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X-Structure en K-théorie algébrique

Ch Kratzer

Au congrès de Nice (1970), D Quillen [15] a annoncé l'existence d'une
structure naturelle de A-anneau sur le groupe K(X, A) des classes d'homotopie
pointée [X, BGL(A)+] pour tout anneau commutatif A La structure de H-espace
de BGL(A)+ a été rapidement éclaircie, entre autres par D Quillen [15] et J

Wagoner [21] Quelques années plus tard, J -L Loday [13] a explicité la structure
multiplicative, et ce travail consiste en une présentation de la structure de

À-anneau, ou plus précisément de Ko(A)-A-algèbre, car K(X, A} est un anneau
sans unité

Au moyen d'un homomorphisme entre l'anneau de représentation RA(G) du

groupe G et K(BG,A), on réduit l'existence d'une structure de "K0(A)-A-
algèbre à homotopie près" sur BGL(A)+, à celle d'une structure naturelle de

A-anneau sur RA(G) Ce dernier point, dû à R Swan [20], est aussi présenté dans
le cadre de la géométrie algébrique, notamment [3] et [14]

On peut remarquer que la A-structure obtenue est parente de la construction
habituelle en K-théone topologique Plus précisément, elle passe au cas d'un
anneau topologique et coïncide avec la structure classique de A-algèbre sur les

classes d'homotopie [X, BU]
Par la théorie générale des A-anneaux [1], on définit des opérations d'Adams

4*k sur K(X, A), fc # 0 qui sont des homomorphismes de A-anneaux On montrera

que ces opérations sont aussi multiplicatives par rapport au produit gradué de

la K-théone de A Puis on déduira comme exemple d'application que les groupes
de K-théone algébrique d'un anneau parfait de caractéristique p>0 sont p-
divisibles et sans p-torsion Enfin, on déterminera à titre d'exemple les opérations
d'Adams if/k sur la K-théone des corps finis à partir du calcul de D Quillen [16]
de cette dernière
II faut remarquer que parallèlement H Hiller [8] a étudié la même question et a

obtenu des résultats analogues D'autre part, certains résultats de ce travail ont
été annoncés dans [11]

Je tiens à exprimer ma reconnaissance à tous ceux dont les conseils et la
collaboration m'ont permis d'achever ce travail J Boéchat, M Karoubi, M
Kervaire, C Soulé et spécialement S Maumary qui a bien voulu me guider tout
au long de ce travail
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234 CH KRATZER

Sauf mention du contraire, tous les espaces, applications, homo-

topies,..., sont pointés.

1. Rappels de K-théorie

Soit A un anneau commutatif avec unité. On désigne par GL(A)
limn GLn(A) le groupe général linéaire, et par JE(A) limn En(A) son sous-

groupe distingué, parfait, engendré par les matrices élémentaires; on notera
encore BG l'espace classifiant du groupe G, c'est-à-dire l'espace d'Eilenberg-
Mac Lane K(G; 1). La construction " + " [15], [13], [7] appliquée à BGL(A)
relativement à E(A) définit une application continue /: BGL(A) —> BGL(A)+
induisant un isomorphisme H*(f) : H*(BGL(A); /*<£) -^ H* (BGL(A)+; g) pour
tout système de coefficients locaux 5E sur BGL(A)+, et un épimorphisme:

TiiC/) : GL(A) tt^BGUA)) -*? it^BGHAT) GL(A)/E(A).

Ces propriétés caractérisent BGL(A)+ à homotopie près. On définit les groupes
de K-théorie algébrique par

7rn(BGL(Ar)pour n^l.

La somme directe des matrices © : GL(A)x GL(A)-+ GL(A) définie par:

r«te si i 2f-l, / 2e-l
\pte si i 2f, j 2e
L 0 sinon

induit une structure de H-espace associatif et commutatif à homotopie près sur

BGL(A)+ [15], [21]. Le produit de Kronecker (ou tensoriel) des matrices:

<g> : GLp(A) x GLq(A) -> GL^A); (a, p)~> a (g) p

définit des applications

<Ppq:BGLp(A)xBGLq(A)~*BGL(A)+;(a,p)^a ®p-a (g) lq-lp (g) 0

(où le signe "-" s'entend au sens de la structure de H-espace de BGL(A)+).
Comme ces applications sont compatibles à homotopie près avec les inclusions
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in:BGLn(A)-+BGLn+1(A), elles induisent par passage à la limite une application

