL(A)"; ((P], @)—id, ® a.
Cette action passe a la limite et définit une action a homotopie faible pres
Ky(A)x BGL(A)"— BGL(A)"

c’est-a-dire une structure de K,(A)-module sur I’'anneau [BGL(A)", BGL(A)"]
[13].

2. L’Anneau R, (G)

Soient A un anneau commutatif avec unité et G un groupe quelconque (non
nécessairement fini). On désigne par AG [’algeébre du groupe G, c’est-a-dire le
A-module libre de base G muni de la multiplication induite par celle de G. On
considére la sous-catégorie pleine P,(G) de la catégorie abélienne des AG-
modules formée des AG-modules qui sont projectifs de type fini en tant que
A-modules. On notera R, (G) le groupe de Grothendieck de P,(G), défini comme
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le quotient du groupe abélien libre L sur les classes d’isomorphisme {V}
d’objets de P, (G) par les relations {V}={V'}+{V"} associées aux suites exactes
O— V' - V- V'— O. On remarque que le produit tensoriel sur A:(V, V')—
V @4 V' muni de I’action diagonale du groupe G préserve les suites exactes de
A-modules projectifs et induit par conséquent une structure d’anneau commutatif
avec unité sur R, (G).

Si p: G— G’ est un homomorphisme de groupes, p s’étend en un homomor-
phisme d’algebres p: AG — AG', et tout AG'-module V devient un AG-module
par A - v=p(A) - v. On en déduit un homomorphisme d’anneaux

p*:RA(G")— RA(G)

dit de restriction. De méme, si f: A — A’ est un homomorphisme d’anneaux, tout
AG-module V fournit un A’G-module A’ ® , V. On obtient ainsi un homomor-
phisme d’anneaux

fx: RA(G) = R,,(G)

dit d’extension des scalaires. Ainsi, R, (G) devient un foncteur contravariant en
G et covariant en A.

On définit encore IR, (G), I'idéal d’augmentation de R, (G), comme le noyau
de I’homomorphisme de restriction RL(G)— R,(1)= Ky (A) (scindé par
I’homomorphisme de restriction £': R,(1) = Rs(G)). IR,(G) est muni d’une
structure de K,(A)-algebre via ¢'.

3. U’Homomorphisme r:IR, (G) — K(BG; A)
Soit V un objet de P,(G). On associe 2 V une application unique a
homotopie prés r(V): BG — BGL(A)" comme suit: I’action du groupe G sur V

définit un homomorphisme G — Aut (V), donc un homomorphisme unique a
conjugaison pres:

G— GL(A)

et par suite une application continue unique a homotopie (pointée) pres

r(V):BG— BGL(A)"
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(Le fait que deux homomorphismes conjugués induisent des applications libre-
ment homotopes est classique. Quitte a remplacer la matrice a réalisant la
conjugaison par a @ a~', on peut supposer la matrice élémentaire. Le chemin
décrit par le point base au cours de I’homotopie devient homotope a O dans
BGL(A)" et on peut remplacer I’homotopie libre par une homotopie pointée).
Définissons r: R,(G) — K(BG; A) sur les générateurs par [V]— r(V). Cette
application r est bien définie en vertu du

THEOREME 3.1 [18]. Les homomorphismes canoniques

AO\ P (AA)
<
GL(OA) < 6Loa

induisent une équivalence d’homotopie

AO\* (AA)+
BGL(OA) = BGL\

Preuve. D. Quillen [18] a montré que les applications canoniques s et p
induisent un isomorphisme

AO Px AA
H*(GL<OA>’Z) = H*(GL(OA)’Z)

donc un isomorphisme

AO\T\ Px AA\"
Ha(Bo1(g,) ) S HilBor(5) )

Sx

pour tous coefficients constants puisque la construction ““+’ respecte I’homologie.
D’autre part, tant

AO

AA\"
o )
G OA

) que BGL(OA

sont des H-espaces pour la somme directe des matrices. Il résulte alors du
théoréme de Whitehead pour les H-espaces [5] que s et p induisent une
€quivalence d’homotopie.
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COROLLAIRE 3.2. L’application r: R,(G)— K(BG; A) est bien définie et in-
duit par passage au quotient un homomorphisme de K,(A)-algébres

r:IR,(G)— K(BG; A)
naturel vis a vis des homomorphismes de restriction et d’extension des scalaires.

