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Algebren, Darstellungskocher, Ueberlagerungen und zuruck

C. RIEDTMANN

Eine bekannte Vermutung besagt, dass es fur jede Dimension nur endlich
viele Isomorphieklassen darstellungsendlicher Algebren iiber einem Korper k
gibt. Fur symmetrische Algebren wurde die Vermutung von H. Kupisch bewiesen
[10]. K. Bongartz hat sie kiirzlich auch fiir Algebren bestatigt, deren Kocher
keinen Zyklus enthalt [4].

In dieser Arbeit leiten wir allgemeine Ergebnisse tiber darstellungsendliche
Algebren uiber einem algebraisch abgeschlossenen Korper her. Daraus folgt eine
Einteilung aller selbstinjektiven Algebren in Klassen A,, D,, E,, E; und Eg. Wir
werden diese Klassen spater getrennt mit den Methoden von [8] behandeln und
eine vollstandige Klassifikation erhalten. Im Fall symmetrischer Algebren der
Klasse A, werden dabei nur Dade-Janusz-Kupisch-Algebren im Sinne von [8]
auftreten. Aus unserer Klassifikation wird insbesondere eine Verallgemeinerung
des Ergebnisses von H. Kupisch [10] auf selbstinjektive Algebren folgen.

Eine Vorankiundigung meiner Ergebnisse ist in den Proceedings der “Interna-
tional Conference on Ring Theory in Antwerp 1978” (Marcel Dekker, New
York) enthalten. Die Klassifikation der darstellungsendlichen selbstinjektiven
Algebren der Klassen A, und D, erscheint in den Proceedings der International
Conference on Representations of Algebras in Ottawa 1979. P. Gabriel danke ich
fur Diskussionen uiber die Darstellung meiner Ergebnisse.

1. Darstellungskocher

1.1 Sei I' ein Kocher bestehend aus der Eckenmenge I, der Pfeilmenge I'; und
den Abbildungen d,, d,,:I'; 3T, [7]. Ist a € I}, so nennen wir dya € I'ydas Ziel
des Pfeils « und d,a € I'y die Quelle. Ferner setzen wir

x"={dya:aecl’y, und d,a=x}
und
x ={dja:ael'y und d,a=x}

fir jede Ecke x eI,
199
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DEFINITION. Ein Darstellungskocher I' = (I, 7) ist ein Kocher I zusammen
mit einer Teilmenge Py< I, und einer Injektion 7:P,— Iy, so dass folgende
Bedingungen erfiillt sind:

(a) I' enthalt weder Doppelpfeile noch Schlaufen (d.h. aus o, Be I, d,a=
d.B und dya =d,B folgt a =B; und aus a €I, folgt d,a# dya).

(b) Fur jede Ecke x e P, gilt x~ =(7x)".

Zu jedem Pfeil x => y mit y € P, existiert genau ein Pfeil 7y £, x. Wir setzen
oa = und erhalten somit eine Bijektion o:{ae€l':dyjacPy}=>{Bel:d,Be
7P,}. Sind P und 7P die vollen Unterkocher von I' mit den Eckenmengen P, und
7P, (und den Pfeilmengen P,=d,'(P,)Nd;'(P,) und (7P),=d;'(7P,)N
di'(7P,)), so lasst sich die Verschiebung v zu genau einem Isomorphismus
7: P> 7P erweitern: Setze ta = o’a fir a e P,.

Ein Morphismus zwischen Darstellungskochern ist ein Kochermorphismus, der

mit den Verschiebungen vertraglich ist. Ein Darstellungskocher I’ heisst
zusammenhdngend, wenn I'y#( und wenn I" keine echte direkte Summenzer-
legung in der Kategorie der Darstellungskocher zulasst. Dies impliziert nicht, dass
der unterliegende Kocher zusammenhangend ist!
1.2 Zu einer endlichdimensionalen Algebra A tuiber dem Korper k definieren
wir den Auslander—Reiten-Kocher I',: Die Ecken sind die Isomorphieklassen
unzerlegbarer endlichdimensionaler A-Moduln. Ferner werden zwei Ecken x, y
durch einen Pfeil x — y verbunden, wenn ein irreduzibler Morphismus von einem
Reprasentanten von x nach einem von y existiert. Fur P, wahlen wir die
Isomorphieklassen, deren Elemente nicht projektiv sind. Die Verschiebung r wird
durch die DTr-Konstruktion von Auslander-Reiten induziert [1]. Offenbar ist I,
ein Darstellungskocher.

(a) Als erstes Beispiel betrachten wir die ‘“‘gebundene” Algebra des Kochers

mit den Relationen yB =¢d, ay=0, Bac =0, ayBa =0 [8]. Der Auslander-
Reiten-Kocher ist in Figur 1 abgebildet. Siehe Legende am Ende der Arbeit. Es
reprasentieren zum Beispiel -"; ound \Af die Darstellungen

k k
(1 0] [0]
k/ \0 und k/ Ej\

NV N L

k2
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Figur 1b.

(b) Als zweites Beispiel betrachten wir die gebundene Algebra des Kochers

1—5>20; mit der Relation B>=0[3]. Der Auslander-Reiten-Kocher ist in
Figur 2 abgebildet.

(c) Als drittes Beispiel geben wir die gebundene Algebra des Kochers
1 ——> 2 4 mit den Relationen Ba =0, B2 =0: Figur 3.

(d) Unser viertes Beispiel liefert die gebundene Algebra des Kochers

1/2———)3\4
\5/

mit den Relationen Ba =0, yB8 =0, £6=0: Figur 4.
(e) Als letztes Beispiel konstruieren wir den Auslander-Reiten-Kocher der
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Figur 2.

gebundenen Algebra zum Kocher 3 ‘Q_B:Z 122 :“z;’ 4 mit den Relationen
a3 =0, 6a=0, yBy=0, ByB =0, 6e66 =0, £6¢ =0: Figur 5.

1.3 Einem Kocher Q ohne Schlaufen und Doppelpfeile ordnen wir einen Graph
Q zu [5]: Q und Q haben dieselben Ecken. Ferner werden zwei Ecken x, y in Q
durch eine Kante x y verbunden, wenn in Q Pfeile der Gestalt x — y oder
x <y existieren. Wir nennen Q einen gerichteten Baum, wenn Q Kkeinen
Unterkocher der Gestalt x 2y enthilt und Q ein Baum ist [5].

\/\/\

"8 —— - -~ QO - - -

\ /\

Figur 3.
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SN 00.00 _______ 7 oo°
°//m§§‘/// \\\454_550
VAN AY
N/

Einem gerichteten Baum B ordnen wir einen Darstellungskocher ZB zu: Die
Ecken sind die Paare (n, x) mit x € B, und n€Z. Die Menge der Pfeile besteht
aus je einem Pfeil (n, x) —==5 (n, y) und einem (n+1, y) =225 (n, x) fir jedes
neZ und jeden Pfeil x =y von B. Die Verschiebung 7 ist auf ganz (ZB),
definiert vermoge 7(n, x)=(n+1, x). Wir geben ein Beispiel (Figur 6). In der
Folge identifizieren wir B mit einem Unterkocher von ZB vermoge b = (0, b).