(g) : BGL(A)+ x BGL{A)+ -h> BGL(A)+,

dont la restriction à tout compact, même à tout "squelette" BGLn(A)+x
BGLm(A)+ est bien définie à homotopie près (noter que BGLn(A)+ peut être

compris soit comme l'image de BGLn(A) dans BGL(A)+, soit comme le résultat
de la construction"-!-" appliquée à BGLn(A) relativement au sous-groupe
distingué parfait En(A) si n^3). Nous dirons que deux applications continues

/, g : X —» X' sont faiblement homotopes si, pour tout compact K de X, les

restrictions /|K et g\K sont homotopes. On notera [X, X'] l'ensemble des classes

d'homotopie faible d'applications /:X—>X'. On vérifie ensuite que l'application
(g) : BGL(A)+ x BGL(A)+ -» BGL(A)+ est distributive (à homotopie faible près)

par rapport à la structure de H-espace de BGL{AY, et par conséquent induit une
structure d'anneau commutatif (sans unité) sur le groupe

K(X;A) [X;BGL(A)+l'

On a enfin une structure de Ko(A)~ algèbre sur K(X; A): on définit une action à

homotopie près!

h; ([P], a)>-Mdp <8> ot.

Cette action passe à la limite et définit une action à homotopie faible près

K0(A) x BGL(A)+ -» BGL(AY

c'est-à-dire une structure de K0(A)-module sur l'anneau [BGL(A)+, BGL(A)+]
[13].

2. L'Anneau RA(G)

Soient A un anneau commutatif avec unité et G un groupe quelconque (non
nécessairement fini). On désigne par AG Valgèbre du groupe G, c'est-à-dire le

A-module libre de base G muni de la multiplication induite par celle de G. On
considère la sous-catégorie pleine fA(G) de la catégorie abélienne des AG-
modules formée des AG-modules qui sont projectifs de type fini en tant que
A-modules. On notera RA(G) le groupe de Grothendieck de PA(G), défini comme
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le quotient du groupe abélien libre L sur les classes d'isomorphisme {V}
d'objets de PA(G) par les relations {V} {V} + {V} associées aux suites exactes
O—» V—» V—» V"-» O. On remarque que le produit tensoriel sur A :(V, V')»->
V (g)A V muni de l'action diagonale du groupe G préserve les suites exactes de

A-modules projectifs et induit par conséquent une structure d'anneau commutatif
avec unité sur RA(G).

Si p:G-+ G' est un homomorphisme de groupes, p s'étend en un homomor-
phisme d'algèbres p:AG —» AG\ et tout AG'-module V devient un AG-module
par À • v p(À) • v. On en déduit un homomorphisme d'anneaux

p*:RA(G')-»RA(G)

dit de restriction. De même, si /: A —> A' est un homomorphisme d'anneaux, tout
AG-module V fournit un A'G-module A' (g) A V. On obtient ainsi un homomorphisme

d'anneaux

U:RA(G)-+RA,(G)

dit d'extension des scalaires. Ainsi, RA(G) devient un foncteur contravariant en
G et covariant en A.

On définit encore IRA(G), l'idéal d'augmentation de RA(G), comme le noyau
de l'homomorphisme de restriction RA(G)-^> RA(1) KO(A) (scindé par
l'homomorphisme de restriction s':RA(l)-+ RA(G)). IRA(G) est muni d'une
structure de K0(A)-algèbre via e.

3. L'Homomorphisme r :IRA(G) -* K(BG; A)

Soit V un objet de PA(G). On associe à V une application unique à

homotopie près r(V) : BG —» BGL(A)+ comme suit: l'action du groupe G sur V
définit un homomorphisme G—>Aut(V), donc un homomorphisme unique à

conjugaison près:

G-^GL(A)

et par suite une application continue unique à homotopie (pointée) près

r(V):BG-^BGL(A)+
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(Le fait que deux homomorphismes conjugués induisent des applications librement

homotopes est classique. Quitte à remplacer la matrice a réalisant la
conjugaison par a (B oT1, on peut supposer la matrice élémentaire. Le chemin
décrit par le point base au cours de l'homotopie devient homotope à O dans

BGL{AY et on peut remplacer l'homotopie libre par une homotopie pointée).
Définissons r : RA(G) -* K(BG; A) sur les générateurs par [V\*-+r(V). Cette
application r est bien définie en vertu du

THEOREME 3.1 [18]. Les homomorphismes canoniques

induisent une équivalence d'homotopie

Preuve. D. Ouillen [18] a montré que les applications canoniques s et p
induisent un isomorphisme

donc un isomorphisme

pour tous coefficients constants puisque la construction "4-" respecte l'homologie.
D'autre part, tant

sont des H-espaces pour la somme directe des matrices. Il résulte alors du
théorème de Whitehead pour les H-espaces [5] que s et p induisent une
équivalence d'homotopie.
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COROLLAIRE 3.2. L'application r:RA(G)^> K(BG; A) est bien définie et in-
duit par passage au quotient un homomorphisme de KQ(A)-algèbres

r:IRA(G)^K(BG;A)

naturel vis à vis des homomorphismes de restriction et d'extension des scalaires.