Preuve. 11 s’agit de vérifier que si O— V'— V— V"— O est exacte dans
P, (G), alors r(V') @ r(V")=r(V) dans K(BG; A). La suite exacte de A-modules
O— V'—- V— V'"— O étant scindée,

AA
V):G GL( )
r(V):G=GL{;

La premiére assertion résulte de la commutativité des deux triangles du dia-
gramme suivant:

AO\"

BGL(OA)

(r(VWv K’
BG PT l BGL(A)*
r(V) can

AA\"

BGL( >
OA

En effet, on a
[D o (r(V), (V)N]=[® ° (p e r(V))]=[(can ¢ 5) o (p ° r(V))]=[can o r(V)]

Il est clair que r se factorise a travers IR, (G) et c’est alors un homomorphisme
de K (A)-algebres car:

r((V=¢(V)) @ (W—e(W))=r(VQ W)=r(e(V) @ W)-r(V Q &(W))=
=r(V)®r(W) et r(PQV)=[P]Qr(V).

4. Le A-Anneau R, (G)

DEFINITION 4.1 [1],[2]. Un pré-A-anneau (A-ring) R est un anneau com-
mutatif avec unité, muni d’une suite d’opérations {A"},., vérifiant les propriétés
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suivantes:

() A°(x)=1let A'(x)=x
(i) A“(x+y)=%io A (x)  A*7(y).

En introduisant les séries formelles
= i i d
Ax)= ) N(x)f, et Y-i(x) = — t— (log A,(x)),
i=0

on définit une suite d’opérations ¢“:R— R, k>0 (opérations d’Adams) par
P (x) =Y (= 1)'¢'(x)t'. On vérifie immédiatement que les opérations ¢* sont
des endomorphismes de groupe et que ¢'(x)=x. D’autre part, on tire de la
définition la formule [1]

d‘k __lpk—-l . Al+ ... +(_1)k—-ld]l . Ak—1+(-1)kkAk =0 (*)

qui peut servir de définition par récurrence des opérations d’Adams. Si x est de
rang 1, c’est-a-dire A,(x)=1+xt, on vérifie par induction sur k a l'aide de la
formule (*) que ¢*(x)=x".

Un pré-A-anneau R est un A-anneau (special A-ring) si les A-opérations
vérifient les propriétés supplémentaires [1], trivialement vérifiées sur les éléments
de rang 1:

N AQ)=1+1¢
(i) A"(xy)=P,(A'(x),...,A"(x); A (y), ..., A"(y))
(iii) A"(A"(x))=P, ,(A(x),...,A"™(x))

ou P, et P,, sont des polyndmes a coefficients entiers (donc définis par leur
valeur sur les sommes d’éléments de rang 1).

Une forme faible (équivalente, si R est sans torsion en tant que groupe
abélien) de ces conditions s’exprime aisément en termes d’opérations d’Adams

[1}, [2]:

(1) ¥*:R — R est un endomorphisme d’anneau (et méme de A-anneau)

(2) d’k & l’lez llle° d’k — lljke-

Désignons par A*: R, (G)— R,(G) la k-iéme puissance extérieure sur A munie
de l'action diagonale canonique du groupe G. On vérifie facilement que les
opérations A* munissent I’anneau R, (G) d’une structure de pré-A-anneau
naturelle vis a vis des homomorphismes de restriction et d’extension des scalaires.
Le point crucial pour la suite est le résultat de R. Swan [20], [3], [14]:

THEOREME 4.2. Le pré-A-anneau R, (G) est un A-anneau.
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La preuve est un “‘splitting principle’” pour se réduire au case des modules de
rang 1.

Soit V un objet de P,(G). Le dual V*=Hom, (V, A) muni de I'action de G
définie par (g - f)=f(g"' - v) induit une involution de A-anneau sur R,(G). On en
déduit des opérations d’ Adams d’indice négatif:

Y () =gt (x) = (x)*,  k>0.

