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Algebren, Darstelliingskôcher, Ueberlagerungen und zurùck

C. RlEDTMANN

Eine bekannte Vermutung besagt, dass es fur jede Dimension nur endlich
viele Isomorphieklassen darstellungsendlicher Algebren ùber einem Kôrper k

gibt. Fur symmetrische Algebren wurde die Vermutung von H. Kupisch bewiesen

[10]. K. Bongartz hat sie kùrzlich auch fur Algebren bestâtigt, deren Kôcher
keinen Zyklus enthâlt [4].

In dieser Arbeit leiten wir allgemeine Ergebnisse ùber darstellungsendliche
Algebren ùber einem algebraisch abgeschlossenen Kôrper her. Daraus folgt eine

Einteilung aller selbstinjektiven Algebren in Klassen An, Dn, E6, E7 und E8. Wir
werden dièse Klassen spâter getrennt mit den Methoden von [8] behandeln und
eine vollstàndige Klassifikation erhalten. Im Fall symmetrischer Algebren der
Klasse An werden dabei nur Dade-Janusz-Kupisch-Algebren im Sinne von [8]
auftreten. Aus unserer Klassifikation wird insbesondere eine Verallgemeinerung
des Ergebnisses von H. Kupisch [10] auf selbstinjektive Algebren folgen.

Eine Vorankùndigung meiner Ergebnisse ist in den Proceedings der "International

Conférence on Ring Theory in Antwerp 1978" (Marcel Dekker, New

York) enthalten. Die Klassifikation der darstellungsendlichen selbstinjektiven
Algebren der Klassen An und Dn erscheint in den Proceedings der International
Conférence on Représentations of Algebras in Ottawa 1979. P. Gabriel danke ich

fur Diskussionen ùber die Darstellung meiner Ergebnisse.

1. Darstellungskôcher

1.1 Sei F ein Kôcher bestehend aus der Eckenmenge Fo, der Pfeilmenge !\ und
den Abbildungen d0, d1,:ri=tro [7]. Ist ael^, so nennen wir dQae Fodas Ziel
des Pfeils a und d1aero die Quelle. Ferner setzen wir

x+ {doa:aeri und dxa x]

und

x~ {d1a:aeri und doa x}

fur jede Ecke x e Fo.
199



200 C RIEDTMANN

DEFINITION. Ein Darstellungskôcher F (F, t) ist ein Kôcher F zusammen
mit einer Teilmenge Po c: Fo und einer Injektion t : Po —> Fo, so dass folgende
Bedingungen erfûllt sind:

(a) F enthâlt weder Doppelpfeile noch Schlaufen (d.h. aus a,/3gF1? dra
dxj3 und doa do(3 folgt e* /3; und aus aert folgt dla=£doa).

(b) Fur jede Ecke xe?0 gilt x~ (rx)+.

Zu jedem Pfeil x ^» y mit y g Po existiert genau ein Pfeil Ty -^ x. Wir setzen

cra /3 und erhalten somit eine Bijektion cr : {a g Ft : doa g Po} -^ {/3 g Fi : da 0 g

tF0}. Sind P und tP die uollert Unterkôcher von F mit den Eckenmengen Po und
rP0 (und den Pfeilmengen P1 dô1(P0)^dîl(P0) und (TP)1 d1
d71(rP0)), so lâsst sich die Verschiebung r zu genau einem Isomorphismus

r : P^ tP erweitern: Setze ra a2a fur aePl.
Ein Morphismus zwischen Darstellungskôchern ist ein Kôchermorphismus, der

mit den Verschiebungen vertrâglich ist. Ein Darstellungskôcher F heisst

zusammenhângend, wenn Fo^0 und wenn F keine echte direkte Summenzer-

legung in der Kategorie der Darstellungskôcher zulàsst. Dies impliziert nicht, dass

der unterliegende Kôcher zusammenhângend ist!
1.2 Zu einer endlichdimensionalen Algebra A ûber dem Kôrper k definieren
wir den Auslander-Reiten-Kôcher FA: Die Ecken sind die Isomorphieklassen
unzerlegbarer endlichdimensionaler A-Moduln. Ferner werden zwei Ecken x, y

durch einen Pfeil x —> y verbunden, wenn ein irreduzibler Morphismus von einem

Repràsentanten von x nach einem von y existiert. Fur Po wàhlen wir die
Isomorphieklassen, deren Elemente nicht projektiv sind. Die Verschiebung r wird
durch die DTr-Konstruktion von Auslander-Reiten induziert [1]. Oflfenbar ist FA
ein Darstellungskôcher.

(a) Als erstes Beispiel betrachten wir die "gebundene" Algebra des Kôchers

mit den Relationen 7^ eô, ôay 0, j3ae 0, ayfia 0 [8]. Der Auslander-
Reiten-Kôcher ist in Figur 1 abgebildet. Siehe Légende am Ende der Arbeit. Es

reprâsentieren zum Beispiel / o und vfl/ die Darstellungen
k k

\ 'Y
0 und k

' [1 0]\
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/

(b) Als zweites Beispiel betrachten wir die gebundene Algebra des Kôchers

1-^2Û3 mit der Relation (33 0[3]. Der Auslander-Reiten-Kôcher ist in
Figur 2 abgebildet.

(c) Als drittes Beispiel geben wir die gebundene Algebra des Kôchers
1 —ct-» 2O3 mit den Relationen (5a 0, j32 0: Figur 3.

(d) Unser viertes Beispiel liefert die gebundene Algebra des Kôchers

mit den Relationen 0a =0, 7j3 0, sô 0: Figur 4.

(e) Als letztes Beispiel konstruieren wir den Auslander-Reiten-Kôcher der
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\ \

2
\

\
Figur 2

1 4 mit den Relationengebundenen Algebra zum Kôcher 3 <=

ap 0, Sa 0, Y|3y 0, 07/3 0, 6eÔ 0, sôe 0: Figur 5.

1.3 Einem Kôcher Q ohne Schlaufen und Doppelpfeile ordnen wir einen Graph
Ô zu [5]: Q und Q haben dieselben Ecken. Ferner werden zwei Ecken x, y in Q
durch eine Kante x y verbunden, wenn in Q Pfeile der Gestalt x —» y oder
x <r- y existieren. Wir nennen Q einen gerichteten Baum, wenn O keinen
Unterkôcher der Gestalt x *± y enthàlt und Q ein Baum ist [5],

\

Figur 3
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o o

o o
o

Figur 4

Einem gerichteten Baum B ordnen wir einen Darstellungskocher ZB zu: Die
Ecken sind die Paare (n, x) mit xeB0 und neZ. Die Menge der Pfeile besteht

aus je einem Pfeil (n, x) (rMx)
> (n, y) und einem (n +1, y) <r(w'°°> (n, x) fur jedes

neZ und jeden Pfeil x-^y von B. Die Verschiebung t ist auf ganz (ZB)0
deflniert vermôge r(n, jc) (n +1, x). Wir geben ein Beispiel (Figur 6). In der
Folge identifizieren wir B mit einem Unterkôcher von ZB vermôge b ^* (0, b).

