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Free actions of finite groups on finite CW complexes

Zdziskaw Wojtkowiak

1. In this paper we examine a nilpotent free action of a finite group G on
finite CW complexes. We restrict our attention to CW complexes which are
"relatively prime to the order of G" (see définition below).

DEFINITION 1. Let n be a natural number. We say that (n; X)= 1 if X is

simply connected, X(n)~ V^i Sfo and tt^X)® Z{n)-+Ht(X)® Z{n) is an

isomorphism for i ^ dim X

PROPOSITION 1. IfXisa finite complex then (p; SNX) 1 for N sufficiently
large and ail but a finite number of primes.

Proof. SX has a décomposition into Moore spaces M(Z/qn, k) and Sk

M(Z, k) (see [1]). After inverting a finite number of primes torsion parts vanish.
Moreover the Hurewicz homomorphism 7rl(SNX)<8>Q->Hl(SNX)<8)Q is an

isomorphism for i^dimSNX and N sufficiently large. As both modules are

finitely generated Z-modules the Hurewicz will be an isomorphism after inverting
a finite number of primes. If we represent the homology classes by a bouquet of
sphères, we shall obtain a required homotopy équivalence.

Now we prove an existence theorem. For the définition of an admissible chain

complex and of a O-admissible chain map, which are necessary to understand the

theorem, see [6] p. 131 and 132.

THEOREM 2. Let A* be an admissible finitely generated chain complex of
free Z[G]-modules with a basis chosen. Let X be a finite CW complex with one
O-cell and without 1-cells. Suppose that h:A%-^C*(X) is a O-admissible Z-
chain homotopy équivalence, G acts trivially on H%(A%), At 0 for i>dim X and
(n, X)= 1, where n is the order of G. Then there exists a simply connected CW
complex Y with a free cellular action of G such that Q(Y) A* as Z[G]-modules
and there exists a cellular homotopy équivalence f: Y—»X such that C*(f) h.

Proof. The admissibility of A* implies that there is a 2-dimensional complex
Y2 with a free action of G. It follows from our assumption on X that there exists
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226 ZDZISKAW WOJTKOWIAK

a cellular map f2: Y2—>X. Now, according to [3J Prop. 4.3, an obstruction cr to
extendibility of our construction lies in the group G"+1 (A*; ker (7rn(Xn)—>

Hn(Xn)). a is an n-torsion élément since G acts trivially on H%(A%) (see [3] p.
390). On the other hand, since (n,X)=l the group ker (7rn(Xn)-»Hn(Xn))
consists only of the torsion relatively prime to n. Therefore the obstruction
vanishes.

An example constructed in [7] shows that Theorem 2 does not hold without
the assumption (n, X) 1.

2. In this rather long section we investigate the classification problem. Thèse

investigations were inspired by Theorem 5.2 of [5] proved by C. B. Thomas.

DEFINITION 2. Let Y be a CW complex with a finite fundamental group
and let 6:ir1{Y)-*G be an isomorphism. We dénote such a pair by (Y, 0). We

say that two such pairs (Ya, 0X) and (Y2, 62) are équivalent if there is a homotopy
équivalence h : Yx—> Y2 such that 02O7riW ~ #i-

Now we prove our fundamental lemma.

LEMMA 3. Suppose that A* and X are such as in Theorem 2 and Ao Z[G].
Let (Yu 0J and (Y2, 02) be two pairs such that Qe(Y() A* as complexes of
Z[G]-modules. Suppose that there are homotopy équivalences f1:Y1-*X and

f2: Y2-»X (where Y, is the universal cover) such that H*(fl) H*(f2). Then there

exists a homotopy équivalence h:Y1-^Y2 such that

(i) 02ott1(/i) O1.

(ii) /2°h~/! (h is an equivariant map between the universal covers induced

byh).