NSNS NS NS \/ NSO\

f\z\/\/xéw!§%\/\/\

WAV |
/\/\/\/\/\/\/\/\/\

ANV
VAN AVAYAS

"/\ A AN AN A A AN AN AN

Figur 5.
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A
\4 \4

B B
(22N (1,2) (0, 2) (-1,2)-..
0 HY @, 1)/ 41,330, 15 O, 3>\( 1,5 (-1,3)- 53
(2, 4)/ (1 4)/ \‘(0 4) \( 1,4)"
Figur 6

Der Graph B kann aus ZB zuriickgewonnen werden: Man betrachte den ‘‘Rest-
klassengraph” Z B/t mit den Bahnen von 7 in (ZB), als Ecken. In ZB/r werden
zwei Ecken x ={(n, x):n € Z} und y durch eine Kante verbunden, wenn ZB einen
Pfeil der Gestalt (n, x) — (m, y) enthalt. Der Restklassengraph ZB/r kann offen-
sichtlich mit B vermbge X x identifiziert werden.

SATZ. Die Darstellungskocher ZB und ZB' zu den gerichteten Bdumen B und
B’ sind genau dann isomorph, wenn die Graphen B und B’ isomorph sind.

Beweis. Ein Morphismus f:ZB — ZB' ist vertriaglich mit 7 und induziert
folglich einen Morphismus f/7: B =ZB/t — ZB'/r = B’. Offensichtlich ist f genau
dann ein Isomorphismus, wenn f/7 einer ist. Insbesondere folgt B=> B' aus
ZB>ZB'.

Umgekehrt gibt es zu jedem g:B — B’ nach den zwei folgenden Lemmata
einen Morphismus f:ZB — ZB' mit f/r=g Ist g ein Isomorphismus, so auch
f. OK.

LEMMA 1. Es seien B und B' zwei gerichtete Biume und p:ZB'— B’ die
kanonische Projektion. Fiir jedes b€ B, und jeden Morphismus g:B — B’ gibt es
genau einen Kochermorphismus h:B — ZB' mit hb = (0, gb) und ph=g. OK.

LEMMA 2. Es seien B ein gerichteter Baum und D ein stabiler
Datrstellungskocher. Fiir jeden Kochermorphismus h:B — D gibt es genau einen
Morphismus von Darstellungskichern f:ZB — D mit f| B = h.

Stabile Darstellungskocher werden in 1.4 definiert. OK.

1.4 Sei x eine Ecke des Darstellungskochers I'. Die Bahn von x unter 7 ist von
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einem der folgenden Typen:

00 = = w w ® (_.:._{x(_.'_r.__| ________ (_I_{l
p(-—-{ (__{ ______ (_T__.|x(_T__{ _____ o0
Pe—r----- —x == PRREY.

In den beiden ersten Fallen sagen wir, dass x stabil ist, in den drei letzten, dass x
transjektiv ist. Ist I'=1I", der Darstellungskocher einer Algebra A, so ist die
Isomorphieklasse eines unzerlegbaren injektiven A-Moduls der Anfangspunkt
einer Bahn, wahrend die Isomorphieklasse eines unzerlegbaren projektiven Mo-
duls “Endstation” einer Bahn ist. Beide Isomorphieklassen sind also transjektiv.
Unsere Beispiele zeigen, dass es neben diesen im allgemeinen noch andere
transjektive Isomorphieklassen gibt.

DEFINITION. Ein Darstellungskocher I' heisst stabil, wenn alle Ecken von I’
stabil sind.

Ist B ein gerichteter Baum, so ist der Darstellungskocher ZB stabil. Ist I' ein
beliebiger Darstellungskocher, so ist der volle Unterkocher I" < I' bestehend aus
den stabilen Ecken von I' ein stabiler Darstellungskocher; dabei wird die Ver-
schiebung von [I" durch diejenige von I induziert. Wir nennen ,I” den stabilen Teil
von I

Bemerkung. Ist A eine endlichdimensionale Algebra, so entsprechen die
Ecken von I', gewissen Isomorphieklassen unzerlegbarer Objekte der “‘stabilen™
Kategorie im Sinne von Auslander-Reiten [1]. Die Beziehung ist nur dann
bijektiv, wenn die Algebra A selbstinjektiv (= quasi-Frobenius) ist, d.h. wenn
injektive und projektive Moduln zusammenfallen.

1.5 DEFINITION. Sei I' ein Darstellungskocher. Eine Automorphismengruppe
G von I heisst zulassig, wenn keine Bahn von G in I, eine Teilmenge der
Gestalt x~U{x} oder {x}Ux" in mehr als einer Ecke trifft.
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Zu jeder zulassigen Automorphismengruppe G von I' konstruieren wir einen
Darstellungskocher I'/G: Wir setzen (I1G),=1,/G und (I'/G),=1I',/G; die Ver-
schiebung sowie die Abbildungen Quelle und Ziel von I'/G werden durch die
entsprechenden Abbildungen von I' induziert. Ist I stabil, so auch I'/G.

STRUKTURSATZ. Zu jedem zusammenhdingenden  stabilen  Dar-
stellungskocher I' gibt es einen gerichteten Baum B und eine zuldssige Auto-
morphismengruppe G < Aut ZB, so dass I isomorph ist zu ZB/G. Dabei bestimmt
I" den zu B gehirigen Graphen B eindeutig bis auf Isomorphie und G eindeutig bis
auf Konjugation in AutZB.

Dem Beweis des Struktursatzes stellen wir in den folgenden Abschnitten
einige klassische Hilfsmittel voran.
1.6 Sei I' ein zusammenhingender stabiler Darstellungskocher. Wir wahlen eine
feste Ecke xeI, und betrachten die Wege 6 =(y|a,,,...,a;|x) von I' mit
Anfangspunkt x ([8], 1.1), die keinen Teilweg der Gestalt (z | a, oo | 7z) enthalten.
Diese Wege fassen wir als Ecken eines neuen Kochers B = xI" mit den Pfeilen
(diag | Oty ooy [ X)—>(y |, ..., 0| x)=8, &#(x||x), auf. Da B
zusammenhangend ist und in jeder Ecke hochstens ein Pfeil endet, kann B
offenbar nur ein gerichteter Baum oder ein Zyklus sein. Die zweite Moglichkeit
ist aber ausgeschlossen, weil in (x || x) kein Pfeil endet. Also ist B ein gerichteter
Baum.

Nach 1.3, Lemma 2, lasst sich der Kochermorphismus h:B— 1T,
(y|@m...,a;|x)—y in eindeutiger Weise zu einem ‘‘kanonischen” Morphis-
mus von Darstellungskochern 7 :ZB — I" erweitern.

DEFINITION. Ein Morphismus von Darstellungskochern f:A4 — I' heisst
Ueberlagerung, wenn fur jede Ecke p €A, die induzierten Abbildungen p~ —
(fp)” und p* — (fp)* bijektiv sind. Ferner wird vorausgesetzt, dass 7 (bzw. v~') an
der Stelle p definiert ist, wenn 7fp (bzw. 7~ 'fp) definiert ist.

Als Beispiel einer Ueberlagerung kennen wir bereits die kanonische Projek-
tion f: A — A/G, falls G eine zuldssige Automorphismengruppe von A ist. Sind in
unserer Definition A und I' stabil, so folgt die Bijektivitit der Abbildungen
p~ — (fp)” aus derjenigen der Abbildungen p* — (fp)*.