\/ \/ \/ \/ \/ \/ y \/ y
x/\/\/\/\/\/\/£+• o o »*w o o «^»*« o - - •-*•>•<• - o »»^ o o t£» o o •** —

+ O O - »** O O

• o o •*• o o

A_A/\
\/\/\r

/
ooo» — oo o»oo • o o o - - o •+• o - ooo»-- oo»o

o •+¦•-*• o o •>• - - - o o •*• - o o •»• o o - - •*?»?• o - o

O O ^*» O O # o O **^~ O •*•***> O •*•*• O O «

\
o«oo • o o o ooo» o o • o o • o o

/\ A A M /\ /\ /\ /\ /
Figur 5
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B B

(2,2K Al,2)\ y(0,2k ,.(-1,2).
(2, 3) -) (1,1)A (1,3) ->(0,1)A (0, 3) ->(-l, 1)A (-1, 3)

(2,4)/ N(l,4r No,4K
Figur 6

Der Graph B kann aus ZB zuriickgewonnen werden: Man betrachte den "Rest-
klassengraph" ZB/t mit den Bahnen von r in (ZB)0 als Ecken. In ZB/t werden
zwei Ecken x {(h, x) : n e Z} und y durch eine Kante verbunden, wenn ZB einen
Pfeil der Gestalt (n, x)—> (m, y) enthâlt. Der Restklassengraph ZB/t kann offen-
sichtlich mit B vermôge x^x identifiziert werden.

SATZ. Die Darstellungskôcher ZB und ZB' zu den gerichteten Bâumen B und

B' sind genau dann isomorph, wenn die Graphen B und B' isomorph sind.

Beweis. Ein Morphismus /:ZB—»ZB' ist vertrâglich mit t und induziert
folglich einen Morphismus //t : B ZB/t —» ZB'/t B'. Offensichtlich ist / genau
dann ein Isomorphismus, wenn //t einer ist. Insbesondere folgt B^B' aus

Umgekehrt gibt es zu jedem g:B—>Bf nach den zwei folgenden Lemmata
einen Morphismus /:ZB->ZB' mit f/r g. Ist g ein Isomorphismus, so auch

/. OK.

LEMMA 1. Es seien B und B' zwei gerichtete Baume und p:ZB'->Bf die
kanonische Projektion. Fur jedes beB0 und jeden Morphismus g:B —>B' gibt es

genau einen Kôchermorphismus h:B —>ZB' mit hb (0, gb) und ph — g. OK.

LEMMA 2. Es seien B ein gerichteter Baum und D ein stabiler

Darstellungskôcher. Fur jeden Kôchermorphismus h:B —» D gibt es genau einen

Morphismus von Darstellungskôchern f : ZB —> D mit f\B h.

Stabile Darstellungskôcher werden in 1.4 definiert. OK.

1.4 Sei x eine Ecke des Darstellungskôchers F. Die Bahn von x unter t ist von
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einem der folgenden Typen

x

¦i i-

In den beiden ersten Fallen sagen wir, dass x stabil ist, m den drei letzten, dass x
transjektiv ist Ist F FA der Darstellungskocher emer Algebra A, so ist die

Isomorphieklasse eines unzerlegbaren injektiven A-Moduls der Anfangspunkt
einer Bahn, wahrend die Isomorphieklasse emes unzerlegbaren projektiven Mo-
duls "Endstation" einer Bahn ist Beide Isomorphieklassen smd also transjektiv
Unsere Beispiele zeigen, dass es neben diesen îm allgemeinen noch andere

transjektive Isomorphieklassen gibt

DEFINITION Ein Darstellungskocher F heisst stabil, wenn aile Ecken von F
stabil sind

Ist B ein genchteter Baum, so ist der Darstellungskocher ZB stabil Ist F ein
behebiger Darstellungskocher, so ist der voile Unterkocher sFaF bestehend aus
den stabilen Ecken von F em stabiler Darstellungskocher, dabei wird die Ver-
schiebung von SF durch diejemge von F induziert Wir nennen SF den stabilen Teil

von F

Bemerkung Ist A eine endhchdimensionale Algebra, so entsprechen die
Ecken von SFA gewissen Isomorphieklassen unzerlegbarer Objekte der "stabilen"
Kategone îm Smne von Auslander-Reiten [1] Die Beziehung ist nur dann

bijektiv, wenn die Algebra A selbstinjektiv quasi-Frobemus) ist, d h wenn
injektive und projektive Moduln zusammenfallen

1 5 DEFINITION Sei F ein Darstellungskocher Eine Automorphismengruppe
G von F heisst zulassig, wenn keme Bahn von G in Fo eine Teilmenge der

Gestalt x~U{x} oder {x}Ux+ in mehr als einer Ecke trrfft
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Zu jeder zulàssigen Automorphismengruppe G von F konstruieren wir einen

Darstellungskôcher F/G: Wir setzen (F/G)0 F0IG und (F/G)1 FJG; die Ver-
schiebung sowie die Abbildungen Quelle und Ziel von F/G werden durch die

entsprechenden Abbildungen von F induziert. Ist F stabil, so auch F/G.

STRUKTURSATZ. Zu jedem zusammenhàngenden stabilen
Darstellungskôcher F gibt es einen gerichteten Baum B und eine zulàssige
Automorphismengruppe G c Aut ZB, so dass F isomorph ist zu XB/G. Dabei bestimmt
F den zu B gehôrigen Graphen B eindeutig bis auf Isomorphie und G eindeutig bis

auf Konjugation in Aut ZB.

Dem Beweis des Struktursatzes stellen wir in den folgenden Abschnitten
einige klassische Hilfsmittel voran.
1.6 Sei F ein zusammenhângender stabiler Darstellungskôcher. Wir wâhlen eine
feste Ecke xeF0 und betrachten die Wege 8 (y\atn,... ,a1\x) von F mit
Anfangspunkt x ([8], 1.1), die keinen Teilweg der Gestalt (z | a, cra \ rz) enthalten.
Dièse Wege fassen wir als Ecken eines neuen Kôchers B xF mit den Pfeilen

(d1am\am_l,...,a1\x)-^(y\am,...,al\x) 8, 8ï(x\\x), auf. Da B
zusammenhàngend ist und in jeder Ecke hôchstens ein Pfeil endet, kann B
oflfenbar nur ein gerichteter Baum oder ein Zyklus sein. Die zweite Môglichkeit
ist aber ausgeschlossen, weil in (x \\ x) kein Pfeil endet. Also ist B ein gerichteter
Baum.

Nach 1.3, Lemma 2, lâsst sich der Kôchermorphismus h:B-*F,
(y | am,..., c*! | x) •-> y in eindeutiger Weise zu einem "kanonischen" Morphis-
mus von Darstellungskôchern tt : Zfî —» F erweitern.

DEFINITION. Ein Morphismus von Darstellungskôchern f:A-+ F heisst

Ueberlagerung, wenn fur jede Ecke peA0 die induzierten Abbildungen p~—>

(fp)~ und p+—» (/p)+ bijektiv sind. Ferner wird vorausgesetzt, dass r (bzw. t"1) an
der Stelle p definiert ist, wenn rfp (bzw. r~1fp) definiert ist.