Preuve. Il s'agit de vérifier que si O—? V—» V—> V"-» O est exacte dans

PA(G), alors r( V) © r( V") r( V) dans K(BG; A). La suite exacte de A-modules
O-» V'-h> V-^ V"^ O étant scindée,

AA

La première assertion résulte de la commutativité des deux triangles du

diagramme suivant:

bgl(aov

BGL

En effet, on a

Î ls j; BGL(A)+

AA\ +

[© - (p - r(V))] [(can o s) o (p o r(V))] [can o r(V)]

II est clair que r se factorise à travers IRA(G) et c'est alors un homomorphisme
de K0(A)-algèbres car:

r((V-e(V))® (W-e(W))) r(V<g) W)-r(e(V) (8) W)-r(V(8)
r(V)<g>r(W) et r(P(8) V) [P]®r(V).

4. Le X-Anneau KA(G)

DEFINITION 4.1 [1], [2]. L/n pré-k-anneau (A-rmg) 1? esf un anneau corn-

mutatif avec unité, muni d'une suite d'opérations {Àn}n2s0 vérifiant les propriétés
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suivantes :

(i) À°(x)=l et kl(x) x
(ii) Ak(x + y) lUAl(x)-Ak-I(y).
En introduisant les séries formelles

A,(x)= £ Al(x)f, et ^_f(x) -r^
t-o at

on définit une suite d'opérations i/fk :R-*R, k>0 (opérations d'Adams) par
i^_f(x) Xr=o (~ l)Vl (*)*'• On vérifie immédiatement que les opérations ifjk sont
des endomorphismes de groupe et que i//1(x) x. D'autre part, on tire de la

définition la formule [1]

i^-i/^-1 • À1* • • • +(-l)k"V1 • Ak-14-(-l)kkAk =0 (*)

qui peut servir de définition par récurrence des opérations d'Adams. Si x est de

rang 1, c'est-à-dire Af(x)=l + xf, on vérifie par induction sur k à l'aide de la
formule (*) que *//k(x) x\

Un pré-A-anneau R est un A-anneau (spécial k-ring) si les A-opérations
vérifient les propriétés supplémentaires [1], trivialement vérifiées sur les éléments
de rang 1:

(i) À,(l)=l + f

(ii) An(xy) Pn(k\x),..., A"(x); A^y),..., A"(y))
(iii) Am(A"(x)) Pm,n(A1(x),..., A"m(x))

où Pn et Pmn sont des polynômes à coefficients entiers (donc définis par leur
valeur sur les sommes d'éléments de rang 1).

Une forme faible (équivalente, si JR est sans torsion en tant que groupe
abélien) de ces conditions s'exprime aisément en termes d'opérations d'Adams

[U [2]:

(1) i/*k :!?-» R est un endomorphisme d'anneau (et même de A-anneau)
(2) ^ko^«=^o^k ^k«.

Désignons par Ak :KA(G)—> RA(G) la k-ième puissance extérieure sur A munie
de l'action diagonale canonique du groupe G. On vérifie facilement que les

opérations Ak munissent l'anneau RA(G) d'une structure de pré-A-anneau
naturelle vis à vis des homomorphismes de restriction et d'extension des scalaires.

Le point crucial pour la suite est le résultat de R. Swan [20], [3], [14]:

THEOREME 4.2. Le pré-\-anneau RA(G) est un k-anneau.
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La preuve est un "splitting principle" pour se réduire au case des modules de

rang 1.

Soit V un objet de fA(G). Le dual V* HomA (V, A) muni de Faction de G
définie par (g • /) f(g~l • v) induit une involution de \-anneau sur RA{G). On en
déduit des opérations d'Adams d'indice négatif:

i/Tk(x) ^k(x*) (t^k(x))*, fc>0.

Ces opérations vérifient aussi les conditions (1) et (2) ci-dessus, ainsi que la
condition </>~k[P] [P]~\ fc>0 sur les éléments de rang 1 (pour autant que la
notation [P]~l ait un sens, c'est-à-dire [P] inversible), ce qui justifie leur appellation.

