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Free actions of finite groups on finite CW complexes

ZDZ71S¥AW WOJITKOWIAK

1. In this paper we examine a nilpotent free action of a finite group G on
finite CW complexes. We restrict our attention to CW complexes which are
“relatively prime to the order of G (see definition below).

DEFINITION 1. Let n be a natural number. We say that (n; X)=1 if X is
simply connected, X,,~Vk,S%, and m(X)®Z,,—»>H(X)®Z,, is an
isomorphism for i=<dim X.

PROPOSITION 1. If X is a finite complex then (p; SYX)=1 for N sufficiently
large and all but a finite number of primes.

Proof. SX has a decomposition into Moore spaces M(Z/q", k) and S*=
M(Z, k) (see [1]). After inverting a finite number of primes torsion parts vanish.
Moreover the Hurewicz homomorphism w,(SYX)®Q— H,(S¥X)®Q is an
isomorphism for i<dim S™X and N sufficiently large. As both modules are
finitely generated Z-modules the Hurewicz will be an isomorphism after inverting
a finite number of primes. If we represent the homology classes by a bouquet of
spheres, we shall obtain a required homotopy equivalence.

Now we prove an existence theorem. For the definition of an admissible chain
complex and of a O-admissible chain map, which are necessary to understand the
theorem, see [6] p. 131 and 132.

THEOREM 2. Let Ay be an admissible finitely generated chain complex of
free Z[ G]-modules with a basis chosen. Let X be a finite CW complex with one
O-cell and without 1-cells. Suppose that h: Ay— Cy(X) is a O-admissible Z-
chain homotopy equivalence, G acts trivially on Hg(Ay), A; =0 for i >dim X and
(n, X)=1, where n is the order of G. Then there exists a simply connected CW
complex Y with a free cellular action of G such that Cy(Y)= Ay as Z[ G]-modules
and there exists a cellular homotopy equivalence f: Y— X such that Cy(f) = h.

Proof. The admissibility of A, implies that there is a 2-dimensional complex
Y? with a free action of G. It follows from our assumption on X that there exists
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a cellular map f>: Y>— X. Now, according to [3] Prop. 4.3, an obstruction o to
extendibility of our construction lies in the group G"*' (Ay; ker (m,(X")—
H,(X")). o is an n-torsion element since G acts trivially on Hy(A,) (see [3] p.
390). On the other hand, since (n, X)=1 the group ker (m,(X")— H,(X"))
consists only of the torsion relatively prime to n. Therefore the obstruction
vanishes.

An example constructed in [7] shows that Theorem 2 does not hold without
the assumption (n, X)=1.

2. In this rather long section we investigate the classification problem. These
investigations were inspired by Theorem 5.2 of [5] proved by C. B. Thomas.

DEFINITION 2. Let Y be a CW complex with a finite fundamental group
and let 6:7,(Y)— G be an isomorphism. We denote such a pair by (Y, 6). We
say that two such pairs (Y,, 6,) and (Y,, 6,) are equivalent if there is a homotopy
equivalence h:Y;— Y, such that 6,°m,(h)=6,.

Now we prove our fundamental lemma.

LEMMA 3. Suppose that Ay and X are such as in Theorem 2 and A,= Z[G].
Let (Y., 0,) and (Y,, 6,) be two pairs such that Ce(Y,)= Ay as complexes of
Z[G]-modules. Suppose that there are homotopy equivalences f,: Y,— X and
fo: Y,— X (where Y, is the universal cover) such that Hy(f,) = Hy(f,). Then there
exists a homotopy equivalence h:Y,— Y, such that

(i) 8,0y (h)=6,.

(ii) f,och~f, (h is an equivariant map between the universal covers induced
by h).