Als Beispiel einer Ueberlagerung kennen wir bereits die kanonische Projek-
tion / : 4 —> AIG, fails G eine zulàssige Automorphismengruppe von A ist. Sind in
unserer Définition A und F stabil, so folgt die Bijektivitât der Abbildungen
P """* (fp) aus derjenigen der Abbildungen p+ -» (fp)+.

SATZ. Es sei F ein zusammenhângender stabiler Darstellungskôcher. Dann
gilt:

(a) Ist xeF0 und B xF, so ist der kanonische Morphismus tt : ZB —» F eine

Ueberlagerung.
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(b) Ist B ein genchteter Baum, tt ZB —> F ein Morphismus von
Darstellungskochern, / A —» F eine Ueberlagerung und q eine Ecke von ZB, so gibt
es zu jedem peA0 mit fp irq genau einen Morphismus g ZB —> A mit ir fg und

qeZB

Beweis (a) Wir haben zu zeigen, dass tt fur jede Ecke (n, ô)e(ZB)0 eine
Bijektion (n, ô)+:^(7r(n, 8))+ induziert Da ir mit r vertraghch ist, durfen wir ohne

Beschrankung n 0 voraussetzen Es sei also 8 (y | am, ax \ x) eine Ecke

von B Wir berechnen 8+ m B

£+ _ \{e (z |p, am, at| x) zey+, z^r 1d1am} falls m>0
"\{e=(z|j3|x) zex+} falls m 0

Weiter gilt in ZB

LdicO} falls m>0
\{(0,e) eeô+} falls

Somit induziert tt eine Bijektion (0, ô)+ ^ y+ (b) Da tt und / mit den

Verschiebungen vertraghch smd, durfen wir wegen (n, b) rn(0, b) ohne

Beschrankung annehmen, dass q die Gestalt (0, b) ^> b hat Nun gibt es nach dem

folgenden Lemma genau emen Kochermorphismus h B -> A mit fh tt \ B und
hb p Nach 1 3, Lemma 2 existiert genau ein g ZB —» zl mit g | B h Dies ist
der gesuchte, emdeutig bestimmte Morphismus OK

LEMMA Es seien B ein genchteter Baum und f A —» F eine Ueberlagerung
Fur jedes b e Bo, jeden Kochermorphismus l B-+F und jedes peA0 mit Ib fp
gibt es genau einen Kochermorphismus h B —» A mit fh / und hb p OK

1 7 DEFINITION Sei F ein zusammenhangender stabiler Darstellungskocher,
x eine Ecke von F, B xF und tt ZB -* F die kanonische Ueberlagerung Die
Fundamentalgruppe FI(F, x) von F îm Punkt x ist die Gruppe der Decktransfor-
mationen von tt, d h der Morphismen von Darstellungskochern g ZB ~> ZB mit
TTg TT
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SATZ. Die Fundamentalgruppe 17(F, x) ist eine zulâssige Automorphismen-
gruppe von ZB, und u induziert einen Isomorphismus XB/TI(r, x) -^ F.

Der Satz folgt unmittelbar aus 1.6. Damit ist auch der Struktursatz 1.5
bewiesen mit Ausnahme der letzten Aussage, der wir uns nun zuwenden: Sei

j : F^> TjB'IG' ein Isomorphismus, wobei B' ein gerichteter Baum ist und G' eine
zulâssige Automorphismengruppe von ZB'. Da die kanonische Projektion
k : ZB' —» ZB'/G' eine Ueberlagerung ist, lassen sich j und j~l nach Satz 1.6(b) zu
zueinander inversen Morphismen ZB ^^ ZB' hochheben. Wir schliessen daraus,
dass G' gn(r9x)g1 und È^>B' (1.3).

Bemerkung. In der Folge nennen wir ZB "die" universelle Ueberlagerung von
F Die Isomorphieklasse von B heisst (Baum)klasse von F.

2. Darstellungsendliche Algebren

In diesem Abschnitt bezeichnet A eine endlichdimensionale Algebra ûber
dem algebraisch abgeschlossenen Kôrper k. Wir setzen ferner voraus, dass A
darstellungsendlich ist, d.h. dass es nur eine endliche Anzahl von Isomorphieklas-
sen unzerlegbarer A-Moduln gibt.

HAUPTSATZ. Sei F eine Zusammenhangskomponente des stabilen Teils SFA

des Auslander-Reiten-Kôchers FA zur darstellungsendlichen Algebra A. Die
Baumklasse von F ist eine der folgenden:

n -1 n, n >

Dn 1 2 3 n-2^ n>4

En 1 2 3 n-1 n, n=6,7,

/f anderen Worten: F ist isomorph zu Z*B/G, wobei G eine zulâssige
Automorphismengruppe von ZB ist und B ein Baum mit Graph B An, Dn, E6, E7 oder Es.

Der Beweis unseres Hauptsatzes erstreckt sich ùber den ganzen Abschnitt 2.

2.1 Zunàchst konstruieren wir zu einem beliebigen Darstellungskôcher F eine
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Kategorie k (F): Die Objekte sind die Ecken von F. Fur je zwei Ecken x, y
bezeichnen wir mit W^x, y) den fc-Vektorraum, der von den Wegen von x nach y
in F frei erzeugt wird. Die Zusammensetzung der Wege liefert eine Kategorie Wr
mit den Morphismenmengen Wr(x, y) und mit k-bilinearen Kompositionsabbil-
dungen. In Wr erzeugen die Morphismen £«(x |a, <xa| tx)g Wr(rx, x), wobei a
die Pfeile von F mit Ziel x durchlâuft, ein Idéal Ir. Die Restklassenkategorie
Wr/Ir mit den Morphismenmengen Wr(x, y)/Ir(x, y) ist unser fc(F).

Im Fall einer kranzàhnlichen wreath-like) Algebra A implizieren die
Ergebnisse von [8], dass k(FA) zur Kategorie der unzerlegbaren A-Moduln
àquivalent ist. Insbesondere kann dann A aus FA zurùckgewonnen werden. Dies
wird auch bei den meisten Algebren so sein, die wir in den folgenden Arbeiten
untersuchen werden. Hier wollen wir zwei Sâtze beweisen, aus denen unser
Hauptsatz folgt.

SATZ 1. Es sei F eine Zusammenhangskomponente des stabilen Teils SFA des

Auslander-Reiten-Kôchers einer darstellungsendlichen Algebra A. Es sei ferner
ZB die universelle Ueberlagerung von F. Dann gibt es ein NgN, so dass jeder Weg
8 von ZB der Lange >N im Idéal Ir liegt und folglich die Restklasse 8 0 in
k (ZB) hat

SATZ 2. Ist B ein gerichteter Baum und gilt 8 0 in k (ZB) fûrjeden Weg 8 von
ZB der Lange >NeN, N fest, so ist der Graph B isomorph zu An, Dn, E6, E1 oder

E*.