Ces opérations vérifient aussi les conditions (1) et (2) ci-dessus, ainsi que la
condition ¢ *[P]=[P] ™%, k>0 sur les éléments de rang 1 (pour autant que la
notation [P]™" ait un sens. c’est-a-dire [P] inversible), ce qui justifie leur appella-
tion.

5. La K,(A)-\-Algebre K(X; A)

Si K est un A-anneau, nous dirons qu'une K-algebre commutative R (pas
nécessairement avec unité) est une K-A-algebre si R est muni d’une suite
d’opérations {A*}, -, telles que K x R, muni des lois de compositions suivantes est
un A-anneau que nous noterons K+ R:

(a,x)+(a’,x)=(a+a',x+x').

(a,x)-(a’,x)=(aa',a-x"+a" - x+x-x').

A¥(a, )= (*(@), T A @)+ N )

Par exemple, IR, (G) est une K,(A)-A-algebre car R, (G) = K,(A)+IRA(G). Si
G =GL,(A), le A-anneau R,(G) posséde un élément privilégié [Aly] qui est la
classe de la représentation id: G— GL,(A). La différence [A%]—n-1 est un
élément de IR,(G) qui sera noté [Al]. L’intérét de travailler avec I'idéal
d’augmentation est que les classes [Al4] sont compatibles avec les inclusions
i, :GL,(A)— GL,,,(A), c’est-a-dire que i*(A4L'])=[AL]. Comme i¥ est un
homomorphisme de A-anneaux, on a aussi: if(A*([AL']) =A*[AL]), et par
conséquent i¥(Y*[ANT])) =¢*([AL]). Comme r:IR,(G)—>K(BG;A) est
naturel vis a vis des homomorphismes de restriction,

r(A , ([Ai'é“f)) IBGL.(A) =r(A « ([Aﬁi]ﬂ))
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En d’autres termes, si pour tout couple d’entiers, k, n= 1, on choisit une applica-
tion continue Al dans la classe d’homotopie r(A*([AZ])), alors les diagrammes
suivants

k

An*l
BGL, . ,(A) —— BGL(A)"

[ ),

BGL,(A)

sont homotopiquement commutatifs. Puisque i, : BGL,(A)— BGL, .,(A) est une
cofibration fermée, il est possible de rendre tous les diagrammes (*),, strictement
commutatifs sans changer la classe d’homotopie de AX. En passant a la limite sur
n, on détermine une application continue A%: BGL(A)— BGL(A)*, et méme

A¥ :BGL(A)" — BGL(A)"

car m,(A%) envoie forcément E(A)=[GL(A), GL(A)] sur 0 dans K,(A) puisque
ce dernier est abélien. Comme pour la structure multiplicative, la classe

d’homotopie de la restriction de A* & BGL,(A)" est bien définie, c’est-a-dire que
A% est bien définie 2 homotopie faible preés.

THEOREME 5.1. Pour tout anneau commutatif avec unité A et tout espace
topologique X, les opérations \* sur BGL(A)" définies ci-dessus, induisent une
structure de Ky(A)-A-algebre sur K(X; A) naturelle en A et en X.

Preuve. On définit A* sur K(X; A)=[X, BGL(A)"] par A*[g]=[A* - g]. La
structure d’algebre de K(X;A) étant aussi définie par composition, il suffit, de
montrer que K(BGL(A)"; A)=[BGL(A)", BGL(A)"] est une K,(A)-A-algebre.
Via ’homomorphisme r, on se réduit a faire les vérifications sur les anneaux
R, (GL,(A)) (resp. R,(GL,(A)x GL,,(A))) car

lim R,(GL,(A))= lim [BGL,(A), BGL(A)"]=[BGL(A)", BGL(A)"].

Par exemple, pour vérifier la formule A*(x+y)=Yi,A'(x) A " (y) sur
Ko(A)+K(X; A), il suffit de montrer que A*e@® =Y A" @A*" dans
[BGL(A)* x BGL(A)", BGL(A)*], ce qui suit directement du fait que cette
formule est vraie dans R, (GL,(A) % GL,,(A)).