5. La Ko(A)-À-Algèbre K(X; A)

Si K est un A-anneau, nous dirons qu'une K-algèbre commutative jR (pas
nécessairement avec unité) est une K-A-algèbre si R est muni d'une suite

d'opérations {Ak}k>0 telles que KxR, muni des lois de compositions suivantes est

un A-anneau que nous noterons K + R:

(a, x) • (a\ x') (aa\ a ¦ x' + a' ¦ x + x ¦ x').

Àk(a,x) (Àk(a), Y À'(a)-Àk-'(x)).

Par exemple, IRA(G) est une Ko(A)-A -algèbre car RA(G) K0(A) +IRA(G). Si

G GLn(i4), le A-anneau RA(G) possède un élément privilégié [A"d] qui est la
classe de la représentation id : G -^GL» (A). La différence [A^]-nl est un
élément de JKA(G) qui sera noté [A"d] L'intérêt de travailler avec l'idéal
d'augmentation est que les classes [A,nd] sont compatibles avec les inclusions

in:GLn(A)-»GLn+l(A), c'est-à-dire que i*([A^+1f)^[A^]\ Comme j* est un

homomorphisme de A-anneaux, on a aussi: i*(Ak([A1V1] Ak([A1rd] et par
conséquent i*(t(fk[A^+1f)) ^k([A^f). Comme r : IRA(G)->K(BG; A) est

naturel vis à vis des homomorphismes de restriction,
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En d'autres termes, si pour tout couple d'entiers, Je, n ^ 1, on choisit une application

continue Ak dans la classe d'homotopie r(Ak([A,nd] alors les diagrammes
suivants

On

sont homotopiquement commutatifs. Puisque in : BGLn(A) —» BGLn + A(A) est une
cofibration fermée, il est possible de rendre tous les diagrammes (*)n strictement
commutatifs sans changer la classe d'homotopie de À*. En passant à la limite sur
n, on détermine une application continue \t'BGL(A)—>BGL(A)+, et même

Ak : BGL{A)+ -» BGL(A)+

car TTi(kt) envoie forcément J5(A) [GL(A), GL(A)] sur 0 dans K^A) puisque
ce dernier est abélien. Comme pour la structure multiplicative, la classe

d'homotopie de la restriction de Ak à BGLn(A)+ est bien définie, c'est-à-dire que
Ak est bien définie à homotopie faible près.

THEOREME 5.1. Pour tout anneau commutatif avec unité A et tout espace
topologique X, les opérations Ak sur BGL{A)+ définies ci-dessus, induisent une
structure de K0(A)-\-algèbre sur K(X; A) naturelle en A et en X.

Preuve. On définit Ak sur K(X; A) [X, BGL(A)+] par Ak[g] [Ak ° g]. La
structure d'algèbre de K(X;A) étant aussi définie par composition, il suffit, de

montrer que K(BGL(A)+ ; A) [BGL{A)+, BGL(A)+] est une Ko(A)-A-algèbre.
Via l'homomorphisme r, on se réduit à faire les vérifications sur les anneaux
RA(GLn(A)) (resp. RA(GLn{A) x GLm(A))) car

Jim RA(GLn(A))-^ Jim [BGLn(A), BGL(A)+] [BGL{A)+, BGL{A)+].
n n

Par exemple, pour vérifier la formule Ak(x +y) Xk=0 Al(x) • Ak"'(y) sur
K0(A) + K(X;A), il suffit de montrer que Ak° 0 =Xk=0 A1 ® Ak~l dans

[BGL(A)+xBGL(A)+,BGL(A)+], ce qui suit directement du fait que cette
formule est vraie dans RA(GLn(A)x GLm(A)).

Soit X un espace topologique. Une comultiplication sur X est une application
continue c:X—>XvX. Celle-ci admet une co-unité à homotopie près si le
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diagramme ci-dessous est commutatif à homotopie près, où A : X -*¦ X x X est la

diagonale et i : X v X —»¦ X x X l'inclusion canonique du bouquet dans le produit.

^Xxx
*XvX

On dit alors que X est un H'-espace ou co-H-espace. Par exemple, on vérifie
facilement que toute suspension est un H'-espace.

LEMME 5.2 Si X est un H'-espace, alors la structure multiplicative de

K(X; A) est triviale, c'est-à-dire tous les produits sont nuls.