2.2 Sei mod A die Kategorie der endlichdimensionalen A-Moduln. Wir nennen
einen A-Modul x g mod A transjektiv, wenn es fur jeden unzerlegbaren direkten
Summanden Y von X ein reN gibt, so dass (DTr)rY projektiv ist oder (7>D)rY
injektiv. Die gestellte Bedingung bedeutet auch, dass die Isomorphieklasse von Y
ein transjektiver Punkt von FA ist. Einen A-Modul X g mod A ohne transjekti-
ven unzerlegbaren direkten Summanden nennen wir stabil

Fur X,Yg mod A bezeichnen wir mit ST(X, Y) den Unterraum von
HomA (X, Y) bestehend aus den Morphismen, die sich durch einen transjektiven
Modul faktorisieren lassen. Die Unterrâume SF(X, Y) liefern ein Idéal ÏÏ der

Kategorie mod A. Wir bezeichnen mit mod A die Restklassenkategorie mod A/ 3~

mit den Morphismenmengen HomA (X, Y) HomA (X, Y)I2T(X, Y), und wir
nennen mod A die stabile Kategorie zu A. Wir bemerken dabei, dass mod A nur
dann mit der stabilen Kategorie im Sinne von Auslander-Reiten [1]
ûbereinstimmt, wenn die Algebra A selbstinjektiv ist.

Es seien nun F eine Zusammenhangskomponente von SFA, ZB die universelle

Ueberlagerung von F, II eine zulâssige Automorphismengruppe mit ZB/IT^» F
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und it : ZB -* F die kanonische Projektion. Fur jede Ecke xeFQ wâhlen wir einen
(unzerlegbaren stabilen) Repràsentanten X g mod A, und wir bezeichnen mit Sf

die Menge dieser Repràsentanten.

SATZ. Es gibt einen k-linearen Funktor F : k (ZB) -» mod A mit den

Eigenschaften (a) und (b):
(a) Fur jedes Objekt x g (ZB)o ist FxeSf der Repràsentant von ttx g Fq.

(b) Fur jeden Pfeil y -^> x von ZB mit Restklasse à in k (ZB) ist Fâ :Fy —» Fx
ein irreduzibler Morphismus von mod A.

Bemerkung. Wir verlangen nicht, dass Fâ F|3, fails ira Trp. Ein Funktor F
mit dieser Eigenschaft wùrde einen Funktor k (F) —> mod A liefern und uns den
Umweg ûber die universelle Ueberlagerung ersparen.

Beweis. Die Bedingung (a) bestimmt F eindeutig auf den Objekten. Wir
haben die Bilder Fâ der Pfeile y -^ x offensichtlich so zu wâhlen, dass fur aile

x g (ZB)0 die Gleichung 0 £yex Fâ ° Fera in HomA (Frx, Fx) gilt.
Dafûr dùrfen wir wegen Satz 1.3 annehmen, dass B keinen Weg der Lange >2

zulâsst. Dann zerfâllt Bo in zwei Klassen: Wir nennen xeBQ maximal, wenn in x
kein Pfeil von B startet (d.h. wenn mindestens ein Pfeil von B in x landet); wir
nennen x minimal, wenn in x kein Pfeil von B landet. Entsprechend teilen wir die
Ecken von ZB in zwei Klassen auf:

(ZB)ô {y T~rx : x g Bo, r>0 oder r 0 und x maximal}

(ZB)o {y Trx : x g Bo, r > 0 oder r 0 und x minimal}

Ist y Trx g (ZB)J, so defînieren wir F auf allen Pfeilen von ZB, die in y starten,
und zwar induktiv nach

r, wenn xeB0 minimal ist
r — 1, wenn xeB0 maximal ist.

Ist i(y) 0, so ist yGB0 minimal, jeder Pfeil y-^z von ZB gehôrt zu B: Fur
Fâ wâhlen wir einen beliebigen irreduziblen Morphismus von Fy nach Fz in
mod A. Ist l(y) > 0, so betrachten wir y+ {yl9..., yr}, y —^-> y, und z r"xy. Es

gilt dann l(yt)=l(y)-l, und Fa~1aleHomA(Fyl,Fz) ist bereits definiert. Fur
Fâl9..., Fâ,. wâhlen wir irreduzible Morphismen in mod A, so dass £, (Fer"1 a,) °

(Fâl) 0. Dies ist môglich nach Anhang 1, Satz 3.4.
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Die Konstruktion von Fà\Fz->Fy fur ye(ZB)ô beruht auf dualen Ar-
gumenten.

2.3 SATZ. Sei F: k (ZB) —» mod A ein Funktor mit den Eigenschaften von Satz
2.2. Fur je zwei x, y e (ZB)0 induziert F eine Bijektion

© Homk (ZB) (x, z) -> HomA (Fx, Fy).
Fz=Fy

Beweis.

LEMMA. Es seien x+ {xu xr} und x -^-> x, der zu xt gehôrige Pfeil in

ZB. Zu jedem f eHomA (Fx, Fy) existieren Morphismen /t € HomA (Fxn Fy), so
Si/»(-flSi) /a"s Fx^Fy, und / AlFx +L/i(Fai) /iir ein geeignefes Àelc

Fx Fy.

Beweis. Ist Fx =Fy, so wâhlen wir A derart, dass /-Al nilpotent sei. Da

„ [Fa, FarV mFx > 0 Fx,

in mod A maximal q-irreduzibel ist (siehe Anhang 1, 3.2), kann /-Al durch
[Fâi - • - Fâr]T faktorisiert werden. Entsprechendes gilt falls Fx^Fy. OK.

Aus dem Lemma erhalten wir induktiv fur jedes neN: Zu jedem Weg
8 — (z |am,..., ax\ x) in ZB mit m<n und Fz Fy und jedem Weg s

(w ||3n,..., /3x| x) der Lange n gibt es Morphismen <£>s eHomk (ZB) (x, z) und
/eeHomA (Fw,Fy), so dass / IôF^6+Ie/e(Fë). Ist nun â^A das Radikal der
Kategorie mod A, so gilt £%A 0 fur grosses n, denn A ist darstellungsendlich.
Folglich gilt auch ^A 0, wenn SftA das Radikal von mod A bezeichnet (3.1).
Somit ist Fë 0 fur grosses n und /

Beweis der Injektivitàt Es sei (<£z) in © Homk (ZB) (x, z) mit £z F<f)2 =0.

LEMMA. Mit den Notationen des vorhergehenden Lemmas gibt es fur jedes z
und jedes i einen Morphismus <t>zl:xx^>z in k (ZB), so dass <f>z £, 4>ZJàj und

Beweis. Im Fall x+ 0 gilt HomA (Fx, Fx) k und HomA (Fx, Fy) 0 falls

Fx^Fy: ein klarer Fall. Wir nehmen also an, dass x+^0: Ist Fx=Fy, so gilt
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<{>x Alx mit A € fc und -AlFx £z,*k F<f>z e £%a(Fx, Fx). Folglich ist A 0. In allen
Fâllen hat also <f>z die Gestalt <£z Z, ^Zlâ, mit i(/zl eHomk(ZB) (x,, z). Aus
Zz JF<fe ^ folgt nun

Sei w t~1x. Da

> 0 JFx -*> Fw

eine Auslander-Reiten-Sequenz in mod A ist (Anhang 1, 3.4), gibt es ein
' € HomA (Fw, Fy) mit Xz (-Rfei)= KFv~1olx) fur jedes i. Nach der bereits bewiese-

nen Surjektivitât gibt es nun eine Familie (xz) in ©Fz=Fy Homk(ZB) (w, z) mit
l =Zz FXz- Damit ergibt sich

und I2F(iA2l-^(o--1al)) IzF^2l-/F(a-1ol) 0. Setze c^zl ^zl -^(o-1^).
OK.