Proof. 1t follows from the assumptions on A, that Y, and Y, are nilpotent
spaces. Let p,: Y;— Y, i=1,2, be the natural projections. Set f=f;'of,. We

define localizations hgy ), = (p2)[1/n]°f[l/u]o(pl)[_l}n] and ho=(p.)o°foc(pr)o'. If
|7 (Y;)|=n and Y7 is one point then the localized space (Y;),, can be obtained
by successive localizations of cells. Since

Yi=(VSHUC()U---UC(fr)
we set
(Yi2)(n) = (V S(ln)) U C(fil)(n) U---uU C(f:()(n)'

Suppose that we have built (Y}),. The condition (n; Y,)=1 implies that
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m,((YDm) = m(( 1?{)(,,,)= H,((f/{)(,,)). Therefore the attaching map « of an r+1-
local cell is determined by Hy(a), where & is lifting of «a. H,((S?’i)(n))=
ker (A,®Z,,—A,_®Z,,) for r=2 since cells of Y] correspond to local cells of
(Y?)w, and, consequently, cells of ¥? correspond to local cells of (Y?)n)- Hence the
complex Ay determines (Y,),, and (Y,).,, Therefore there is a map
Ry (Y1)my—(Y2)m) such that the lifting A, induces an identity on Hy(Ax®
Z,). The maps (h,)), and h, induces the same map on homology and therefore
they are homotopic. It follows from [4] Cor. 5.13 that there is amap h: Y,— Y,.
It is easy to see that h satisfies (i) and (ii).

Now we formulate our classification problem. Let A, and X be fixed and such
as in Theorem 2, and A, = Z[G]. We investigate the equivalence classes of pairs
(Y, 6) such that:

(i) Y~ X

(i) Cx(Y) is Z[G]-homotopy equivalent to A, and the homotopy equival-
ence is O-admissible.

(iii) Y is finite.

Remark. 1f Y is a finite complex with a fundamental group G such that Y~ X
then Y is homotopy equivalent to a complex Z such that Z°= % and dim Z =
dim X. Hence our assumptions on A, are not restrictive.

Let M(Ay, X) be the set of equivalence classes of such (Y, ). Let & be the
set of O-admissible chain homotopy equivalences of A4 and let Aut gr Hy(X) be
the set of automorphisms of Hy(X) which preserve gradation. Let us fix a
O-admissible chain homotopy equivalence h: Ay— C4(X). Define a map B: s —
Aut gr Hy(X) by B(r)= Hy(h)oHy(r)oHy(h)™'. Let &(X) be the set of all
homotopy equivalences of X and a:&(X)— Aut gr He(X) a natural map. In the
set Aut gr He(X) we define the following relation. We say that f, and f, are
equivalent iff there exist re o and e € £(X) such that f,= a(e)of,oB(r™"). It is an
equivalence relation and we denote the set of equivalence classes by
im o\ Aut gr Hy(X)/im B. Now we shall formulate our classification theorem.

THEOREM 4. Let Ay, and X be such as in Theorem 2, A,= Z[G] and let
h: Agy— Cy(X) be a O-admissible Z-chain homotopy equivalence. Then we have a
bijection:

@ :im a\Aut gr He(X)/im 8 —>M(Ay; X).

Proof. If seAutgr He(X) then there is a O-admissible chain map
$1: Ce(X)— Cy(X) such that Hy(s;)=s. It follows from Theorem 2 of [6] that
there exists a CW complex X; and a cellular map 5, : X;— X such that Cy(X,)=
C4(X) and Cy(5,) = s,. We can consider a map h: Ay—> Cy(X) as amap h,: Ay—
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C4(X,). By Theorem 2 there exists a finite CW complex Y, with a free action of
G and a map i;: Y,— X, such that Cy(i,) = Cy(h,). The action of G on Y,
determines an isomorphism 6,:m,(Y,/G)— G. Hence we obtain a pair
(Y,=Y,/G;6,). Let S5 : Cy(X) = Cy(X) also satisfy I:I*(s2)=s and let Y, be
obtained in the same way as Y, but using s,. Applying Lemma 3 to i,: Y,— X,
and k = §7%05,0i,: Y,— X, we see that the pairs (Y, 6,) and (Y,, 6,) are equival-
ent. Thus we have a well defined map @: Aut gr Hy(X)— M(Ay, X).

Let (Yy, 6,)=®(f,) and (Y, 0,)= @(f,). This means that there are CW
complex X; and X, such that Cu(X;)= Cy(X) i=1,2. There are also maps
F,:X,— X and i,: Y;— X, such that Hy(F,)=f, and Hy(i,)=h for i = 1, 2.