SATZ. Es sei I' ein zusammenhdngender stabiler Darstellungskocher. Dann
gilt:

(@) Ist xeI'y und B = xI', so ist der kanonische Morphismus m:ZB — I eine
Ueberlagerung.
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(b) Ist B ein gerichteter Baum, w:ZB—1I ein Morphismus von
Darstellungskochern, f : A — I’ eine Ueberlagerung und q eine Ecke von ZB, so gibt
es zu jedem p € A, mit fp = wq genau einen Morphismus g:ZB — A mit 7= fg und
g4 =p.

qeZB —— A>p

N\ /

frerl’

Beweis. (a) Wir haben zu zeigen, dass = fur jede Ecke (n, §)e(ZB), eine
Bijektion (n, 8)" = (w(n, §))" induziert. Da 7w mit 7 vertraglich ist, dirfen wir ohne
Beschrankung n =0 voraussetzen. Es sei also 8 =(y | o, ..., a; | x) eine Ecke
von B. Wir berechnen 8" in B:

5t = {e=z|B apm ..., 01| x):z€y", z#77'd,o,,,} falls m>0
{e=(z|B|x):zex*} falls m=0.

Weiter gilt in ZB:

© 8)Jr:{{(o, £):ee€dIU{(~1, d;a,,)} falls m>0
’ {(0,€):e €8} falls m=0

Somit induziert m eine Bijektion (0,8)" =y . (b) Da @« und f mit den
Verschiebungen vertriglich sind, dirfen wir wegen (n, b)=7"(0,b) ohne
Beschrankung annehmen, dass q die Gestalt (0, b) = b hat. Nun gibt es nach dem
folgenden Lemma genau einen Kochermorphismus h:B — A mit fh = | B und
hb =p. Nach 1.3, Lemma 2 existiert genau ein g:ZB — A mit g | B = h. Dies ist
der gesuchte, eindeutig bestimmte Morphismus. OK.

LEMMA. Es seien B ein gerichteter Baum und f: A — I eine Ueberlagerung.
Fiir jedes b € B, jeden Kochermorphismus |:B — I' und jedes pe A, mit Ib=fp
gibt es genau einen Kochermorphismus h:B — A mit fh =1 und hb=p. OK.

1.7 DEFINITION. Sei I' ein zusammenhéngender stabiler Darstellungskocher,
x eine Ecke von I, B=xI" und 7:ZB — I'" die kanonische Ueberlagerung. Die
Fundamentalgruppe II(I’, x) von I" im Punkt x ist die Gruppe der Decktransfor-
mationen von m, d.h. der Morphismen von Darstellungskochern g:ZB — ZB mit
g = .
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SATZ. Die Fundamentalgruppe II(I', x) ist eine zuldssige Automorphismen-
gruppe von ZB, und w induziert einen Isomorphismus ZB/II(I', x) > TI.

Der Satz folgt unmittelbar aus 1.6. Damit ist auch der Struktursatz 1.5
bewiesen mit Ausnahme der letzten Aussage, der wir uns nun zuwenden: Sei
j: I'ZB'/G’ ein Isomorphismus, wobei B’ ein gerichteter Baum ist und G’ eine
zulassige Automorphismengruppe von ZB’. Da die kanonische Projektion
k :ZB' — ZB'/G’ eine Ueberlagerung ist, lassen sich j und j~! nach Satz 1.6(b) zu
zueinander inversen Morphismen ZB <= Z B’ hochheben. Wir schliessen daraus,
dass G'=gII(I', x)g ! und B> B’ (1.3).

Bemerkung. In der Folge nennen wir ZB ‘‘die” universelle Ueberlagerung von
I'. Die Isomorphieklasse von B heisst (Baum)klasse von I.

2. Darstellungsendliche Algebren

In diesem Abschnitt bezeichnet A eine endlichdimensionale Algebra iiber
dem algebraisch abgeschlossenen Korper k. Wir setzen ferner voraus, dass A
darstellungsendlich ist, d.h. dass es nur eine endliche Anzahl von Isomorphieklas-
sen unzerlegbarer A-Moduln gibt.

HAUPTSATZ. Sei I' eine Zusammenhangskomponente des stabilen Teils I,
des Auslander—Reiten-Kochers I's zur darstellungsendlichen Algebra A. Die
Baumklasse von I ist eine der folgenden:

A, 1 2 3 --- n—1 n, n=1
n—1
D, 1 2 3 n-—2/ , n=4
\n
E, 1 2 3 --- n—1 n, n=6,7,8
4

Mit anderen Worten: I' ist isomorph zu ZB/G, wobei G eine zuldssige Automor-
phismengruppe von ZB ist und B ein Baum mit Graph B = A,, D,, E, E, oder E,.

Der Beweis unseres Hauptsatzes erstreckt sich iiber den ganzen Abschnitt 2.
2.1 Zunachst konstruieren wir zu einem beliebigen Darstellungskocher I' eine
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Kategorie k (I'): Die Objekte sind die Ecken von I'. Fur je zwei Ecken x,y
bezeichnen wir mit W{(x, y) den k-Vektorraum, der von den Wegen von x nach y
in I' frei erzeugt wird. Die Zusammensetzung der Wege liefert eine Kategorie Wy
mit den Morphismenmengen Wi(x, y) und mit k-bilinearen Kompositionsabbil-
dungen. In W, erzeugen die Morphismen ), (x |, oa| 7x) € W{(7x, x), wobei «
die Pfeile von I' mit Ziel x durchlauft, ein Ideal I.. Die Restklassenkategorie
W /I;- mit den Morphismenmengen Wi(x, y)/I-(x, y) ist unser k(I").

Im Fall einer kranzdhnlichen (=wreath-like) Algebra A implizieren die
Ergebnisse von [8], dass k(I',) zur Kategorie der unzerlegbaren A-Moduln
aquivalent ist. Insbesondere kann dann A aus I', zuriickgewonnen werden. Dies
wird auch bei den meisten Algebren so sein, die wir in den folgenden Arbeiten
untersuchen werden. Hier wollen wir zwei Sitze beweisen, aus denen unser
Hauptsatz folgt.

SATZ 1. Es sei I eine Zusammenhangskomponente des stabilen Teils I, des
Auslander-Reiten-Kochers einer darstellungsendlichen Algebra A. Es sei ferner
ZB die universelle Ueberlagerung von I'. Dann gibt es ein N € N, so dass jeder Weg
8 von ZB der Linge =N im Ideal I, liegt und folglich die Restklasse § =0 in
k (ZB) hat.

SATZ 2. Ist B ein gerichteter Baum und gilt § = 0 in k (ZB) fiir jeden Weg & von
ZB der Lange =N eN, N fest, so ist der Graph B isomorph zu A,, D,, E¢, E; oder
Es.

2.2 Sei mod A die Kategorie der endlichdimensionalen A-Moduln. Wir nennen
einen A-Modul x e mod A transjektiv, wenn es fiir jeden unzerlegbaren direkten
Summanden Y von X ein reN gibt, so dass (DTr)'Y projektiv ist oder (TrD)"Y
injektiv. Die gestellte Bedingung bedeutet auch, dass die Isomorphieklasse von Y
ein transjektiver Punkt von I', ist. Einen A-Modul X e mod A ohne transjekti-
ven unzerlegbaren direkten Summanden nennen wir stabil.