Ams dem Lemma erhalten wir induktiv fur jedes neN: Zu jedem ze(XB)0
mit Fz Fy und jedem Weg 8 (w lo^,..., ax| x) der Lange n in ZB gibt es ein
<^)zô e Homfc (ZB) (w, z) mit <f>z Ss ^zs^ und £2 F<|>zS 0. Betrachten wir nun ein
festes z und wâhlen wir n grôsser als die gemeinsame Lange der Wege von x nach

z in ZB, so gibt es keinen Weg von w nach z in ZB. Folglich gilt
Homk (ZB) (w, z) 0, <f)z8 0 fur jedes ô und <£z 0. OK.

KOROLLAR. Es seien A eine darstellungsendliche Algebra, £%A das Radikal
der Kategorie mod A und N eine natiirliche Zahl mit 01% O. Dann gilt 8 0 in
k (ZB) fur jeden Weg 8 von ZB der Lange >N.

Damit ist Satz 1 von 2.1 bewiesen.
2.4 Wir wenden uns nun dem Beweis von Satz 2, §2.1 zu. Ein zusammen-
hângender gerichteter Baum B, dessen Graph B nicht isomorph zu An, Dn, E6, E7
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oder E8 ist, enthàlt bekanntlich einen gerichteten Baum B' mit Graph

213

Dn

E7 1 2-

oder

Betrachten wir das Idéal $ in k (ZB), das von allen Morphismen erzeugt wird, die
sich durch ein Objekt in (ZB)0\(ZB% faktorisieren lassen. Offenbar ist k (ZBr)
âquivalent zu k (ZB)/#. Wir wollen nun zeigen, dass in ZBf Wege 8 beliebiger
Lange mit Restklasse ô#0 in k (ZB') existieren. Das Gleiche gilt dann auch in

ZB, und Satz 2 folgt.
2.5 Es bleibt zu zeigen, dass es im Fall B Dn, É6, É7, És Ecken x e Bo gibt, so
dass Homk(ZB)(x, y)^0 fur unendlich viele ye(ZB)0. Wir geben dafùr einen
"theoretischen" Beweis, der auf klassische Ergebnisse zurùckgreift und dièse neu
beleuchtet.

Sei B ein beliebiger endlicher gerichteter Baum B, mod k (B) die Kategorie
seiner Darstellungen ùber k und mod k (ZB) die Kategorie der Darstellungen des

gebundenen Kôchers ZB mit den Relationen ZdlO<=x (a~la)a 0, Vx € (ZB)0. Wir
fassen eine Darstellung Wemod k (ZB) (bzw. Wemod k (B)) auf als k-linearen
Funktor fc(ZB)-*modfc (bzw. fc(B)-*modfc, wobei k (B) die voile Unter-
kategorie von k (ZB) mit der Objektmenge Bo ist). Als Beispiele haben wir die

darstellbaren Funktoren x%B Homk (ZB) (x, und xB Homk (B) (x, mit x e Bo.
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Dièse sind projektiv und geben bekanntlich Anlass zu kanonischen

Isomorphismen

Hom (xZB, W) ^ W(x) &- Hom (xB, W \ k (B)), Wemod fc (ZB),

die wir folgendermassen deuten: Sei £% : mod k (ZB) —> mod k (B), W*-+

W\k(B) die Restriktion und 56 : mod fc (B) -> mod fc (ZB) der zu 3% linksadjun-
gierte Funktor. Fur jedes V € mod k(B) ist <3?V bis auf Isomorphie durch die
Existenz eines in W funktoriellen Isomorphismus gekennzeichnet:

Hom (<ev9 W)^Hom (V, W | fc (B)).

Folglich ist xZB -^ «S6cB.

2.6 Wir haben zu untersuchen, bei welchen Ecken ye(ZB)0 der Funktor
jtZB-^>i£x:B den Wert 0 annimmt. Mit diesem Ziel im Auge wàhlen wir unter
vielen môglichen Konstruktionen des Funktors ££ die folgende aus: Wir versehen

Bo mit der minimalen Halbordnung, derart dass dla<doa fur aile aeBl. Wir
wâhlen eine Aufzâhlung x1?..., xr von Bo, derart dass i<j die Relation xl^xl
impliziert. Zur Kategorie K0=k (B) fûgen wir dann schrittweise die Objekte

T~1XU T"XX2, T~lXr, T"2Xi, T~2Xr, T~3XU

hinzu. Somit erhalten wir eine aufsteigende Folge

bestehend aus vollen Unterkategorien von k (ZB). Die Restriktion 0t ist die

Komposition der Restriktionen mod k (ZB) —^ mod Kn -^> mod Ko. Folglich
ist X eine Komposition linksadjungierter Funktoren modK0—:3->

mod Kn -^-> mod fc (ZB), und es gilt offensichtlich £n^> 9t'n5£ (da Kn eine voile
Unterkategorie von k (ZB) ist, gilt nâmlich 9L'J£'n^*l: Deute 5£'n als Kaner-
weiterung, [11] Kap. X). Ferner verschwindet 5£V fur jedes VemodKo an den

Stellen rsx mit xeB0 und s>0. Mit anderen Worten: Wir kônnen ££V kon-
struieren, indem wir V schrittweise auf Ku K2,... erweitern.

Wir geben die Konstruktion von SexV (Beweis klar!): Es ist (jex V)(x) V(x)
fur xgB0, und (^1V)(t~1x1) ist der Cokern der Abbildung [(V(a)]: V(x1)->
©« V(doa), wobei a die Pfeile von B mit dxa xt durchlâuft. Die Morphismen

(^V)(a~1a): V(doa)-^ (££l V)(r~1x1) sind die Komponenten der Cokernprojek-
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Figur 7

tion. Nach Konstruktion haben wir also eine exakte Sequenz

Durch Iterieren dieser Konstruktion erhalten wir das folgende Ergebnis (Fig.
7): Es seien B° B, B\ B2,..., B\ Br+\ die vollen Unterkôcher von ZB mit
den Eckenmengen

Bo Bo,

Die Verschiebung t liefert Isomorphismen Bl^r r~lBl^B\ und Bl+1 ergibt
sich aus Bl durch die Bernstein-Gelfand-Ponomarjow-Transformation einer
"Quelle" in eine "Senke" [2]. Der Funktor V^5£V \ B1 stimmt ûberein mit dem
Funktor F~t in der Notation von [7], 1.5, und V>->££V\Br identifiziert sich mit
dem Coxeter-Funktor <f>~ im Sinne von Berstein-Gelfand-Ponomarjow.