Preuve. Soient a, f$ : X—> BGL(A)+ représentant des éléments a et b de

K(X; A). On considère le diagramme suivant

x x X—<^—*BGL(AT x BGL(A)+

X (1) (2) (3) BGL{AY
oXvX >BGL{AY aBGL(A)+

Le triangle (1) est commutatif à homotopie près (X est un H'-espace) et les

diagrammes (2) et (3) sont strictement commutatifs par définition. Le composé

supérieur représente a • b et est donc homotope au composé inférieur qui
représente 0.

PROPOSITION 5.3. Si la structure multiplicative de K(X; A) est triviale, alors

(i) $k (- l)k~1fcAk : K(X; A) -^ K(X; A).
(ii) Ak :K(X; A)-*K(X; A) est un endomorphisme de groupe.

Preuve. Suit directement des formules:

x\fk - i^"1 - A1 +•••+(- ï)k-1^ - Ak~J +(-l)kfcAk 0

et
k-l

y)+Z A'(x) • Kk-'(y).
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PROPOSITION 5 4 Si A est un anneau de caractéristique p>0, alors

iAP Frob* IRA(G)-^ IRA(G)

où Frob* désigne Vextension des scalaires par Vhomomorphisme de Frobemus

x »-*xp

Idée de la Preuve [12] Par naturalité vis à vis des homomorphismes de

restriction de i/>p et Frob*, il suffit de montrer l'assertion pour G= GLn(A) Si A
est un corps fini, GLn(A) est un groupe fini et l'égalité résulte de [10] Le cas

général s'obtient en remarquant que à\ k^p (donc i//p) et Frob* sont des

représentations polynomiales de degré ^ p (leur forme matricielle est définie par
des fonctions polynomiales de degré ^p) et que l'égalité i//p ^Frob* sur le groupe
de Grothendieck des représentations polynomiales sur tout corps fini entraîne la

proposition

On dit qu'un anneau A de caractéristique p > 0 est parfait si Frob A —»

A, x »—» xp est un automorphisme

COROLLAIRE 5 5 Si A est parfait de caractéristique p > 0, et si la structure

multiplicative sur K(X, A) est triviale, alors x •-» p • x x + • • 4- xest un automorphisme

de K(X, A) En d'autres termes, K(X, A) est p-dwisible et sans p-torsion

Preuve (- l)p lp Ap i(jp Frob* est un automorphisme de K(X, A), donc

x •-> p • x aussi

Exemples (1) La K-théone de A

Comme toute sphère S", n ^ 1 est un H'-espace, les groupes de K-théone
algébrique Kn(A) sont munis d'une structure de K0(A)-\-algèbre dont tous les

produits sont nuls En particulier, si A est parfait de caractéristique p>0,
l'application x»-»p • x est un automorphisme de Kn(A)

(2) La-théorie à coefficients [6]

On introduit les espaces de Moore Mn(Z/m) (représenté par le cône d'une

application de degré m • S""1 —» Snl) caractérisés (au type d'homotopie près) par
le fait que leur homologie entière réduite est concentrée en dimension n -1 et
Hn 1(Mn(Z/m)) Z/m, et qu'ils sont simplement connexes si n^3 On définit
ensuite Yhomotopie à coefficients d'un espace topologique X par
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En appliquant cette définition à BGL(A)+, on obtient les groupes de K-théorie à

coefficients Z/m définis par:

Kn(A ; Z/m) irn{BGL{A)+, Z/m) n ^ 2.

Remarquez que ce sont bien des groupes abéliens puisque BGL(A)+ est un

espace de lacets infini [21]; ces groupes sont munis d'une structure de K0(A)-À-
algèbre si n^2, dont la structure multiplicative est triviale si n ^ 3. En particulier,
si A est parfait de caractéristique p > 0, l'application x »-* p • x est un automor-
phisme de Xn(A;Z/m) si n^3.

Structure multiplicative graduée

La structure multiplicative <8> : BGL(A)+ aBGL(A)+ -» BGL(A)+ induit des
produits bilinéaires [13]:

via l'homéomorphisme Sn+m-2^Sn ASm. De même, on a des produits bilinéaires
[6]:

Kp(A;Z/m)xKq(A;Z/m)^Kp+q(A;Z/m)

au moyen d'une application Mp+q(Z/m)-> Mp(Z/m) AMq(Z/m) si m^2 (mod 4).

COROLLAIRE 5.6. Les opérations d'Adams \pk sont compatibles avec les

produits gradués

Kp(A)xKq(A)^Kp+q(A)
(resp.Kp(A;Z/m)xKq(A;Z/m)^>Kp+q(A;Z/m))

Preuve. La question se résume à vérifier la commutativité à homotopie faible
près du diagramme

BGL{A)+

BGL(A)+ a ^
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Via rhomomorphisme r, cela suit du fait que RA(GLn(A) x GLm(A)) est un
À-anneau.