Fir X, Yemod A bezeichnen wir mit 9(X,Y) den Unterraum von
Hom, (X, Y) bestehend aus den Morphismen, die sich durch einen transjektiven
Modul faktorisieren lassen. Die Unterraume J(X, Y) liefern ein Ideal J der
Kategorie mod A. Wir bezeichnen mit mod A die Restklassenkategorie mod A/J
mit den Morphismenmengen Hom, (X, Y)=Hom, (X, Y)/J(X, Y), und wir
nennen mod A die stabile Kategorie zu A. Wir bemerken dabei, dass mod A nur
dann mit der stabilen Kategorie im Sinne von Auslander-Reiten [1]
ubereinstimmt, wenn die Algebra A selbstinjektiv ist.

Es seien nun I eine Zusammenhangskomponente von ([I's, ZB die universelle
Ueberlagerung von I, II eine zulassige Automorphismengruppe mit ZB/II= I’
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und 7 :ZB — I' die kanonische Projektion. Fiir jede Ecke x € I'y wiahlen wir einen
(unzerlegbaren stabilen) Reprasentanten X e mod A, und wir bezeichnen mit &
die Menge dieser Reprisentanten.

SATZ. Es gibt einen k-linearen Funktor F:k (ZB)—> mod A mit den
Eigenschaften (a) und (b):

(a) Fiir jedes Objekt x € (ZB), ist Fx € ¥ der Reprdsentant von mwx € I,

(b) Fiir jeden Pfeil y = x von ZB mit Restklasse & in k (ZB) ist Fa : Fy — Fx
ein irreduzibler Morphismus von mod A.

Bemerkung. Wir verlangen nicht, dass Fa = FB, falls wa = 73. Ein Funktor F
mit dieser Eigenschaft wiirde einen Funktor k (I') — mod A liefern und uns den
Umweg uber die universelle Ueberlagerung ersparen.

Beweis. Die Bedingung (a) bestimmt F eindeutig auf den Objekten. Wir
haben die Bilder Fa der Pfeile y - x offensichtlich so zu wihlen, dass fur alle
x € (ZB), die Gleichung 0=Y, ., Fa o Foa in Hom, (Frx, Fx) gilt.

Dafiir durfen wir wegen Satz 1.3 annehmen, dass B keinen Weg der Linge =2
zulasst. Dann zerfillt B, in zwei Klassen: Wir nennen x € B, maximal, wenn in x
kein Pfeil von B startet (d.h. wenn mindestens ein Pfeil von B in x landet); wir
nennen x minimal, wenn in x kein Pfeil von B landet. Entsprechend teilen wir die
Ecken von ZB in zwei Klassen auf:

(ZB); ={y=1"x:x€B,, r>0 oder r=0 und x maximal}

(ZB); ={y=71"x:x€ By, r>0 oder r=0 und x minimal}

Ist y=1"xe€(ZB)g, so definieren wir F auf allen Pfeilen von ZB, die in y starten,
und zwar induktiv nach

|2, wenn x€ B, minimal ist
I(y)= .
2r—1, wenn xe B, maximal ist.

Ist I(y)=0, so ist y€ B, minimal, jeder Pfeil y - z von ZB gehort zu B: Fur
Fa wahlen wir einen beliebigen irreduziblen Morphismus von Fy nach Fz in
mod A. Ist [(y)>0, so betrachten wir y*={y,,...,y,}, y—=>vy, und z=7""'y. Es
gilt dann I(y,)=1(y)—1, und Fo 'a;c Hom, (Fy, Fz) ist bereits definiert. Fiir
Fa,, ..., Fa, wihlen wir irreduzible Morphismen in mod A, so dass ¥, (Fo 'a;)
(Fa;) =0. Dies ist moglich nach Anhang 1, Satz 3.4.



Algebren, Darstellungskocher, Ueberlagerungen und zuriick 211

Die Konstruktion von Fa:Fz — Fy fiur ye(ZB), beruht auf dualen Ar-
gumenten.

2.3 SATZ. Sei F:k (ZB)— mod A ein Funktor mit den Eigenschaften von Satz
2.2. Fiir je zwei x, y € (ZB), induziert F eine Bijektion

&® Hom, ) (x,z) = Hom, (Fx, Fy).

Fz=Fy
Beweis.

LEMMA. Es seien x* ={x,,...,x,} und x —— x, der zu x; gehorige Pfeil in
ZB. Zu jedem feHom, (Fx, Fy) existieren Morphismen f,€ Hom, (Fx; Fy), so
dass f=Y,f.(Fa;) falls Fx# Fy, und f=A1g +Y, f.(Fa;) fiir ein geeignetes A € k
falls Fx = Fy.

Beweis. Ist Fx = Fy, so wahlen wir A derart, dass f —A1 nilpotent sei. Da

[Fa,---Fa,]"

Fx L @ Fx,
in mod A maximal g-irreduzibel ist (siche Anhang 1, 3.2), kann f—A1 durch
[Fa, - - - Fa,]" faktorisiert werden. Entsprechendes gilt falls Fx# Fy. OK.

Aus dem Lemma erhalten wir induktiv fur jedes neN: Zu jedem Weg
8=(z|ap,...,a;|x) in ZB mit m<n und Fz=Fy und jedem Weg &=
(W|Bw,-..,Bilx) der Lange n gibt es Morphismen ¢s€ Hom, g, (x,z) und
f.€ Hom, (Fw, Fy), so dass f=Y5F¢s+Y,. f.(F¢). Ist nun R, das Radikal der
Kategorie mod A, so gilt R =0 fir grosses n, denn A ist darstellungsendlich.
Folglich gilt auch ®% =0, wenn &, das Radikal von mod A bezeichnet (3.1).
Somit ist Fg =0 fiir grosses n und f =), Fos.

Beweis der Injektivitiit. Es sei (¢,) in @ Homy zg) (x, z) mit }, Fo, =0.

Fz=Fy

LEMMA. Mit den Notationen des vorhergehenden Lemmas gibt es fiir jedes z
und jedes i einen Morphismus ¢,;:x; — z in k (ZB), so dass ¢, =), ¢,;0; und
Zt F(bti == (),

Beweis. Im Fall x*™ =@ gilt Hom, (Fx, Fx)=k und Hom, (Fx, Fy)=0 falls
Fx# Fy: ein klarer Fall. Wir nehmen also an, dass x* #@: Ist Fx =Fy, so gilt
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¢, =A1, mit Aek und —Alg =), ., Fo, € R (Fx, Fx). Folglich ist A =0. In allen
Fallen hat also ¢, die Gestalt ¢, =), ;& mit ¢, € Homy zp, (x;, z). Aus
Y. F$, =0 folgt nun