Nun ist fur x xl die Darstellung xBemodfc(B) projektiv unzerlegbar. Im
Fall B=Dn, É6, É7, És ist nach Dlab-Ringel [6] (siehe auch [7], Theorem 1.8a))

xZB \Bpr^*3!xB\ Bprs^ <P~p(xB) unzerlegbar fur jedes p. Insbesondere verschwin-
det x1LB Homk (ZB) (x, nicht auf Bpr r~pB. Dies beendet den Beweis von 2.1,
Satz 2.

3. Anhang 1: Auslander-Reiten-Sequenzen

Sei A eine endlichdimensionale Algebra ùber k, wobei wir k zur Verein-
fachung als algebraisch abgeschlossen voraussetzen. Mit modA bezeichnen wir
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die {Catégorie der endlichdimensionalen A-Linksmoduln, mit *ïï eine feste Menge
von Isomorphieklassen unzerlegbarer Moduln aus mod A. Wir nennen M e mod A
einen 3~-Modul, wenn die Isomorphieklassen aller unzerlegbaren direkten Sum-
manden von M zu 2T gehôren. Fur M, Ne mod A bezeichnen wir mit 3~(M,N)
den Unterraum von HomA (M, N) bestehend aus den Morphismen, die sich durch
einen £T-Modul faktorisieren lassen. Die Unterrâume 3"(M, N) liefern ein Idéal
(2T) der Kategorie mod A. Die zu {SF) gehôrige Restklassenkategorie mod AI(ST)

mit den Morphismenmengen HomA (M, N) HomA (M, N)/2T(M9 N) bezeichnen
wir mit mod A. Unsere Notation stimmt mit derjenigen von §2 ûberein, wenn ST

die Menge der transjektiven Isomorphieklassen ist.

3.1 DEFINITION. Es sei X ein unzerlegbares Objekt von mod A. Ein Mor-
phismus /eHomA (X, Y) heisst q-irreduzibel, wenn / kein Schnitt ist und wenn

fur jede Faktorisierung X A> Z -^> Y von / in mod A entweder fx ein Schnitt ist
oder f2 eine Retraktion.

Wir kônnen die q-irreduziblen Morphismen leicht mit Hilfe des "Radikals"
der Kategorie mod A charakterisieren. Fur X, Y e mod A setzen wir SfrA(X, Y)

|/€HomA (X, Y):\° °] liegt im Radikal von EndA (X©Y)|. Die an / ge-

stellte Bedingung ist bekanntlich dazu âquivalent, dass / keinen unzerlegbaren
direkten Summanden von X isomorph auf einen direkten Summanden von Y
abbildet. Die Vektorrâume ®A(X, Y) bilden ein Idéal <3lA von mod A: Wir
nennen es Radikal von mod A. Das Quadrat 9l\ des Radikals definieren wir
vermôge

®a(X, Y) X ^A (Z, Y) o <%A (X, Z).

SATZ. Es sei Yl5..., Yr eine Folge paarweise nichtisomorpher unzerlegbarer
Objekte in mod A. Ist Xemod A unzerlegbar, so sind die folgenden Aussagen
âquivalent:

(i) Der Morphismus f [/t • • • /r]T:X-> Y^© • • • ©Y?- ist q-irreduzibel in
mod A.

(ii) Fur jedes i 1,..., r liegen die Komponenten flU /lUi von ft in
£%A(X, YJ, und ihre Restklassen fll9..., finie9lA(X, Yt)/^A(X, Y,) sind k-linear
unabhângig.

Beweis. (i)^>(ii): Da / keine Retraktion zulâsst, sind die Komponenten ftJ

nicht invertierbar. Folglich liegen sie im Radikal. Bestunde eine Abhàngigkeit
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zwischen fll9..., fltti, zum Beispiel ftl A2/l2 + A^ it A, g k, so gâbe es

eine Relation fli A2/l2+ ••• + An/mi+gh mit he£%A(X, Z) und ge£%A(Z, Y,).

Wir hâtten dann die Faktorisierung

/,=

L 0 0

h

f,2

u

und eine entsprechende Faktorisierung fur /: Widerspruch.
(ii)^(i): Nehmen wir an, / sei q-reduzibel, d.h. eine Komposition

XA> z±> Y?» © • • • © Yr\ wobei h kein Schnitt und g^gx"- gr]T keine Re-
traktion ist. Gibt es zu jedem gt einen Schnitt st : Y" —» Z, so sind in der

Komposition [g(sj: Y-+Y mit Y= Y"* © • • • © Y"' die Diagonalkomponenten
gtst identische Morphismen, wâhrend gtSj fur i^j in £%A liegt. Folglich ist [g,sj
invertierbar: Widerspruch. Wir schliessen daraus, dass g, fur ein geeignetes i

keine Retraktion ist.
Es sei dann Z Ytm © T, wobei T keinen zu Y, isomorphen direkten Summan-

den enthâlt. Es sei ferner h und g, [c d] mit ft ca + db. Da h kein Schnitt

und be&A(X,T). Wegen d€^A(T, Y,n) erhalten wir
Yt)n7^A(X, Yt)n. mit âe^A(X, Yt)m/

Yr, Y^)^ k"Xm. Da c keine Retrak¬

ist, gilt a^
schliesslich fl=[/ll---/in,]T c

9Hl(X, Yt)m und ceHomA (Y?1,

tion ist, gilt Rang(c)<nl, und es gibt eine Zeile 0^ A =1^ mit
Ac 0 Daraus folgt
Widerspruch. OK.

schliesslich /i^ À/ Acâ 0:

3.2 DEFINITION. Es sei Xe mod A unzerlegbar. Ein Morphismus /e
HomA (X, Y) heisst maximal q-irreduzibel, wenn / q-irreduzibel ist und

[/g]T : X—» Y®Z q-reduzibel fur jedes

SATZ. Es sei X e mod A unzerlegbar:
(a) Es gibt einen maximalen q-irreduziblen Morphismus f:X—> Y in mod A.

(b) Ist /:X-> Y maximal q-irreduzibel und g:X-^ Z kein Schnitt, so existiert

ein h:Y-+Z in mod A mit g hf. Ist auch g maximal q-irreduzibel, so ist jedes

solche h invertierbar.
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Nach Satz 3.1 bedeutet die Existenz eines maximalen q-irreduziblen Morphis-
mus / : X -» Y, dass es bis auf Isomorphie nur endlich viele unzerlegbare Z €
mod A mit £%A(X, Z) f ëftA(X, Z) gibt.

Beweis. Nach Voraussetzung hat der A-Modul X die Gestalt X X0© T mit
unzerlegbarem Xo, wobei T ein £T-Modul ist und Xq nicht. Wir kônnen ohne
Beschrânkung annehmen, dass X Xq. Dann existiert nach [1] ein maximaler
q-irreduzibler Morphismus e:X—> Y in mod A. Die Restklasse ëeHomA(X, Y)
ist dann ofïensichtlich maximal q-irreduzibel in mod A und erfùllt die erste
Aussage von (b) fur f ë. Ist g q-irreduzibel, so ist h eine Retraktion, und ë ist
isomorph zu einem Morphismus [g nT'X-*Z©Kerh. Ist g sogar maximal q-
irreduzibel, so ist Kerh 0. Folglich ist jeder maximal q-irreduzible Morphismus /
mit Quelle X isomorph zu ë, und (b) ist erfûllt. OK.