6. Y-Opérations

Si JR est une K-A-algèbre, on introduit des opérations {7k}k>0 définies par [1],
[2]

oo oo

y,(x) =1 + 1 y'(x)f \,n-,(x) =1 + 1 A'(x)(7(l - 0'
1=1 i=l

On déduit de cette formule d'une part

yn(x) An(x + n-l)

et d'autre part

k-i
k / k £ Y(x)'yk~l(y)

1

Si K est un À-anneau augmenté (c'est-à-dire muni d'un homomorphisme de

À-anneau e : K—> Z), les y-opérations permettent de définir une filtration de R:

est le groupe abélien engendré par les monômes

yhal ylkak • yhx1 y}^xp où ateK, e

et

La filtration {FnR}n^0 jouit des propriétés suivantes [1], [2]:

(i) FnR - FmR<=:Fn+mR.

(ii) F°R FlR R.
(iii) FnR est un A-idéal de JR.

Comme F^R est un A-idéal, les opérations Ak, yk et ijjk induisent des opérations
sur le gradué associé à la 7-filtration:

GnR =^FnR/Fn+1JR



246 CH KRATZER

et on a les propriétés suivantes sur GnR [1], [2]

(i) i^(x) knx

(ii) ^k(x) (-l)k-1kAk(x)
(iii) Ak(x) (-l)k-1fcn-1x
(iv) yn(x) (-l)n-1(n

Les propriétés (i), (ii) et (iii) sont démontrées dans [1]. On peut obtenir (iv) comme
corollaire de (iii) à l'aide de la formule combinatoire suivante [4]:

LEMME 6.1. Soit pour tout couple d'entiers Je, n^O l'expression:

Alors, FKn 0 sik>netFnn (-l)nn!

Preuve. On va procéder par induction sur n et k.

can n + 1^1. Maintenant

Si fc + l>n + l, alors le lemme pour Fke

livre Fk+ljn+1 0.

Si k +1 n +1, alors Fk+1,n+1 ~(n + l)Fn,M (-l)n+1(n +1)!

De

n-)
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et de la propriété (iii), on tire

sur GnR.

La propriété (iv) suit de l'égalité:

et du Lemme 6.1.

Nous dirons que x est de y-filîration finie s'il existe un entier Nx tel que

On vérifie que si R est engendré par un nombre fini d'éléments de y-filtration
finie en tant que Z-À-algèbre, alors la 7-filtration de K est finie, c'est-à-dire
FnR 0 si n est assez grand.

Nous supposerons désormais que K0(A) est un A-anneau augmenté par le

rang des modules projectifs (par exemple si A est intègre). On a encore la
formule supplémentaire sur GnRA(G) qui se démontre par "splitting principle"

donc aussi

il*k(x)=knx k<0.

LEMME 6.2. Si X est compact (plus généralement si toute application X—»

BGL(A)+ se factorise à travers un "squelette" BGLn(A)+), alors tout x e K(X; A)
est de y-filtration finie.

Preuve. Soit x e K(X; A). Par hypothèse x est représenté par X-*BGLn(A)+
et les opérations ym :BGLn(A)+ -+BGL(A)+ sont induites par ym([A?d]~)

Tm([A1nd]- n). Si m > n, ym([A^d]-n) 0 [1], donc yt(x) est un polynôme inversible

dans l'anneau des polynômes (KQ(A) + K(X; A))[t] (yt(x)-Yt(-x)=l), donc
tous ses coefficients de degré>0 sont nilpotents et x est de y-filtration finie.

Remarques. (1) Si A est un anneau d'entiers de corps de nombres, les

groupes Kn(A) sont de type fini [17], et par conséquent la y-filtration de Kn(A)
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est finie. Mais en général, les groupes de K-théorie algébrique ne sont pas de type
fini.

(2) Par induction nilpotente à l'aide du Lemme 6.1 et du Corollaire 5.5, on

peut généraliser l'affirmation du Corollaire 5.5 à tout espace X satisfaisant la

condition du Lemme 6.2. En particulier, on retrouve un résultat de H. Hiller [8]
pour les X compacts.

(3) Comme tout asK0(A) est de la forme [P]~e[P], la preuve du Lemme
6.2 montre que a est de 7-filtration finie.