Proof. It follows from the assumptions on A* that Yt and Y2 are nilpotent
spaces. Let p^.Y^Y» i l,2, be the natural projections. Set / /2lo/i. We
define localizations fc[i/n] (p2)[i/n]o/[i/n]o(Pi)îi/n] and fi0 (p2)00/o0(Pi)ô1. K
1^1(^)1== n and Y,0 is one point then the localized space (Y,)(ri) can be obtained
by successive localizations of cells. Since

we set

Y?)(»> (V SU) U C(fX) U ¦ • • U C(fX)-

Suppose that we hâve built (Y[)(n>. The condition (n; Y,) l implies that
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Therefore the attaching map a of an r+1-
local cell is determined by H*(d), where à is lifting of a. Hr((Y[)(n))
ker (Ar®Z(n)^>Ar_1(8)Z(n)) for r^2 since cells of Y\ correspond to local cells of
(Yr){n) and, consequently, cells of Y\ correspond to local cells of Y[)(n). Hence the
complex A* détermines (Yi)(n) and (Y2)(n). Therefore there is a map
^(n):(Y1)(n)-^(Y2)(n) such that the lifting h(n) induces an identity on H*{A*®
Z(n)). The maps (hin))0 and h0 induces the same map on homology and therefore
they are homotopic. It follows from [4] Cor. 5.13 that there is a map h:Yl-^ Y2.
It is easy to see that h satisfies (i) and (ii).

Now we formulate our classification problem. Let A* and X be fixed and such
as in Theorem 2, and Ao Z[G]. We investigate the équivalence classes of pairs
(Y, 0) such that:

(i) Y~X.
(ii) C%(Y) is Z[G]-homotopy équivalent to A* and the homotopy équivalence

is O-admissible.
(iii) Y is finite.

Remark. If Y is a finite complex with a fundamental group G such that Y— X
then Y is homotopy équivalent to a complex Z such that Z° * and dim Z
dim X. Hence our assumptions on A* are not restrictive.

Let M(Aj|6, X) be the set of équivalence classes of such (Y, 6). Let M be the
set of O-admissible chain homotopy équivalences of A* and let Aut gr H*(X) be
the set of automorphisms of H*(X) which préserve gradation. Let us fix a

O-admissible chain homotopy équivalence h : A*—>C*(X). Define a map j3 :£#—>

AutgrH*(X) by |3(r) H*(h)°H*(r)oH*(h)-\ Let e(X) be the set of ail
homotopy équivalences of X and a : e(X)-*Aut gr H#(X) a natural map. In the
set AutgrH*(X) we define the following relation. We say that f1 and f2 are

équivalent iff there exist resd and ee e(X) such that /2 a(e)°/1°j8(r~1). It is an

équivalence relation and we dénote the set of équivalence classes by
im a\Aut gr H%(X)/im |8. Now we shall formulate our classification theorem.

THEOREM 4. Let A* and X be such as in Theorem 2, Ao Z[G] and let
h : A*—» Qc(X) be a O-admissible Z-chain homotopy équivalence. Then we hâve a

bijection:

<p:im a\Aut gr H*(X)/im j3-h>M(A*; X).

Proof. If seAutgrH*(X) then there is a O-admissible chain map

s1:Q(X)^Q(X) such that Hit:(s1) s. It follows from Theorem 2 of [6] that
there exists a CW complex Xx and a cellular map s1:X1-^X such that Q(X1)
C*(X) and Q(sx) st. We can consider a map h : A*-* C*(X) as a map hx : A*->
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Q^Xj). By Theorem 2 there exists a finite CW complex Yx with a free action of
G and a map i1:Yl-^X1 such that 0^(1^= C^ih^. The action of G on Yl
détermines an isomorphism dl :tt1(Y1IG)—> G. Hence we obtain a pair
(Y^YJG',0,). Let s2 : C*(X) -» C*(X) also satisfy H*(s2) s and let Y2 be

obtained in the same way as Yx but using s2. Applying Lemma 3 to ^ : 1^—>Xa

and k sïlos2°i2: Y2—>XX we see tnat the pairs (Y1? 0^ and (Y2, 02) are équivalent.