3.3 DEFINITION. Es sei Z ein unzerlegbares Objekt von mod A. Ein
Morphismus geHomA(Y, Z) heisst z-irreduzibel, wenn g keine Retraktion ist und

wenn fur jede Faktorisierung Y-^-» X-^-> Z von g in mod A entweder gt eine
Retraktion oder g2 ein Schnitt ist.

Sind Y und Z beide unzerlegbar, so stimmen die Definitionen der z-
Irreduzibilitât und der q-Irreduzibilitât von g ûberein. Wir sagen dann einfach,
dass g irreduzibel ist. Fur z-irreduzible Morphismen gelten die dualen Sàtze zu
3.1 und 3.2.

SATZ. Fur unzerlegbare Objekte Y, Zemod A sind die beiden folgenden Au-
ssagen âquivalent:

(0 Der Morphismus [gx • • • gn]: Yn -> Z ist z-irreduzibel
(ii) Der Morphismus [gx • • • gn]T : Y—> Zn ist q-irreduzibel.

Beweis. Nach Satz 3.1 und der dazu dualen Behauptung bedeuten beide

Aussagen, dass die Restklassen g1?..., gn e@lA(Y, Z)l3fc\(Y, Z) linear
unabhàngig sind. OK.

3.4 DEFINITION. Eine Auslander-Reiten-Sequenz von mod A ist ein Dia-

gramm der Gestalt

mit gf 0, wobei X, Zemod A unzerlegbar sind, Y^O, / maximal q-irreduzibel
und g maximal z-irreduzibel.
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Im Fall 5" 0 sind die Auslander-Reiten-Sequenzen die "almost split
séquences" von [1].

SATZ. Es seien X unzerlegbar und f : X —» Y maximal q-irreduzibel in mod A.

(a) Entweder ist f epimorph in mod A, oder es existiert eine Auslander-Reiten-

Sequenz der GestaltX-^ Y-^> TrDX ([1]).

(b) Sei X > Y—^Z eine Auslander-ReitenSequenz in mod A. Zu jedem

heHomA (Y, M) mit hf O gibt es ein l eHomA (Z, M) mit h lg; zu jedem

p e HomA (N, Y) mit gp 0 gibt es ein q e HomA (N, X) mit p =fq.

(c) Sind X-^Y^Z und X —» Y'^Z' Auslander-Reiten-Sequenzen zu X, so

existieren Isomorphismen y : Y^ Y' und z : Z2^ Z' mit f y/ und gy zg'.

Beweis. Wir nehmen ohne Beschrânkung an, dass X ein unzerlegbarer A-
Modul ist. Ist X injektiv in mod A mit Sockel S, so ist die kanonische Projektion
p:X->X/S bekanntlich maximal q-irreduzibel in mod A. Folglich ist pe
HomA (X, X/S) maximal q-irreduzibel in mod A. Wir zeigen, dass p epimorph ist:
Sei qeHomA (X/S,M) mit qp O. Dann ist qp eine Komposition X^>T^->M,
wobei T ein £f-Modul ist. Da X in mod A nicht null ist, ist r nicht injektiv und
hat deshalb die Form r tp. Aus qp sr stp folgt nun (q - st)p 0, q - st 0 und

Ist X nicht injektiv in mod A, so existiert in mod A nach [1] eine Auslander-
Reiten-Sequenz

mit injektivem u und surjektivem v. Wir zeigen, dass die induzierte Sequenz
X±>E2* TrDX die Bedingung (b) erfùllt: Es sei nàmlich weHomA (E, M) mit
wû =0. Dann ist wu eine Komposition X-h> T-h> M, wobei T ein £T-Modul ist. r
ist kein Schnitt und hat deshalb die Form r tu. Aus wu sr stu folgt
(w — st)u=O. Da Auslander-Reiten-Sequenzen in mod A exakt sind, faktorisiert
w - st durch v : w - st mv. Es folgt w mv. Duale Argumente liefern den 2. Teil
von (b).

Ist X nicht injektiv und TrDX ein 5"-Modul, so ist û also epimorph. Die
Folgerung gilt selbstverstândlich auch, wenn û 0, d.h. wenn E ein £T-Modul ist.

Bleibt der Fall, wo E, TrDX keine ff-Moduln sind und X nicht injektiv. In
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diesem Fall ist X -^ E -^ TrDX nach Konstruktion eine Auslander-Reiten-
Sequenz in mod A. Da û und / beide maximal q-irreduzibel sind, gibt es nach Satz
3.2 einen Isomorphismus h : JE^> Y mit /= hû. Wir setzen g ûh"1. Damit ist (a)

Wir beweisen (b): Sei X—» Y -^> Z eine Auslander-Reiten-Sequenz. Da û und

/ beide maximal q-irreduzibel sind, gibt es nach 3.2 einen Isomorphismus
h :£-=* Y mit /= hû. Da X-h> E A> TrDX die Bedingung (b) erfullt, existiert ein

l:TrDX-*Z mit /û gh. Da gh z-irreduzibel ist und û kein Schnitt, ist l eine
Retraktion zwischen unzerlegbaren Objekten und folglich ein Isomorphismus. Mit
der einen genûgt nun auch die andere Sequenz der Aussage (b).

Zu (c): Nach dem Beweis von (b) ist jede Auslander-Reiten-Sequenz zu X
isomorph zuX^E^ TrDX. OK.

3.5 In dieser Arbeit betrachten wir hauptsâchlich darstellungsendliche Algeb-
ren. Fur dièse gilt der folgende Satz, den wir K. Bongartz verdanken.(1)

SATZ. Sind X, Y unzerlegbare Moduln ùber der darstellungsendlichen Algebra
A, und ht <3lA das Radikal von mod A, so gilt [^A(X, Y)/9l\(X, Y):k]<l. Mit
anderen Worten: Ist der Morphismus /:X-> Yn q-irreduzibel, so gilt n<l.

Beweis. Da die Komponenten /i, ...,/„ von / q-irreduzibel sind, gilt
[X:fc]^[Y:k], Wir unterscheiden zwei Fâlle:

(a) Fall [X:k]<[Y:fc]: Aus Dimensionsgriinden ist / injektiv und X nicht!
Betrachten wir die Auslander-Reiten-Sequenz

0 >X-^->Yn@Z-ï->TrDX >0

zu X in mod A. Aus n >2 folgt [Y: fc]<[TrDX: fc], und h \ Yn : Yn -» TrDX ist
z-irreduzibel. Nach 3.3 existiert ein q-irreduzibler Morphismus Y->(TrDX)n.
Induktiv erhalten wir

[X:k]<[Y:k]<[TrDX:k]<[TrDY:k]< ••• <[(TrD)rX:k]
<[(TRD)rY:k]

fur jedes reN. Da (TrD)rX unzerlegbar ist, kann A nicht darstellungsendlich
sein.

(b) Fall [X:k]>[Y:fc]: dualer Beweis! OK.