0=Y ¥ (Fp)(Fa)= 3 (T F«bz,-)Fai.
Sei w=7""x. Da

[F&‘--’F&’]T [Fo—lal“'FG—la']\

Fx Fw

,@in

eine Auslander-Reiten-Sequenz in mod A ist (Anhang 1, 3.4), gibt es ein
| € Hom, (Fw, Fy) mit Y, (Fi,;) = [(Fo~ ') fiir jedes i. Nach der bereits bewiese-
nen Surjektivitidt gibt es nun eine Familie (x,) in ®f, - Homy zp) (W, z) mit
| =Y, Fx,. Damit ergibt sich

b= 2 Uil = 2 Ui —x: 0 (0 ey
=Y (U~ x.(0 7 )y

und ¥, F( —x.(07'0)) =%, F; —IF(0 ") =0. Setze ¢y =t —x.(07"a).
OK.
Aus dem Lemma erhalten wir induktiv fiir jedes neN: Zu jedem z € (ZB),
mit Fz =Fy und jedem Weg 6§ =(w |, . .., a,| x) der Linge n in ZB gibt es ein
&5 € Homy 25, (W, z) mit ¢, =Y5 ¢,56 und ¥, Fd,; =0. Betrachten wir nun ein
festes z und wahlen wir n grosser als die gemeinsame Lange der Wege von x nach
z in ZB, so gibt es keinen Weg von w nach z in ZB. Folglich gilt
Hom, g, (W, z) =0, ¢,5 =0 fiir jedes 6 und ¢, =0. OK.

KOROLLAR. Es seien A eine darstellungsendliche Algebra, R, das Radikal
der Kategorie mod A und N eine natiirliche Zahl mit R =0. Dann gilt §=0 in
k (ZB) fiir jeden Weg & von ZB der Linge =N.

Damit ist Satz 1 von 2.1 bewiesen.
2.4 Wir wenden uns nun dem Beweis von Satz 2, §2.1 zu. Ein zusammen-
hangender gerichteter Baum B, dessen Graph B nicht isomorph zu A,,, D,, E¢, E-
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oder Ej ist, enthdlt bekanntlich einen gerichteten Baum B’ mit Graph

Eq 1 2 3 4 5 6 7 8

l

9

Betrachten wir das Ideal ¥ in k (ZB), das von allen Morphismen erzeugt wird, die
sich durch ein Objekt in (ZB),\(ZB’), faktorisieren lassen. Offenbar ist k (ZB')
aquivalent zu k (ZB)/$. Wir wollen nun zeigen, dass in ZB' Wege & beliebiger
Linge mit Restklasse §#0 in k (ZB’) existieren. Das Gleiche gilt dann auch in
Z.B, und Satz 2 folgt.

2.5 Es bleibt zu zeigen, dass es im Fall B =D,, E,, E,, E; Ecken x € B, gibt, so
dass Hom, g, (x, y) #0 fiir unendlich viele y € (ZB),. Wir geben dafur einen
“theoretischen” Beweis, der auf klassische Ergebnisse zuriickgreift und diese neu
beleuchtet.

Sei B ein beliebiger endlicher gerichteter Baum B, mod k (B) die Kategorie
seiner Darstellungen iiber k und mod k (ZB) die Kategorie der Darstellungen des
gebundenen Kdchers ZB mit den Relationen Y 4 o~ (0 'a)a =0, Vx € (ZB),. Wir
fassen eine Darstellung W e mod k (ZB) (bzw. W emod k (B)) auf als k-linearen
Funktor k (ZB)— mod k (bzw. k (B)— mod k, wobei k (B) die volle Unter-
kategorie von k (ZB) mit der Objektmenge B, ist). Als Beispiele haben wir die
darstellbaren Funktoren x5 = Hom, 5, (x, ?) und xz = Hom, (g, (x, ?) mit x € B,
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Diese sind projektiv und geben bekanntlich Anlass zu kanonischen
Isomorphismen

Hom (xz5, W)= W(x) & Hom (x5, W | k (B)), Wemod k (ZB),

die wir folgendermassen deuten: Sei & :mod k (ZB)— mod k (B), W~
W | k (B) die Restriktion und £ :mod k (B) — mod k (ZB) der zu ® linksadjun-
gierte Funktor. Fiir jedes Vemod k (B) ist £V bis auf Isomorphie durch die
Existenz eines in W funktoriellen Isomorphismus gekennzeichnet:

Hom (¥V, W)= Hom (V, W | k (B)).

Folglich ist xz5 = £xg.

2.6 Wir haben zu untersuchen, bei welchen Ecken ye(ZB), der Funktor
Xz — ELxz den Wert 0 annimmt. Mit diesem Ziel im Auge wahlen wir unter
vielen moglichen Konstruktionen des Funktors & die folgende aus: Wir versehen
B, mit der minimalen Halbordnung, derart dass d,a <d,a fiir alle « € B,. Wir
wihlen eine Aufzdhlung x,,..., x, von B, derart dass i <j die Relation x; # x;
impliziert. Zur Kategorie K,= k (B) fiigen wir dann schrittweise die Objekte

=1 -1 —1 -2 =2 -3
T X1T Xopeooh T Xy T " Xg5e00 T X T "Xq5. .-
hinzu. Somit erhalten wir eine aufsteigende Folge
Ko=k (B)cK,cK,c - cK <K, < - <K, <Ky

bestehend aus vollen Unterkategorien von k (ZB). Die Restriktion R ist die
Komposition der Restriktionen mod k (ZB)-—-&» mod K, 25 mod K,. Folglich
ist £ eine Komposition linksadjungierter Funktoren mod K, s

mod K, 2> mod k (ZB), und es gilt offensichtlich £, = R.¥£ (da K, eine volle
Unterkategorie von k (ZB) ist, gilt namlich R®,¥, = 1: Deute %, als Kaner-
weiterung, [11] Kap. X). Ferner verschwindet £V fiir jedes Vemod K, an den
Stellen 7°x mit x € B, und s >0. Mit anderen Worten: Wir konnen £V kon-
struieren, indem wir V schrittweise auf K, K, ... erweitern.

Wir geben die Konstruktion von &,V (Beweis klar!): Es ist (£, V)(x)= V(x)
fur xe By, und (¥, V)(r 'x;) ist der Cokern der Abbildung [(V(a)]: V(x;) —
@, V(dya), wobei a die Pfeile von B mit d,a = x; durchlauft. Die Morphismen
(&£, VYo 'a): V(dya) = (£, V)(7'x,) sind die Komponenten der Cokernprojek-
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X2
B!
Figur 7

tion. Nach Konstruktion haben wir also eine exakte Sequenz

Vi) =5 @ V(dga) =20 (£, V(7 %) =0

dja=x;
Durch Iterieren dieser Konstruktion erhalten wir das folgende Ergebnis (Fig.

7): Es seien B°=B, B', B%,...,B", B}, ... die vollen Unterkocher von ZB mit
den Eckenmengen

Bo=B,,

Bo=(Bo\{x ) U{r'x,},
Bi=(B\{x;)U{r x5}, ...,
By=(By "\{x,hU{r 'x}=1""B,,
Byt =(Bo\{t 'x HU{r%x,}, . . .

Die Verschiebung 7 liefert Isomorphismen B'*"=7"'B'= B‘, und B'*' ergibt
sich aus B’ durch die Bernstein-Gelfand—-Ponomarjow-Transformation einer
“Quelle” in eine “Senke” [2]. Der Funktor V— £V | B' stimmt iiberein mit dem
Funktor F;, in der Notation von [7], 1.5, und V — £V | B" identifiziert sich mit
dem Coxeter-Funktor @~ im Sinne von Berstein—Gelfand—Ponomarjow.