Thus we hâve a well defined map <P: Aut gr H*(X)-*M(A%, X).
Let (Y1? 01)=<^(/1) and (Y2, 02)= <î>(/2). This means that there are CW

complex Xx and X2 such that C*(Xl)=C%(X) i 1,2. There are also maps
Ft : X, ->X and i, : Y, -> Xt such that H*(^) /i and H*(0 h for i 1, 2.

Suppose that the pairs (Yu #0 and (Y2, 02) are équivalent. Let p:Y1-^ Y2 be

G-equivariant cellular homotopy équivalence. Set C*(p) r and e

^72°Ï2oPOï71°^T1- Then we hâve

Now we show that <P(f)= <P(a(e)ofop(r1)). Let <P(j) (Yu01) and

*(a(e)°/oj8(r~1)) (Y2, Ô2). Let us apply Theorem 2 of [6] to Y2 and r:A*->
A*. Then we obtain a chain complex Y3 and a map p: Y3—» Y2. Consider two
maps il:Yl->Xl and k F^loe~1°F2°i2op. It is easy to check that H*(k)
Hxiii). Therefore it follows from Lemma 3 that (Yu 61) (Y2, 02). Hence the

map <P defines <p.

Now we show that <p is onto. Let (Y, 6)eM(A%, X). Applying Theorem 2 of
[6] to the map h'1 :Q(X)->CHc(Y) A* we obtain a CW complex Xx and a

cellular map f:X1—»Y. Let g:X1-»X be a homotopy équivalence. Since

QeCXO Q(X), the map g détermines an élément s H*(g) e Aut gr H*(X). It is

clear that <p(s) (Y,6).

COROLLARY 5. Let X=\/ieISn> and (n,X)=l. Suppose that (Yt, 6t), i

1,2 are nilpotent spaces such that Yt ~ X /or i 1, 2. TTien rhe pairs Yu 0J and
(^2> ^2) are équivalent iff there exists a O-admissible Z[G]-chain homotopy
équivalence h : C^( Yi)—» C^C Y2).

Proof. In this case im a Aut H^(X). Hence our resuit follows.

DEFINITION 3. Let r: G-»G be an automorphism and let /: A*-»B* be a

Z-chain map between complexes of free Z[G]-modules. We say that / has type
(r)if/(g-x) r(g)-/(x)forall geG
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Let s&G dénote the set of ail O-admissible chain homotopy équivalences of A*
of ail types (r). We shall now investigate the homotopy types of CW-complexes Y
satisfying

(i) Y is finite, Y~X, tt1(Y)«G and (n,X)= 1.

(ii) CjjcCY) is Z-chain homotopy équivalent to A^, where A* is such as in

Theorem 4, and the homotopy équivalence is O-admissible and has type (r) for
some re Aut (G).

Let H(A#, X) be the set of homotopy types of such Y. Then we hâve:

THEOREM 6. If the assumptions of Theorem 4 hold then there is a map

çl :im a\Aut gr H*(X)/im p'^>H(A*, X)

which is a bijection.

P':sdG—>Autgr H*(X) is defined in a similar way as @. The proof is similar
to that of Theorem 4.

3. In the spécial case when G is a cyclic group of prime order p our
classification is much more effective. Any chain complex Q^Y) is chain

homotopy équivalent to a "canonical" one. We shall now prove this fact.
Consider the following complexes:

0

where

(nk;p)=l and N= e + g + - • • + gp~\ (1)

and

o >z[z/P]1+g+ +g>z[z/p] >o,

where

(k;p)=l. (2)

DEFINITION 4. A chain complex A* of Z[Z/p]-modules is called elemen-

tary if A* is a finite direct sum of complexes of the form (1) and (2).
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LEMMA 7. Let C# be a chain complex ofprojective Z[Z/p] modules such thaï:

(i) H%(C*) is a finitely generated trivial Zip-module without p-torsion.
(ii) H^QOzcz/pjZ) is finitely generated.