Soit X un espace topologique. Une comultiplication sur X est une application
continue c¢:X — Xv X. Celle-ci admet une co-unité a homotopie prés si le
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diagramme ci-dessous est commutatif 2 homotopie pres, ou 4 : X — X X X est la
diagonale et i : X v X — X X X P'inclusion canonique du bouquet dans le produit.

On dit alors que X est un H'-espace ou co-H-espace. Par exemple, on vérifie
facilement que toute suspension est un H’'-espace.

LEMME 5.2 Si X est un H'-espace, alors la structure multiplicative de
K(X; A) est triviale, c’est-a-dire tous les produits sont nuls.

Preuve. Soient a, B:X — BGL(A)" représentant des éléments a et b de
K(X; A). On considére le diagramme suivant

XxX—2"F ,BGL(A)*xBGL(A)*

A

/ \
X J" (2) l (3) BGL(A)*

XvX—>25BGL(A)* ABGL(A)"

Le triangle (1) est commutatif 3 homotopie prés (X est un H'-espace) et les
diagrammes (2) et (3) sont strictement commutatifs par définition. Le composé
supérieur représente a-b et est donc homotope au composé inférieur qui
représente 0.

PROPOSITION 5.3. Si la structure multiplicative de K(X; A) est triviale, alors
() ¢*=(—D*'kA*: K(X; A)— K(X; A).
(i) A*:K(X; A)— K(X; A) est un endomorphisme de groupe.

Preuve. Suit directement des formules:
d/k —‘(llk—l' /\1+ ... +(_ 1)k——1¢1 . /\k—l +(_1)kkAk =0
et

AGety) = AKG)+AK () + 3, A (x) - ARTH),

i=
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PROPOSITION 5.4. Si A est un anneau de caractéristique p >0, alors
Y¥ =Froby: IR, (G) — IR, (G)

ou Froby désigne I’extension des scalaires par I’homomorphisme de Frobenius
x—>xF,

Idée de la Preuve [12]. Par naturalité vis a vis des homomorphismes de
restriction de ¢* et Froby, il suffit de montrer I’assertion pour G = GL,(A). Si A
est un corps fini, GL,(A) est un groupe fini et 1’égalité résulte de [10]. Le cas
général s’obtient en remarquant que A*, k<p (donc %) et Froby sont des
représentations polynomiales de degré <p (leur forme matricielle est définie par
des fonctions polynomiales de degré < p) et que I’égalité " = Froby sur le groupe
de Grothendieck des représentations polynomiales sur tout corps fini entraine la
proposition.

On dit qu’un anneau A de caractéristique p>0 est parfait si Frob: A —
A; x— xP est un automorphisme.

COROLLAIRE 5.5. Si A est parfait de caractéristique p>0, et si la structure
multiplicative sur K(X; A) est triviale, alors x+—>p - x=x+ -+ - + X est un automor-
phisme de K(X; A). En d’autres termes, K(X; A) est p-divisible et sans p-torsion.

Preuve. (—1)?"'p - A¥ = ¥ = Froby est un automorphisme de K(X; A), donc
X+>p - X aussi.

Exemples (1) La K-théorie de A.

Comme toute sphére S",n=1 est un H'-espace, les groupes de K-théorie
algébrique K,(A) sont munis d’une structure de K,(A)-A-algebre dont tous les
produits sont nuls. En particulier, si A est parfait de caractéristique p>0,
I'application x> p - x est un automorphisme de K, (A).

(2) La-théorie a coefficients [6]

On introduit les espaces de Moore M"(Z/m) (représenté par le cone d’une
application de degré m:S" ' — S"') caractérisés (au type d’homotopie pres) par
le fait que leur homologie entiére réduite est concentrée en dimension n—1 et
H, ,(M™(Z/m))=17Z/m, et qu’ils sont simplement connexes si n=3. On définit
ensuite 1’homotopie a coefficients d’'un espace topologique X par:

™, (X; Z/m)=[M"(Z/m), X] n=2
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En appliquant cette définition a BGL(A)", on obtient les groupes de K-théorie a
coefficients Z/m définis par:

K,.(A;Z/m)=m,(BGL(A)";Z/m) n=2.