Nun ist fur x = x, die Darstellung xz € mod k (B) projektiv unzerlegbar. Im
Fall B=D,, E,, E,, Es ist nach Dlab—Ringel [6] (siche auch [7], Theorem 1.8a))
Xzp |B” = ¥xg| B = @ "(x5) unzerlegbar fiir jedes p. Insbesondere verschwin-
det x5 = Hom, 5, (x, ?) nicht auf B” = 17"B. Dies beendet den Beweis von 2.1,
Satz 2.

3. Anhang 1: Auslander-Reiten-Sequenzen

Sei A eine endlichdimensionale Algebra uiber k, wobei wir k zur Verein-
fachung als algebraisch abgeschlossen voraussetzen. Mit mod A bezeichnen wir
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die Kategorie der endlichdimensionalen A-Linksmoduln, mit J eine feste Menge
von Isomorphieklassen unzerlegbarer Moduln aus mod A. Wir nennen M e mod A
einen J-Modul, wenn die Isomorphieklassen aller unzerlegbaren direkten Sum-
manden von M zu J gehoren. Fir M, Ne mod A bezeichnen wir mit (M, N)
den Unterraum von Hom, (M, N) bestehend aus den Morphismen, die sich durch
einen J-Modul faktorisieren lassen. Die Unterraume I (M, N) liefern ein Ideal
() der Kategorie mod A. Die zu (J) gehorige Restklassenkategorie mod A/{(T)
mit den Morphismenmengen Hom, (M, N)=Hom, (M, N)/J (M, N) bezeichnen
wir mit mod A. Unsere Notation stimmt mit derjenigen von §2 iiberein, wenn J
die Menge der transjektiven Isomorphieklassen ist.

3.1 DEFINITION. Es sei X ein unzerlegbares Objekt von mod A. Ein Mor-
phismus fe Hom, (X, Y) heisst g-irreduzibel, wenn f kein Schnitt ist und wenn

. . . . fi f . . i
fur jede Faktorisierung X — Z — Y von f in mod A entweder f, ein Schnitt ist
oder f, eine Retraktion.

Wir konnen die g-irreduziblen Morphismen leicht mit Hilfe des ‘“Radikals”
der Kategorie mod A charakterisieren. Fiir X, Y € mod A setzen wir ®,(X, Y)=

0 0
{feHomA (X, Y): [f 0] liegt im Radikal von End, (X Y)}. Die an f ge-

stellte Bedingung ist bekanntlich dazu aquivalent, dass f keinen unzerlegbaren
direkten Summanden von X isomorph auf einen direkten Summanden von Y
abbildet. Die Vektorriume R,(X, Y) bilden ein Ideal &, von mod A: Wir
nennen es Radikal von mod A. Das Quadrat #3 des Radikals definieren wir
vermoge

RAX, Y)= ) RA(ZY)oBA(X; 2).

Zemod A

SATZ. Es sei Y,,...,Y, eine Folge paarweise nichtisomorpher unzerlegbarer
Objekte in mod A. Ist Xemod A unzerlegbar, so sind die folgenden Aussagen
dquivalent:

(i) Der Morphismus f=[f, -, ]": X> Y} @ --- @Y™ ist q-irreduzibel in
mod A.

(ii) Fur jedes i=1,...,r liegen die Komponenten f,,...,f, von f, in
R(X,Y,), und ihre Restklassen f;1, ..., fi € Ba(X, Y)/RA(X, Y)) sind k-linear
unabhdngig.

Beweis. (i) = (ii): Da f keine Retraktion zulasst, sind die Komponenten f;
nicht invertierbar. Folglich liegen sie im Radikal. Bestiinde eine Abhangigkeit
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zwischen fi,, ..., ﬁ"‘, zum Beispiel fi; = A fi,+ - - - +)\n‘f—im mit A; € k, so gibe es
eine Relation f; =A,fi,+ - - +A,fi. +gh mit he R, (X, Z) und ge R,(Z,Y)).
Wir hatten dann die Faktorisierung

AR _ - _ -
fi g Ay 0 A, h
fi2 0 1 0 fiz

P . _ . . . .
fm‘ 0 o --- 1 fin‘

und eine entsprechende Faktorisierung fiur f: Widerspruch.

(i) > (1): Nehmen wir an, f sei q-reduzibel, d.h. eine Komposition
X5 ZE YD - @Y™ wobei h kein Schnitt und g=[g, - - - g]" keine Re-
traktion ist. Gibt es zu jedem g einen Schnitt s;: Y*— Z, so sind in der
Komposition [gs;]: Y—=Y mit Y=Y} --- @ Y} die Diagonalkomponenten
gs; identische Morphismen, wihrend gs; fur i#j in R, liegt. Folglich ist [gs;]
invertierbar: Widerspruch. Wir schliessen daraus, dass g; fir ein geeignetes i
keine Retraktion ist.

Esseidann Z =Y"® T, wobei T keinen zu Y, isomorphen direkten Summan-

den enthalt. Es sei ferner h = [Z

ist, gilt aeR,(X, Y™ und beR, (X, T). Wegen deR,(T, Y[*) erhalten wir
schliesslich f; =[fi, - - fin I" =Ca € RA(X, YY) /RA(X, Y)™ mit aecR, (X, Y)™/
RA(X, Y)™ und ceHom, (Y™, YM/RA(Y™, YN = k™™ ™. Da ¢ keine Retrak-
tion ist, gilt Rang(¢)<n; und es gibt eine Zeile 0# A =[A; - - - A, Je k"™ mit
Ac=0  Daraus folgt  schliesslich  A,fi;+ -« + A, f, =Af=ACa=0:
Widerspruch. OK.

] und g; =[c d] mit f; = ca+ db. Da h kein Schnitt

3.2 DEFINITION. Es sei Xemod A unzerlegbar. Ein Morphismus fe
Hom, (X, Y) heisst maximal q-irreduzibel, wenn f q-irreduzibel ist und
[fg]" : X— Y® Z q-reduzibel fir jedes Z#0.

SATZ. Es sei Xemod A unzerlegbar:

(a) Es gibt einen maximalen q-irreduziblen Morphismus f:X — Y in mod A.

(b) Ist f: X — Y maximal q-irreduzibel und g: X — Z kein Schnitt, so existiert
ein h: Y — Z in mod A mit g = hf. Ist auch g maximal g-irreduzibel, so ist jedes
solche h invertierbar.
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Nach Satz 3.1 bedeutet die Existenz eines maximalen g-irreduziblen Morphis-
mus f: X — Y, dass es bis auf Isomorphie nur endlich viele unzerlegbare Z e
mod A mit R, (X, Z)# R3i(X, Z) gibt.

Beweis. Nach Voraussetzung hat der A-Modul X die Gestalt X = X, T mit
unzerlegbarem X,, wobei T ein J-Modul ist und X, nicht. Wir konnen ohne
Beschrinkung annehmen, dass X = X,,. Dann existiert nach [1] ein maximaler
q-irreduzibler Morphismus e : X — Y in mod A. Die Restklasse é € Hom, (X, Y)
ist dann offensichtlich maximal q-irreduzibel in mod A und erfiillt die erste
Aussage von (b) fiir f =eé. Ist g g-irreduzibel, so ist h eine Retraktion, und é ist
isomorph zu einem Morphismus [g]": X— Z@®Kerh. Ist g sogar maximal g-
irreduzibel, so ist Kerh = 0. Folglich ist jeder maximal g-irreduzible Morphismus f
mit Quelle X isomorph zu ¢, und (b) ist erfullt. OK.