Then C* is chain homotopy équivalent to an elementary complex A*.

Proof. Let

>0

be the standard resolution of Z. Consider a chain complex X* with

Xn= l (cq <8> Bp)
p+q n

V Z[Z/pl I

and with a filtration

The associated spectral séquence converges to H*(Os®z[z/p]Z) (see [2] XI). In
the cohomological spectral séquence the multiplication by a generator of
JFf2(Z/p; Z) is an isomorphism. Therefore the differentials in the cohomological as

well as in the homological spectral séquence are periodic. It follows from (ii) that
E£>q~l 0 for q large enough. Hence any x e E\q~l is a boundary or dr(x) f 0. Let
x xx®ex eE\q~l- Hq-l(C#)<8ztZ/plBl, where xt is a generator of a cyclic sum-
mand of an infinité order. Let i be odd and dkx 0 for k < r and drx^ 0. Then r is

even. Let a XUocq-i®£ be a représentative of x such that daeiF^rX)^^
Hence a part of da which belongs to FtX vanishes i.e. dcq_, 0, fcq_, + dcq_l+1 0,

iVCq-l-i +2 + dCq-! +2 0 ' * * NCq_1_(ï_r+2) + dCq_(l_r+2) 0, fCq_1_(l_r+ 1) + dCq_(l_r+ 1) 0,
where t e-g. Setting fk(e) ck we define a chain map from

>0 into Q. (*)

On the first non-trivial homology group this map is an inclusion onto a direct
summand and on the second one it is a multiplication by / relatively prime to p.

Replacing the last difïerential e-g by e-gk in (*) we may assume that / l(p).
We hâve that /(e) cq_!_(l_r) c and Nc l-g1 (l + p-fe)-g1, where gt is a
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generator of a cyclic summand of an infinité order which is a boundary in E?**. If
we set /(e) c-v • gi then the map induced on the homology will be an inclusion
onto a direct summand. Performing the same construction for ail generators of
H%(X) which bound in El;q~\ we obtain a map from an elementary complex into
C*. This map will be an isomorphism onto torsion-free part since half of the
generators of H*(C*) are boundaries and for half of the generators we hâve

drX j= 0. If Z/fc c: H¥ (C*) then there exists a chain map from

o >z[z/P]e+^
+8

>z[z/P] >o

into C* which is an inclusion onto Z/k. This finishes the proof.
The next lemma is an easy exercise.

LEMMA 8. Let A* be an elementary complex, C* be as in Lemma 7,

Wo(C*)= % and Hi(Q:) 0. Lef /: A*—» C* be a chain homotopy équivalence such

that H0(f)[e] [p], where peC0 is an élément of a base. Then f is chain homotopic
to a O-admissïble map.

COROLLARY 9. Let Y be a CW complex such that 7T1(Y) Z/p, H*(Y) is

finitely generated and H%(Y) is a finitely generated trivial 7T1(Y)-module without
p-torsion. Then Y is homotopy équivalent to a finite complex.

It follows from [6] Theorem 2, Lemmas 7 and 8 and the fact that A* is

admissible.
The corollary and also a much stronger resuit follow immediately from

Theorem A of the Mislin paper "Wall's obstruction for nilpotent spaces" Topol-
ogy 14, (1975) 311-317.

Now we give an example which illustrâtes Theorem 4 and 6. Let a e tt17(S14)

be an élément of order 3. Set X= SnvS14UaD18. Then we hâve (p,X)= 1 for
p>5. AutgrH3lc(X) {{±l}x{±l}x{±l}}andima={{(l,l),(-l,-l)}x{±l}}.

Let A# be an elementary complex such that A, 0 for i 12, 13. Then
im|3 im0' {{(l, 1), (-1, -1)}x{1}}. Therefore éléments (1,1,1) and (1,-1,1)
détermine différent homotopy types.
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