Remarquez que ce sont bien des groupes abéliens puisque BGL(A)" est un
espace de lacets infini [21]; ces groupes sont munis d’une structure de K,(A)-A-
algebre si n=2, dont la structure multiplicative est triviale si n = 3. En particulier,
si A est parfait de caractéristique p >0, I’application x+>p - x est un automor-
phisme de K,(A;Z/m) si n=3.

Structure multiplicative graduée

La structure multiplicative ® :BGL(A)" ABGL(A)"— BGL(A)" induit des pro-
duits bilinéaires [13]:

K (A)x K (A) K, (A)

via ’homéomorphisme S"*™ = 8" A S™. De méme, on a des produits bilinéaires

[6]:

K,(A;Z/m)x K, (A;Z/m) > K, (A; Z/m)

au moyen d’une application M?*4(Z/m) — MF(Z/m) A M(Z/m) si m#2 (mod 4).

COROLLAIRE 5.6. Les opérations d’Adams * sont compatibles avec les
produits gradués

K,(A)X K, (A)S K, . (A)
(resp. K,(A; Z/m) X K, (A; Z/m) = K, .(A; Z/m))

Preuve. La question se résume a vérifier la commutativité a homotopie faible
pres du diagramme

BGL(A)" A BGL(A) —2>BGL(A)*

e Ag* -

BGL(A)* A BGL(A)"—2>BGL(A)*



A -Structure en K-théorie algébrique 245

Via ’homomorphisme r, cela suit du fait que R,(GL,(A)xXGL,,(A)) est un
A-anneau.

6. y-Opérations

Si R est une K-A-algebre, on introduit des opérations {y*}, ., définies par [1],

[2]

V=14 L YO = A (1) =1+ 3 X1

On déduit de cette formule d’une part

Y (x)=A"(x+n-1)

et d’autre part

1

Ye(x+y) =y (x)+ v (y)+ Z— Y () v T (y)

Si K est un A-anneau augmenté (c’est-a-dire muni d’'un homomorphisme de
A-anneau ¢ : K — Z), les y-opérations permettent de définir une filtration de R:

F"R est le groupe abélien engendré par les mondmes

Yia; o cykay c yhx,c - “Yrx, ou g €K, e(a;) =0, x, €R
et

P R o T o I S o |

=
p= M.

La filtration {F"R}, ., jouit des propriétés suivantes [1], [2]:
(i) F'fR- F"R< F"*"™R.
(i) F’PR=F'R=R.
(i) F"R est un A-idéal de R.
Comme F"R est un A-idéal, les opérations A*, yv* et ¢* induisent des opérations
sur le gradué associé a la y-filtration:

G"R=F"R/F"*'R
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et on a les propriétés suivantes sur G"R [1], [2]

(i) ¢*(x)=k"x

(ii) ¢*(x)=(=1D*"ka*(x)
(i) A*(x)=(-1D* k" x
(iv) Y (x)=(-D)""'(n—-1)x

Les propriétés (i), (ii) et (iii) sont démontrées dans [1]. On peut obtenir (iv) comme
corollaire de (iii) a I’aide de la formule combinatoire suivante [4]:

LEMME 6.1. Soit pour tout couple d’entiers k, n=0 [’expression:
k Ny k
Fon= X (-07( %)
i=0 ]
Alors, F,,,=0sik>netF,,=(-1)"n!