Dans le cas des groupes de K-théorie algébrique (avec ou sans coefficients),
nous allons introduire une nouvelle y-filtration tenant compte de la structure
multiplicative graduée. La définition qui suit est issue d'une discussion avec C.

Soulé.

DEFINITION 6.3. FrnKP(A) est le groupe abélien engendré par les éléments de

la forme:

a - yhx1 U • • • U ylkxk où x, e KSt(A) avec st + • • • + sk p,

aeFl°K0(A) et io+- - + ik^n.

En particulier:

FnKp(A)=>FnKp(A).

(On écrit formellement la même définition pour la K-théorie à coefficients). On
démontre les mêmes propriétés pour le gradué associé à la filtration F' que pour
celui associé à la filtration F: De (1) t//k(xUy) i//k(x)Ui//k(y) on tire

(- l^kÀ^x U y) (- l)k-1k\k(x)U(- lf^kÀ^y)

car i//k(x) (-l)k~1kA'c(x), d'où en raisonnant sur des À-anneaux libres [2] dont
le gradué est sans torsion, on a (2)

Ak(xUy) (-l)k-1fcAk(x)UAk(y).

A partir de ces formules (1) et (2), des propriétés de la filtration F et de la

définition de F', on tire si x g F'n :

(i) ^k(x) kn

(ii) Ak(x) (-
(iii) yM(x) (-
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PROPOSITION 6.4. Les filtrations F et F coïncident à torsion près.

Preuve. Soit x y1^ U • • • U 7lfeyk e FnKp(A), où y, s KSj(A) avec
+ - • - + sk p et ix 4- • • • -h ik - n. On pose x0 x et on définit par récurrence sur i:

Comme les y7 sont de 7-filtration finie (Lemme 6.2), et que les xt sont des

polynômes en les yMy,) de degré ^n 4- i, il s'ensuit que tôt ou tard xt =0 et est

donc un élément de Fn. On achève en remarquant que x1+1gF" est équivalent à

Etudions maintenant le premier quotient de la 7-filtration de K(X; A). La
composition

>GL(A)

détermine à homotopie faible près une application

det :BGL(A)+->BGL(A)+

qui se factorise à travers BGLX(A)+ ~ BGLX(A)
(GLX{A) est un groupe abélien).

LEMME 6.5. Soient X compact (ou vérifiant la condition du Lemme 6.2) et

xgK(X;A). Alors

x det (x) (mod F2K(X\ A)).

Preuve. Via l'homomorphisme r, le résultat suit de la formule [14]

Cette dernière résulte de la comparaison: <yn([Ald]" + [l]) An[A,d] et

t Tl([^rdr)yn~i[i]
1=0

1 7'([Air)-A"-[n-i]
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PROPOSITION 6.6 Soit X compact (ou vérifiant la condition du lemme 6.2).
Alors

F2K(X; A) SK(X; A) ker (det : K(X; A) -> K(X; A)).

Preuve. Il suffit de montrer F2K(X; A) a SK(X; A) (Lemme 6.5).

On introduit det : RA(GLn(A))—» PicA (GLn(A)) (sous-groupe multiplicatif de

RA(GLn(A)) engendré par les éléments de rang 1) définie sur les générateurs de

rang fc par det[V] [ÀkV]. Si O-> V-» V-> V"-> O est exacte, la formule

Am[V]=

livre que det est bien défini. Il est clair que det : BGL{A)+ -> BGL(A)+ est

induite par r[det ([A"d]")) r(det [A?d]). Maintenant

yn(x)eSK(X'yA), n>\

suit, via l'homomorphisme r, du calcul classique [14] qui s'obtient par "splitting
principle."

det(y"([Ardr) [l] dans PicA (GLn(A)) si n>\.

Si a[P]-e[P]eK~0(A), a • K(X; A)czSK(X; A) suit de la formule classique [14]
qui s'obtient par "splitting principle"

det ([F] • [Q]) (det [P])e[O] • (det [Q])e[p] dans PicA (GLn{A)) (*)

car alors det (([P]-e[P]) • [ArdD [l]. De même, (*) livre que

det ([Ard]~ • [A3D [1] dans PicA («^(A) x GI^CA)),

et via l'homomorphisme r, x - ye SK(X; A) si x,ye K(X; A).

COROLLAIRE 6.7. Si X esf compact, alors det indwif wn isomorphisme

K(X; A)/F2K(X; A)-^Hom2 (ir^X), GL^A)).