Suppose that the pairs (Y;, 6,) and (Y, 6,) are equivalent. Let p: Y,— Y, be
G-equivariant cellular homotopy equivalence. Set Cy(p)=r and e=
Fyoiyopei;'eF;'. Then we have

a(e)ofioB(r™)
= Hy(F;)° Hy(i5)° Hy(p) o Hy(iy) "o Hy(F)) "' o fy o Hy(h) o Hy(r) ™" o Hy(h)™'
= f,° Hy(h)o Hy(r)o Hy(h) "o f "o fy e Hy(h)o Hy(r)™ "o Hy(h) ™' = f,.

Now we show that @O(f)=P(a(e)ofoB(r'!). Let ®(f)=(Y,,0,) and
d(a(e)efoB(r 1)) =(Y,, 6,). Let us apply Theorem 2 of [6] to Y, and r: Ay—
Ag. Then we obtain a chain complex Y; and a map p: Y,— Y,. Consider two
maps i,:Y;— X, and k=F;'ce 'oF,ci,op. It is easy to check that Hy(k)=
Hy(i,). Therefore it follows from Lemma 3 that (Y;, 6,)=(Y,, 6,). Hence the
map @ defines ¢.

Now we show that ¢ is onto. Let (Y, 8) e M(Ay, X). Applying Theorem 2 of
[6] to the map h™':Cye(X)— Cy(Y)= A, we obtain a CW complex X, and a
cellular map t:X;—Y. Let g:X,—X be a homotopy equivalence. Since
Cy(X,) = C4(X), the map g determines an element s = ﬁ*(g) € Aut gr Hy(X). It is
clear that ¢(s)=(Y, 0).

COROLLARY 5. Let X=V,;,S™ and (n, X)=1. Suppose that (Y, 0,), i=
1,2 are nilpotent spaces such that Y;~ X for i=1,2. Then the pairs (Y,, 8,) and
(Y,, 0,) are equivalent iff there exists a O-admissible Z[G]-chain homotopy
equivalence h: Cy( Y,)— Cl Y,).

Proof. In this case im a = Aut Hy(X). Hence our result follows.

DEFINITION 3. Let r: G— G be an automorphism and let f: Ay— By be a
Z-chain map between complexes of free Z[ G]-modules. We say that f has type

(r) if f(g-x)=r(g)" f(x) for all ge G.
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Let o{; denote the set of all O-admissible chain homotopy equivalences of Ay
of all types (r). We shall now investigate the homotopy types of CW-complexes Y
satisfying

(i) Y is finite, Y~ X, m(Y)=G and (n, X)=1.

(ii) C4(Y) is Z-chain homotopy equivalent to Ay, where A, is such as in
Theorem 4, and the homotopy equivalence is O-admissible and has type (r) for
some re€ Aut (G).

Let H(Ag, X) be the set of homotopy types of such Y. Then we have:

THEOREM 6. If the assumptions of Theorem 4 hold then there is a map
¢, :im a\Aut gr Hy(X)/im B'— H(A, X)
which is a bijection.

B': A;— Aut gr Hy(X) is defined in a similar way as 8. The proof is similar
to that of Theorem 4.

3. In the special case when G is a cyclic group of prime order p our
classification is much more effective. Any chain complex Cy(Y) is chain
homotopy equivalent to a ‘‘canonical” one. We shall now prove this fact.
Consider the following complexes:

0—> Z[Z/p)1 =5 Z[Z/p]l—> - - -5 Z[ ZIp)—— Z[ ZIp) > Z[ ZIp]—>0,
where

(ne;p)=1 and N=e+g+---+g" !, (1)
and

Qs Z[ Z{p ] Z] gD,

where
(k;p)=1. (2)

DEFINITION 4. A chain complex Ay of Z[Z/p]-modules is called elemen-
tary if Ay is a finite direct sum of complexes of the form (1) and (2).
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LEMMA 7. Let Cy be a chain complex of projective Z[ Z/p] modules such that:

(i) Hg(Cy) is a finitely generated trivial Z/p-module without p-torsion.
(i) Hy(Ce®zz/1Z) is finitely generated.