Preuve. On va procéder par induction sur n et k.
£ (k
Fuo= Y (- 1/(%)=a-1r=0.
i=0 ]
Ko (k1 R ok +1
Fiiini1= Z (-1)l]"+1< . )= Z (=" 1( . )
i=0 ) i=1 ]
can n+1=1. Maintenant

K . k+1) & . k+1/ k
(T = 3 oK)=
1';1 ‘ / 12_-:1 ] i N-1

==+ (2) 3 o)==+ S (7)r

Si k+1>n+1, alors le lemme pour F,,

O<e=nlivre Fy q,+1=0.
Sik+1=n+ 1, alors Fk+1,n+1 = "‘(n + 1)Fn,n = (-1)"+1(n + 1)!
De
S n—1
Y0 =A"Gtn=1)= % A" ),
=0

i= h—j
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et de la propriété (iii), on tire

7"(x)=z (—1)"“‘j"*‘(n_1,>x sur G"R.
i=0 n—j

La propriété (iv) suit de I’égalité:
n . = 1 - (n
_1 ’ﬁl.n_l(n )z_— _.1 "n( )
ijo( ) I n—j nj§0( )] ]

et du Lemme 6.1.
Nous dirons que x est de y-filtration finie s’il existe un entier N, tel que

i+ i >Ny y R =0.

On vérifie que si R est engendré par un nombre fini d’éléments de vy-filtration
finie en tant que Z-A-algebre, alors la +y-filtration de K est finie, c’est-a-dire
F"R =0 si n est assez grand.

Nous supposerons désormais que Ky(A) est un A-anneau augmenté par le
rang des modules projectifs (par exemple si A est integre). On a encore la
formule supplémentaire sur G"R,(G) qui se démontre par “splitting principle”

x*=(-1)"x
donc aussi

g*(x)=k"x k <O.

LEMME 6.2. Si X est compact (plus généralement si toute application X —
BGL(A)* se factorise a travers un “‘squelette” BGL, (A)"), alors tout x € K(X; A)
est de vy-filtration finie.

Preuve. Soit x € K(X; A). Par hypothése x est représenté par X — BGL,(A)"
et les opérations y™:BGL,(A)" — BGL(A)" sont induites par y"([AL]")=
Y"[AL]-n). Sim>n, y"([AL]—n)=0[1], donc vy,(x) est un polyndme inversi-
ble dans I’anneau des polyndmes (Ky(A)+ K(X; A)[t] (v, (x)-v.(—x)=1), donc
tous ses coefficients de degré >0 sont nilpotents et x est de y-filtration finie.

Remarques. (1) Si A est un anneau d’entiers de corps de nombres, les
groupes K, (A) sont de type fini [17], et par conséquent la y-filtration de K, (A)
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est finie. Mais en général, les groupes de K-théorie algébrique ne sont pas de type
fini.

(2) Par induction nilpotente a I'aide du Lemme 6.1 et du Corollaire 5.5, on
peut généraliser I'affirmation du Corollaire 5.5 a tout espace X satisfaisant la
condition du Lemme 6.2. En particulier, on retrouve un résultat de H. Hiller [8]
pour les X compacts.

(3) Comme tout a € K,(A) est de la forme [P]—¢[P], la preuve du Lemme
6.2 montre que a est de y-filtration finie.

Dans le cas des groupes de K-théorie algébrique (avec ou sans coeflicients),
nous allons introduire une nouvelle +y-filtration tenant compte de la structure
multiplicative graduée. La définition qui suit est issue d’une discussion avec C.
Soulé.

DEFINITION 6.3. F"K,(A) est le groupe abélien engendré par les éléments de
la forme:

a-y'x;U---Uyhxg ot xeK(A) avec s;+---+s.=p,
ae F°Ky(A) et igt+---+i=n.
En particulier:

F"K,(A)> F'K,(A).

(On écrit formellement la méme définition pour la K-théorie a coefficients). On
démontre les mémes propriétés pour le gradué associé a la filtration F' que pour
celui associé a la filtration F: De (1) ¢*(xUy)=¢*(x)Uyg*(y) on tire

(=D kA (xUy)=(—D* kA (x) U (= D* kA (y)

car ¢*(x)=(—1)*"'kA*(x), d’ou en raisonnant sur des A-anneaux libres [2] dont
le gradué est sans torsion, on a (2)

A(xUy)= (=D kA (x) UL (y).

A partir de ces formules (1) et (2), des propriétés de la filtration F et de la
définition de F’, on tire si x € F'":

() ¢*(x)=k"x (mod F™**")
() A*(x)=(—1D* k" 'x (mod F"*")
(iii) y"(x)=(—-1)"""(n—1)!x (mod F*h
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PROPOSITION 6.4. Les filtrations F et F' coincident a torsion pres.