Preuve. L'image de det:K(X; A)->K(X; A) est représentée par
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[X, BGL^A)] et comme BGLt(A) K(GL,(A), 1),

[X, BGL1(A)] Homz (tt^X), GLx(A))

par la théorie des obstructions.

COROLLAIRE 6.8. (i) F2K1(A) F'2Kl(A) SKX(A)
(ii) det induit un isomorphisme K1(A)/F'2K1(A)^> GLA{A)
(iii) F'lKn(A) F'2Kn(A) F2Kn(A) Kn(A) si n > 1.

Nous terminerons par une proposition reliant la divisibilité des opérations
d'Adams à la longueur de la y-filtration.

PROPOSITION 6.9. Soit X compact (ou vérifiant la condition du Lemme 6.2).
Si Fn(X; A)^0, alors il existe xeK(X\ A), x^O et m^n tels que

ijjkx kmx pour tout k^O.

Preuve. Soit 0 ^ y yl'ax y'sas • y's+1xs+1 yKxr avec

o,eKj(A), x,gK(X;A) et i\ + • • • + ir ^ n.

Comme chaque ax et chaque x, sont de y-filtration finie (Lemme 6.2), on choisit

x yhlax y/lk> aï y]'*xr ykar
avec

™ 7i,i + • • • + ii,fcl + + /rJ + • • • + jrk

maximal sous la condition xj= 0. La proposition suit du fait que tykx - kmx est un
polynôme de degré > m en les y-opérations [1], donc nul.

Remarque. On a évidemment un analogue sur les groupes de K-théorie
algébrique en termes de la filtration F'.

7. Un exemple: La K-théorie des corps finis

Soient F un corps fini et G un groupe fini. Choisissons un homomorphisme

p:F*-*C* où F est une clôture algébrique de F. Le relèvement de Brauer
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jui : jRf(G)->Rc(G) associé à p [19] est un homomorphisme de A-anneaux
(RC(G) est sans torsion en tant que groupe abélien, il suffit donc de vérifier
i//k ° fi fi ° i//k, ce qui suit d'un rapide calcul de caractères). Si G GLn(F), on
en déduit une application continue

lit : BGL(F)+ -* BGL(C)+

unique à homotopie faible près. D'autre part l'espace BU s'identifie au classifiant

BGL(C)top où GL(C)top est le groupe topologique limn GLJC)1015, et comme
tt1(BL7) 0, id:GL(C)^GL(C)top induit BGL(C)+^BU. En résumé, le

relèvement de Brauer induit

La construction effectuée au paragraphe 5 passe au cas d'un anneau topologique
et permet de retrouver la structure de Z-À-algèbre de la X-théorie topologique
sur les classes d'homotopie [X, BU] (toutes les opérations à\ \pk, yk s'écrivent à

l'aide de polynômes en les coefficients des matrices et sont donc continues par
rapport à la topologie de l'anneau). On en déduit que

est un homomorphisme de Z-À-algèbres.

PROPOSITION 7.1. Soit Fq le corps fini à q éléments. Alors le relèvement de

Brauer induit un isomorphisme de Z-\-algèbres

/u : K2l(Vq; Z/q1 - 1)-> ir2,(BU; Z/q' - 1)

Preuve. Le calcul des groupes d'homotopie it2i(B17) Z et ir2l+i(BL/) 0

livre grâce à la suite exacte reliant l'homotopie à l'homotopie à coefficients

Tr2l(BU;Z/q'-l)~Z/q'-\
7r2l+1(BL/;Z/q'-l) 0

Soit ^i//q la fibre homotopique de t//q -id: BU —* BU. La suite exacte pour
l'homotopie à coefficients de la fibration &$" -^BW^BU livre:

ir2lW; Z/q1 - 1) ^ 7r2l(BC7; Z/q1 -1)
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car 7r2l+1(Bl/;Z/qrl-l) 0 et if/q-id agit par (ql-l) sur tt2i(BU) [9]. Enfin, on
considère le diagramme commutatif.

K2l(fq;Zlq'-l) - > 7

7T2l(BU,Z/ql-l)

où j est Tisomorphisme induit par l'équivalence d'homotopie [16]

COROLLAIRE 7 2. i//k kl • îd sMrK2l_!(Fq).

Preuve. La suite exacte reliant l'homotopie à l'homotopie à coefficients livre:

car K2l(Fq) 0 et K2l_1(Fq) Z/q'-l [16], donc (^-D-idrK^fl^)-*
K2l-i(Fq) est l'application nulle. Le corollaire suit alors de la proposition 7.1 et
du calcul x\fk kl • îd sur tt2i(BU) [9].
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