Then C, is chain homotopy equivalent to an elementary complex Ay.

Proof. Let
By:- - -—> Z[Z]p)—> Z[ ZIp]—> Z[ ZIp]—> Z[ ZIp]—> 0

be the standard resolution of Z. Consider a chain complex X, with

X.= ) (Cq ® B,,)

p+q=n Z[Z/p]

and with a filtration

(F,X)n= 2, (c,._i ® Bi).

i=p Z[Z/p]

The associated spectral sequence converges t0 Hy(Cy®zz,,1Z) (see [2] XI). In
the cohomological spectral sequence the multiplication by a generator of
H?*(Z|p; Z) is an isomorphism. Therefore the differentials in the cohomological as
well as in the homological spectral sequence are periodic. It follows from (ii) that
EX*"'=0 for q large enough. Hence any x € E{*"* is a boundary or d,(x) # 0. Let
x=x,®e;, € E{" "= H,_,(C4)®zz,;B;, where x, is a generator of a cyclic sum-
mand of an infinite order. Let i be odd and d,x =0 for k <r and d,x# 0. Then r is
even. Let a=Yi_, c,-i®@e be a representative of x such that dae(F,_,X),_;.
Hence a part of da which belongs to F.X vanishes i.e. dc,_; =0, tc,_; +dc,_;.1 =0,
Ncq-—l-—i+2+ 0Cq—i+2= 0 Ncg_1-G-r+2) T 9Cq—(i—r+2 = 0,84 _1_G—r+1) T 9Cq——r+1y =0,
where t=e—g. Setting f,.(e) = ¢, we define a chain map from

g

0—> Z[Z/p]—> - - -—> Z[Z|p]—>0 into Csi. (%)

On the first non-trivial homology group this map is an inclusion onto a direct
summand and on the second one it is a multiplication by [ relatively prime to p.
Replacing the last differential e — g by e—g* in (*) we may assume that [=1(p).
We have that f(e)=c,_;-G-n=c¢ and Nc=1-g,=(1+p-k)-g,, where g, is a
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generator of a cyclic summand of an infinite order which is a boundary in E**. If
we set f(e) =c—v - g, then the map induced on the homology will be an inclusion
onto a direct summand. Performing the same construction for all generators of
Hy(X) which bound in E;97", we obtain a map from an elementary complex into
Cs. This map will be an isomorphism onto torsion-free part since half of the
generators of Hg(Cy) are boundaries and for half of the generators we have
dx#0. If Z/k < Hi(Cy) then there exists a chain map from

e+g+- - -+gk
00— Z[Z)p]——Z[Z|p]|——0

into C, which is an inclusion onto Z/k. This finishes the proof.
The next lemma is an easy exercise.

LEMMA 8. Let Ay be an elementary complex, C, be as in Lemma 7,
Hy(Cy)=Z and H,(C4) = 0. Let f: Ay— Cy be a chain homotopy equivalence such
that Hy(f)[e] = [p], where p € C, is an element of a base. Then f is chain homotopic
to a O-admissible map.

COROLLARY 9. Let Y be a CW complex such that w,(Y)= Z/p, He(Y) is
finitely generated and Hy(Y) is a finitely generated trivial ,(Y)-module without
p-torsion. Then Y is homotopy equivalent to a finite complex.

It follows from [6] Theorem 2, Lemmas 7 and 8 and the fact that A, is
admissible.

The corollary and also a much stronger result follow immediately from
Theorem A of the Mislin paper “Wall’s obstruction for nilpotent spaces” Topol-
ogy 14, (1975) 311-317.

Now we give an example which illustrates Theorem 4 and 6. Let a € m,,(S")
be an element of order 3. Set X=S""vS$"“U_ D' Then we have (p, X)=1 for
p>5. Aut gr Hy(X) = {1} x{£1}x{£1}} and im a ={{(1, 1), (-1, = 1)} x{x1}}.

Let A, be an elementary complex such that A;=0 for i=12, 13. Then
im B =im B'={{(1, 1), (-1, —1)} x{1}}. Therefore elements (1,1, 1) and (1, -1, 1)
determine different homotopy types.
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