Preuve. Soit x=vy"y,U---Uyy e F"K,(A), ou yeK (A) avec
s;+ +s,=peti,+---+i=n. Onpose x,= x et on définit par récurrence sur i:

X =Y ) - (=) (n+i- DI e FPK(A).

Comme les y, sont de vy-filtration finie (Lemme 6.2), et que les x; sont des
polyndmes en les y°(y;) de degré=n+1i, il s’ensuit que t0t ou tard x; =0 et est

donc un élément de F". On acheve en remarquant que x;,, € F" est équivalent a
(- n+i—-1)x, € F".

Etudions maintenant le premier quotient de la y-filtration de K(X; A). La
composition

GL,(A)-=5 GL(A)—> GL(A)
détermine a homotopie faible pres une application

det: BGL(A)"— BGL(A)"

qui se factorise a travers BGL(A)" ~ BGL,(A)
(GL,(A) est un groupe abélien).

LEMME 6.5. Soient X compact (ou vérifiant la condition du Lemme 6.2) et
xe K(X; A). Alors

x=det (x)(mod F?K(X; A)).
Preuve. Via ’homomorphisme r, le résultat suit de la formule [14]
[ALT —(A"[Aj]-[1]) € F’RA(GL,(A)).

Cette derniere résulte de la comparaison: y"([AL] +[1]) = A"[A%] et
YV AL+ = 2 ¥ (ALY (1]
i=0

=

Y (AL - A" [n—i]

i=0

= 1+[ALT+ Y v (AR,
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PROPOSITION 6.6 Soit X compact (ou vérifiant la condition du lemme 6.2).
Alors

F?K(X; A)=SK(X; A)=ker (det: K(X; A) — K(X; A)).
Preuve. 11 suffit de montrer F°K(X; A)< SK(X; A) (Lemme 6.5).
On introduit det: R,(GL,(A)) — Pic, (GL,(A)) (sous-groupe multiplicatif de

R4 (GL,(A)) engendré par les éléments de rang 1) définie sur les générateurs de
rang k par det[V]=[A*V]. Si O— V'— V— V"— O est exacte, la formule

A"IVI= ¥ ATV ATV

i=0

livrte que det est bien défini. Il est clair que det: BGL(A)"— BGL(A)" est
induite par r[det [A4])) = r(det [A}]). Maintenant

y*(x)e SK(X; A), n>1

suit, via ’homomorphisme r, du calcul classique [14] qui s’obtient par “splitting
principle.”

det (y"([AL4])=[1] dans Pic, (GL,(A)) si n>1.

Si a[P]-¢[Ple Ky(A), a - K(X; A)<= SK(X; A) suit de la formule classique [14]
qui s’obtient par “splitting principle”

det (P]-[Q]) = (det [P])*'? - (det[Q])*™! dans Pic, (GL,(A)) (*)
car alors det ([P]—e[P)) - [AL]) =[1]. De méme, (*) livre que
det (Al - [AZ]) =[1] dansPic, (GL,(A)xGL,,(A)),
et via ’homomorphisme r, x - ye SK(X; A) si x, y e K(X; A).
COROLLAIRE 6.7. Si X est compact, alors det induit un isomorphisme
K(X; A)/F?K(X; A)=Hom, (m(X), GL,(A)).

Preuve. L'image de det:K(X;A)—>K(X;A) est représentée par
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[X, BGL,(A)] et comme BGL,(A)= K(GL,(A), 1),
[X, BGL,(A)]=Hom; (m(X), GL,(A))
par la théorie des obstructions.

COROLLAIRE 6.8. (i) F?K,(A) = F?K,(A) = SK,(A)
(ii) det induit un isomorphisme K,(A)/F?K,(A)-=> GL,(A)
(iii) F''K,(A)=F"K,(A)=F?K,(A)=K,(A)sin>1.

Nous terminerons par une proposition reliant la divisibilité des opérations
d’Adams a la longueur de la vy-filtration.