3.3 DEFINITION. Es sei Z ein unzerlegbares Objekt von mod A. Ein Mor-
phismus g€ Hom, (Y, Z) heisst z-irreduzibel, wenn g keine Retraktion ist und
wenn fur jede Faktorisierung Y %25 X 25 Z von g in mod A entweder g, eine
Retraktion oder g, ein Schnitt ist.

Sind Y und Z beide unzerlegbar, so stimmen die Definitionen der z-
Irreduzibilitat und der g-Irreduzibilitat von g uiberein. Wir sagen dann einfach,
dass g irreduzibel ist. Fiir z-irreduzible Morphismen gelten die dualen Satze zu
3.1 und 3.2.

SATZ. Fiir unzerlegbare Objekte Y, Z € mod A sind die beiden folgenden Au-
ssagen dquivalent:

(i) Der Morphismus [g, - - g.,]: Y" — Z ist z-irreduzibel.

(ii) Der Morphismus [g, * - - g.]" : Y — Z" ist q-irreduzibel.

Beweis. Nach Satz 3.1 und der dazu dualen Behauptung bedeuten beide
Aussagen, dass die Restklassen g;,...,8.€Bs(Y,Z2)/Ri(Y,Z) linear
unabhangig sind. OK.

3.4 DEFINITION. Eine Auslander—Reiten-Sequenz von mod A ist ein Dia-
gramm der Gestalt

mit gf =0, wobei X, Zemod A unzerlegbar sind, Y# 0, f maximal g-irreduzibel
und g maximal z-irreduzibel.
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Im Fall J =¢ sind die Auslander-Reiten-Sequenzen die “almost split se-
quences’ von [1].

SATZ. Es seien X unzerlegbar und f : X — Y maximal q-irreduzibel in mod A.
(a) Entweder ist f epimorph in mod A, oder es existiert eine Auslander—Reiten-

'y —25 TrDX ([1)).

Sequenz der Gestalt X

f

(b) Sei X > Y —=— Z eine Auslander——Reiten—Sequenz in mod A. Zu jedem

heHom, (Y, M) mit hf =0 gibt es ein le Hom, (Z, M) mit h=1g; zu jedem
peHom, (N, Y) mit gp =0 gibt es ein g€ Hom, (N, X) mit p =fq.

(¢) Sind XLy&SZund XLy 57 Auslander—Reiten-Sequenzen zu X, so
existieren Isomorphismen y: Y=Y ' und z:Z-> Z' mit f' = yf und gy = zg'.

Beweis. Wir nehmen ohne Beschrankung an, dass X ein unzerlegbarer A-
Modul ist. Ist X injektiv in mod A mit Sockel S, so ist die kanonische Projektion
p:X — X/S bekanntlich maximal g-irreduzibel in mod A. Folglich ist pe
Hom, (X, X/S) maximal g-irreduzibel in mod A. Wir zeigen, dass p epimorph ist:
Sei g€ Hom, (X/S, M) mit gp =0. Dann ist qp eine Komposition X - T => M,
wobei T ein J-Modul ist. Da X in mod A nicht null ist, ist r nicht injektiv und
hat deshalb die Form r = tp. Aus gp = sr = stp folgt nun (q —st)p =0, ¢ —st =0 und

q=0.

Ist X nicht injektiv in mod A, so existiert in mod A nach [1] eine Auslander-
Reiten-Sequenz

X 25 E—25TiDX

mit injektivem u und surjektivem v. Wir zeigen, dass die induzierte Sequenz
X 4% E 2 TrDX die Bedingung (b) erfiillt: Es sei namlich w e Hom,, (E, M) mit
wii =0. Dann ist wu eine Komposition X — T — M, wobei T ein -Modul ist. r
ist kein Schnitt und hat deshalb die Form r=tu. Aus wu=sr=stu folgt
(w—=st)u =0. Da Auslander—Reiten-Sequenzen in mod A exakt sind, faktorisiert
w — st durch v: w — st = muv. Es folgt w = mo. Duale Argumente liefern den 2. Teil
von (b).

Ist X nicht injektiv und TrDX ein J-Modul, so ist @ also epimorph. Die
Folgerung gilt selbstverstandlich auch, wenn & =0, d.h. wenn E ein J-Modul ist.

Bleibt der Fall, wo E, TrDX keine J-Moduln sind und X nicht injektiv. In
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diesem Fall ist X< E % TrDX nach Konstruktion eine Auslander-Reiten-
Sequenz in mod A. Da @ und f beide maximal g-irreduzibel sind, gibt es nach Satz
3.2 einen Isomorphismus h: E= Y mit f = hii. Wir setzen g = oh™'. Damit ist (a)
bewiesen.

Wir beweisen (b): Sei X L Y5 Z eine Auslander-Reiten-Sequenz. Da & und
f beide maximal g-irreduzibel sind, gibt es nach 3.2 einen Isomorphismus
h:E>S Y mit f=hi. Da X 5 ES TrDX die Bedingung (b) erfiillt, existiert ein
l: TrDX — Z mit [0 = gh. Da gh z-irreduzibel ist und ¥ kein Schnitt, ist | eine
Retraktion zwischen unzerlegbaren Objekten und folglich ein Isomorphismus. Mit
der einen geniigt nun auch die andere Sequenz der Aussage (b).

Zu (c): Nach dem Beweis von (b) ist jede Auslander-Reiten-Sequenz zu X

isomorph zu X > E > TrDX. OK.

3.5 In dieser Arbeit betrachten wir hauptsachlich darstellungsendliche Algeb-
ren. Fiir diese gilt der folgende Satz, den wir K. Bongartz verdanken.'”

SATZ. Sind X, Y unzerlegbare Moduln iiber der darstellungsendlichen Algebra
A, und ist R, das Radikal von mod A, so gilt [R, (X, Y)/RA(X, Y):k]=1. Mit
anderen Worten: Ist der Morphismus f: X — Y" q-irreduzibel, so gilt n=<1.

Beweis. Da die Komponenten f;,...,f, von f g-irreduzibel sind, gilt
[X:k]#[Y:k]. Wir unterscheiden zwei Fille:

(a) Fall [X:k]<[Y:k]: Aus Dimensionsgrunden ist f injektiv und X nicht!
Betrachten wir die Auslander—Reiten-Sequenz

00— X255 Y"®DZ s TIiDX —0

zu X in mod A. Aus n=2 folgt [Y:k]<[TrDX:k], und h | Y":Y" — TrDX ist
z-irreduzibel. Nach 3.3 existiert ein g-irreduzibler Morphismus Y — (TrDX)".
Induktiv erhalten wir

[X:k]<[Y:k]<[TrDX:k]<[TrDY :k]< - - <[(TrD)'X : k]
<[(TRD)'Y : k]

fiir jedes reN. Da (TrD) X unzerlegbar ist, kann A nicht darstellungsendlich
sein.

(b) Fall [X:k]>[Y:k]: dualer Beweis! OK.