JWie wir inzwischen erfahren haben, ist dieser Satz seit lângerer Zeit in der Schule von M.
Auslander als unverôffentlichtes Ergebnis von R. Bautista bekannt.
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4. Anhang 2: Zulassige Automorphismengruppen

Es sei B em genchteter Baum, so dass B den Graphen N nicht enthalt (Der
genchtete Baum N hat N als Eckenmenge und enthalt zu jedem i eN emen Pfeil

l-M + 1)

4 1 Wir bezeichnen mit (Aut B)o die Teilmenge {fe Aut B 3x e Bo mit fx x}
von Aut B Bekannthch ist (Aut B)o eine Gruppe, und es gibt mindestens eine
Ecke x e Bo, die fest bleibt unter (Aut B)o Ist (Aut B)o ^ Aut B, so gibt es genau
eine Kante von B, die fest bleibt unter Aut B Dann ist Aut B/(Aut

4 2 Mit p bezeichnen wir den m 1 3 definierten Morphismus p Aut ZB
AutB

SATZ Die Verschiebung r ist zentral in Aut ZB, wnd die Sequenz

1 -* rz-* Aut ZB -^-> Aut B -^ 1

ist exakt

Beweis Klar nach 13 OK

Wir bezeichnen p H(Aut B)o) mit (Aut ZB)0 und die Projektion (Aut ZB)0
(AutB)0 mit p0

KOROLLAR (Aut ZB)0 ^ tz x (Aut B)o

Es sei xeB0 fix unter (Aut B)o Die Untergruppe tzci (Aut ZB)0 hat
als Supplément S die Gruppe der Automorphismen mit Fixpunkt (0, x)

KOROLLAR Jede nichttrwiale zulassige Automorphismengruppe G <= Aut ZB
ist zykhsch unendhcher Ordnung

Beweis Die Gruppe G0=GD(Aut ZB)0 ist zulassig Darum gilt GoH S {1},
S wie oben, die Projektion Go -> tz langs S ist injektiv, und es ist Go ^> Z oder

Gq^ {1} Ist G Go, so ist Go nicht trivial, und wir sind fertig Ist G^G0, so ist
G eine Erweiterung von Go mit pz/2Z (4 1) Eine solche Erweiterung ist trivial
oder zykhsch Nehmen wir an, sie sei trivial, was insbesondere den Fall Go ^ {1}
emschhesst Sei x—y fest unter p und B' der voile Unterkocher von B mit
(B')0 {x, y} Unter emem Reprasentanten peG von p mit p2 l bleibt der
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Darstellungskôcher ZB' <= ZB stabil. Nun gilt oflfensichtlich Aut ZB' ^ Z. Wegen
p2=l operiert p trivial auf ZB', und p hat die Fixpunkte x, y:
Widerspruch. OK.
4.3 Wir wollen fur B=An, Dn, E6, E7 und E8 bis auf Konjugation aile

zulâssigen nichttrivialen Automorphismengruppen bestimmen:

B=An, n ungerade:

Es gilt AutB (AutB)0 </>z/2Z mit <£i n + l-i und folglich
Tzx^z/2z mit ^(o,(w + l)/2) (O,(ri + l)/2) und p<£> 4>. Die zulâssigen
nichttrivialen Automorphismengruppen sind (rr)z und (rr<£)z mit r>0.

B An, n gerade:

Es ist Aut B pz/2Z mit pi n +1 - i und (Aut B)o {1}. Somit gilt Aut ZB pz
mit r p2 und pp p. Die zulâssigen nichttrivialen Automorphismengruppen sind
die Gruppen (pr)z mit r>l.

B=Dn 1-2 n-2^n~\ n>5:

Es gilt Aut B (Aut B)o ^Z/2Z mit 4>i i, i 1,..., n - 2, <j>(n -1) n, </m

n -1. Somit ist Aut ZjB=tzx <£>z/2Z mit <£(0,1) (0,1) und p<t> <î>. Also sind die
zulâssigen nichttrivialen Automorphismengruppen (Tr)z und (Tr</>)z mit r>0.

Die Gruppe Aut B (Aut B)o ist die symmetrische Gruppe ©3. Somit gilt
AutZB TzxS, S wie in 4.2. Bis auf Konjugation sind {1}, (3 4)Z/2Z und

(13 4)Z/3Z die einzigen zyklischen Untergruppen von ©3. Eine zulâssige
nichttriviale Automorphismengruppe ist konjugiert zu (rr)z, (rr<t>)x oder (rri//)z
mit r >0, <t>,il/eS, p<t> (3 4) und pip (1 3 4).

B=E6=l-2-3-5-6:
i

4

In diesem Fall gilt Aut B (Aut B)o <^Z/2Z mit <£ (16)(25) und AutZB
rz x <£>Z/2Z mit <^(0, 3) (0, 3) und p<t> — 4>. Die zulâssigen nichttrivialen
Automorphismengruppen sind (Tr)z und (rr<£)z mit r>0.
B En 1-2-3-5 n, h 7, 8:
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Es ist Aut B ={1} und AutZB rz. Die zulâssigen nichttrivialen Untergruppen
sind die Gruppen (rr)Zt mit r>0.
4.4 Schlussbemerkung: Die geometrische Realisierung eines Darstellungskôchers.
Es befriedigt uns zu wissen, dass die Fundamentalgruppe und die universelle
Ueberlagerung eines Darstellungskôchers F eine geometrische Interprétation
zulassen. Jedem F kônnen wir nâmlich einen Flâchenkomplex simpliziale
Menge der Dimension <2 in der Terminologie von [9]) KF zuordnen: Die
O-Simplizes von KF sind die Ecken von F. Die Menge der nichtentarteten
1-Simplizes ist die disjunkte Vereinigung der Pfeilmenge F1 mit dem Graph
{(x, tx)} der Verschiebung t; auf Fx fallen die Randabbildungen mit den Abbil-
dungen d0 und d1 von 1.1 zusammen; auf dem Graph sind sie definiert durch
do(x, rx) x, dx(x, rx) tx. Die nicht-entarteten 2-Simplizes schliesslich sind die

Wege 8 von F der Gestalt tx-^U y -^-»x; wir setzen do8 a, dtô (x, rx),
d28 cra.

Die Ueberlagerungen A von F entsprechen den Ueberlagerungen des

Flàchenkomplexes KF vermôge A »-> KA. Wie wir wissen, entsprechen dièse den
(topologischen) Ueberlagerungen der geometrischen Realisierung \KF\ von KF
(siehe Figuren).

Die Figuren lb, 2, 3 und 5 zeigen eine Ueberlagerung (1.6) des entsprechenden Auslander-
Reiten-Kôchers. Punkte bzw. Pfeile, die denselben Modul bzw. Morphismus reprâsentieren, sind zu
identifîzieren. Vergessen wir im 1. Beispiel zusâtzlich die projektiven Darstellungen, d.h. betrachten
wir den stabilen Teil SFA (1.4), so entsteht Figur la.

Die Verschiebung t ist als unterbrochene Linie eingetragen. In Figur 2 haben wir auf dièse Angabe
verzichtet; es ist klar, fur welche Moduln t definiert ist.
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