PROPOSITION 6.9. Soit X compact (ou vérifiant la condition du Lemme 6.2).
Si F,(X; A)#0, alors il existe xe K(X; A), x#0 et m=n tels que

Y*x =k™x pour tout k#0.

Preuve. Soit O?‘: y= »yilal. s os ‘Ytsas . ’Yiﬂxxs+1. . s ow . Yi'xr avec

Comme chaque g, et chaque x; sont de y-filtration finie (Lemme 6.2), on choisit

x:,yj],lal. o .. .nyil.kl al. “ .. .»Yir,lx’. “ o e .fij.k,, xr
avec
m=jiat-ttooo it

maximal sous la condition x# 0. La proposition suit du fait que ¢x —k™x est un
polyndme de degré > m en les y-opérations [1], donc nul.

Remarque. On a évidemment un analogue sur les groupes de K-théorie
algébrique en termes de la filtration F'.
7. Un exemple: La K-théorie des corps finis

Soient F un corps fini et G un groupe fini. Choisissons un homomorphisme
p:F*—C* ou F est une cloture algébrique de F. Le relévement de Brauer
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p: Re(G)— Rc(G) associé a p [19] est un homomorphisme de A-anneaux
(Rc(G) est sans torsion en tant que groupe abélien, il suffit donc de vérifier
Y o w=p o ¥ ce quisuit d’un rapide calcul de caractéres). Si G = GL,(F), on
en déduit une application continue

w : BGL(F)"— BGL(C)"

unique a homotopie faible pres. D’autre part 'espace BU s’identifie au classifiant
BGL(C)*® ou GL(C)*? est le groupe topologique lim, GL, (C)*°P, et comme
7 (BU)=0, id:GL(C)—GL(C)*® induit BGL(C)'—BU. En résumé, le
relevement de Brauer induit

w:BGL(F)*— BU

La construction effectuée au paragraphe 5 passe au cas d’'un anneau topologique
et permet de retrouver la structure de Z-A-algebre de la K-théorie topologique
sur les classes d’homotopie [ X, BU] (toutes les opérations A*, ¢*, y* s’écrivent a
I’aide de polynomes en les coefficients des matrices et sont donc continues par
rapport a la topologie de ’anneau). On en déduit que

w:K(X; F)—[X, BU]

est un homomorphisme de Z-A-algebres.

PROPOSITION 7.1. Soit F, le corps fini a q éléments. Alors le relevement de
Brauer induit un isomorphisme de Z-\-algébres

p Ky (Fy; Z/q'—1)= 7, (BU;Z/q' - 1)

Preuve. Le calcul des groupes d’homotopie m,,(BU)=Z et m, , (BU)=0
livre grace a la suite exacte reliant ’homotopie a I’homotopie a coefficients

m,(BU;Z/q' —1)=Z/q' - 1

5;41(BU; Z/qi -1)=0

Soit FyY* la fibre homotopique de ¢%—id: BU — BU. La suite exacte pour
I’homotopie a coefficients de la fibration Fy9 — BU "% BU livre:

0 (FYI Z/qi —1)> m,(BU; Z/qi -1)
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car m,;1(BU;Z/q' —1)=0 et ¢ —id agit par (q' — 1) sur m,,(BU) [9]. Enfin, on
considere le diagramme commutatif:

K2i(Fq;Z/qi—1) ]~ > o (FYU Z/q — 1)

™~ A~

m,,(BU; Z/q' — 1)
ou j est I'isomorphisme induit par ’équivalence d’homotopie [16]
BGL(F;)~ Fy*

COROLLAIRE 7.2. ¢* = k' - id sur K,,_,(F,).

Preuve. La suite exacte reliant ’homotopie a I’homotopie a coefficients livre:
K2i(Fq 5 Z/qi -1)= Ky »l(Fq)

car K, (F,)=0 et K, (F,)=Z/q'—-1 [16], donc (q'—1)-id:K, _,(F,)—
K,;_,(F,) est 'application nulle. Le corollaire suit alors de la proposition 7.1 et
du calcul ¢* =k’ -id sur m,,(BU) [9].
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