Wie wir inzwischen erfahren haben, ist dieser Satz seit langerer Zeit in der Schule von M.
Auslander als unveroffentlichtes Ergebnis von R. Bautista bekannt.
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4. Anhang 2: Zulassige Automorphismengruppen

Es sei B ein gerichteter Baum, so dass B den Graphen N nicht enthilt. (Der
gerichtete Baum N hat N als Eckenmenge und enthalt zu jedem i € N einen Pfeil
i—i+1).

4.1 Wir bezeichnen mit (Aut B), die Teilmenge {f € Aut B :3x € B, mit fx = x}
von Aut B. Bekanntlich ist (Aut B), eine Gruppe, und es gibt mindestens eine
Ecke x € B,, die fest bleibt unter (Aut B),. Ist (Aut B),# Aut B, so gibt es genau
eine Kante von B, die fest bleibt unter Aut B. Dann ist Aut B/(Aut B),~>p%/?%,
p¢ (Aut B),.

4.2 Mit p bezeichnen wir den in 1.3 definierten Morphismus p:AutZB —
Aut B.

SATZ. Die Verschiebung 7 ist zentral in AutZB, und die Sequenz
1—>1%— AutZB —> Aut B — 1

ist exakt.
Beweis. Klar nach 1.3. OK.

Wir bezeichnen p~!((Aut B),) mit (Aut ZB), und die Projektion (Aut ZB), —
(Aut B), mit p,.

KOROLLAR. (AutZB),= %X (Aut B),.

Beweis. Es sei x € B, fix unter (Aut B),. Die Untergruppe 7*< (Aut ZB), hat
als Supplement S die Gruppe der Automorphismen mit Fixpunkt (0, x).

KOROLLAR. Jede nichttriviale zuldssige Automorphismengruppe G < Aut ZB
ist zyklisch unendlicher Ordnung.

Beweis. Die Gruppe G,= G N(Aut ZB), ist zulassig. Darum gilt G,N S ={1},
S wie oben, die Projektion G, — 7% lings S ist injektiv, und es ist G, = Z oder
G, {1}. Ist G = G,, so ist G, nicht trivial, und wir sind fertig. Ist G# Gy, so ist
G eine Erweiterung von G, mit p%?* (4.1). Eine solche Erweiterung ist trivial
oder zyklisch. Nehmen wir an, sie sei trivial, was insbesondere den Fall G, = {1}
einschliesst: Sei x—y fest unter p und B’ der volle Unterkocher von B mit
(B =1{x, y}. Unter einem Reprisentanten pe G von p mit p>=1 bleibt der
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Darstellungskocher ZB' < ZB stabil. Nun gilt offensichtlich Aut ZB’' = Z. Wegen
p?’=1 operiert p trivial auf ZB’, und p hat die Fixpunkte x,y:
Widerspruch. OK.

4.3 Wir wollen fir B=A,, D,, E,, E, und Eg bis auf Konjugation alle
zulassigen nichttrivialen Automorphismengruppen bestimmen:

B =A,, n ungerade:

Es gilt Aut B=(AutB),=¢%?*% mit ¢i=n+1—i und folglich AutZB =
ZX %% mit ¢(0,(n+1)/2)=(0,(n+1)/2) und pdp=¢. Die zuldssigen
nichttrivialen Automorphismengruppen sind (") und (7'¢)* mit r>0.

B=A,, n gerade:

Es ist Aut B = pZ/?Z mit pi =n+1—i und (Aut B),={1}. Somit gilt Aut ZB = pZ
mit 7 = p~ und pp = p. Die zulassigen nichttrivialen Automorphismengruppen sind
die Gruppen (p")* mit r>1.

/n_'l
~n

E:Dn_:l—-z._....__n__z ,n_>_5:
Es gilt Aut B=(Aut B),=¢%*% mit ¢i=i, i=1,...,n-2, d¢(n—1)=n, ¢n=
n—1. Somit ist Aut ZB = 7% X ¢ %% mit ¢(0, 1) = (0, 1) und pd = ¢. Also sind die
zuldssigen nichttrivialen Automorphismengruppen (7")% und (7"¢)* mit r>0.
- 3
B=D,=1-2":

4
Die Gruppe Aut B=(Aut B), ist die symmetrische Gruppe ©;. Somit gilt
AutZB =71%xS, S wie in 4.2. Bis auf Konjugation sind {1}, (34)*** und
(134)%°% die einzigen zyklischen Untergruppen von &;. Eine zulassige
nichttriviale Automorphismengruppe ist konjugiert zu (7")%, (7'¢)* oder (r"¢)*
mit r>0, ¢, Y€ S, p¢p =(34) und pY=(134).

B=E,=1-2-3-5-6:

l
4

In diesem Fall gilt Aut B =(Aut B),=¢%?*% mit ¢ =(16)(25) und AutZB =
72X $%?% mit $(0, 3) = (0, 3) und p¢ = ¢. Die zulassigen nichttrivialen Automor-
phismengruppen sind (7")% und (7'¢)* mit r>0.
B=E,=1-2-3-5---—n,n=17,8:

|

4
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Es ist Aut B={1} und AutZB = 7%, Die zulissigen nichttrivialen Untergruppen
sind die Gruppen (7")% mit r>0.

4.4 Schlussbemerkung: Die geometrische Realisierung eines Darstellungskochers.
Es befriedigt uns zu wissen, dass die Fundamentalgruppe und die universelle
Ueberlagerung eines Darstellungskochers I' eine geometrische Interpretation
zulassen. Jedem I' konnen wir namlich einen Flachenkomplex (= simpliziale
Menge der Dimension =<2 in der Terminologie von [9]) KI' zuordnen: Die
0-Simplizes von KI' sind die Ecken von I. Die Menge der nichtentarteten
1-Simplizes ist die disjunkte Vereinigung der Pfeilmenge I'; mit dem Graph
{(x, 7x)} der Verschiebung 7; auf I', fallen die Randabbildungen mit den Abbil-
dungen d, und d, von 1.1 zusammen; auf dem Graph sind sie definiert durch
do(x, Tx) = x, d(x, 7x) = 7x. Die nicht-entarteten 2-Simplizes schliesslich sind die
Wege 8 von I' der Gestalt 7x —> y —> x; wir setzen dod =a, d,8=(x, 1x),
d,d = oa.

Die Ueberlagerungen A von I' entsprechen den Ueberlagerungen des
Flachenkomplexes KI' vermoge A — KA. Wie wir wissen, entsprechen diese den
(topologischen) Ueberlagerungen der geometrischen Realisierung |KI'| von KI'
(siche Figuren).

Die Figuren 1b, 2, 3 und 5 zeigen eine Ueberlagerung (1.6) des entsprechenden Auslander—
Reiten-Kochers. Punkte bzw. Pfeile, die denselben Modul bzw. Morphismus reprasentieren, sind zu
identifizieren. Vergessen wir im 1. Beispiel zusitzlich die projektiven Darstellungen, d.h. betrachten
wir den stabilen Teil I, (1.4), so entsteht Figur 1la.

Die Verschiebung 7 ist als unterbrochene Linie eingetragen. In Figur 2 haben wir auf diese Angabe
verzichtet; es ist klar, fur welche Moduln 7 definiert ist.
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