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On cohomological periodicity for infinite groups

OrLympIA TALELLI

Introduction

The phenomenon of cohomological periodicity for finite groups has long been
understood. Here we introduce the notion of “a group G having period q after
k-steps” so as to allow infinite groups to have periodic cohomology. The
definition is given in terms of a projective resolution of G and, as expected, it is
equivalent to having the functors H"(G, —) and H""%(G, —) naturally isomorphic
for all n=k +1. We then show that this definition coincides with the classical one
for finite groups and moreover, we obtain that if an infinite group G has period g
after k-steps then k=1.

In §2 we investigate what it means for a countable locally finite group to have
period q after k-steps. We obtain what one would expect, i.e. that a countable
locally finite group G has period q after k-steps iff every finite subgroup of G has
period q. Moreover, we have here that k = 1.

Then we show that there is an element ge H(G, Z) such that cup product
with g

Ug:H(G, -)—=>H"(G, -)

induces the natural isomorphism for all i=2.

Finally, in §3 we characterize the infinite locally finite p-groups which have
period q after k-steps. First, we point out two obvious candidates, i.e. the infinite
locally cyclic p-group and the infinite locally quaternion group, and then we show
that these are the only ones. This result depends heavily on the well known
similar statement for periodic finite p-groups [Cartan+ Eilenberg].

I wish to thank K. W. Gruenberg for his help during the preparation of this

paper.
§1. Periodicity after some “steps”

Let G be a group and ZG its integral group ring. We work in the category of
left ZG-modules. If A is a ZG-module, by a resolution of A we shall always
mean a projective resolution of A.

178



On cohomological periodicity 179

DEFINITION. A group G is said to have period q after k-steps if there is an
exact sequence

00— Ryiq— Prig ¥ —> B > Py, > > P, >Z >0
B

Np !

Ry ey

where Z is regarded as a trivial ZG-module, R,,, =R, and P, 0=i=<k+q-1
are projective ZG-modules. We take Ry=Z. If k=0 then G is said to have
period g. Having (1) we can form a resolution of G

a

PLivr e P "Ps_l SRR > P, > Z —(
N
by defining
P!=P, O=si=k-1 3 =9, 1=i=<k
and
Pi=P,, i=k+nqg+A 0] = 0 12, i=k+nqg+A;
n=0,0=\<gq n=0,0<A;<q

k+ug= Ba  p=1

Such a resolution is naturally considered periodic after k-steps; we may refer to
(1) itself as a resolution of G which is periodic after k-steps. If k =0 we call such
a resolution a periodic resolution of G.

Evidently the functors H"(G, —) and H""%(G, —) are naturally isomorphic for
all n=k+1.

Now let M, N be ZG-modules, g€ Ext%; (M, N) and consider the following
diagram

Py:--+-—> P, —P

i+q 1+q—-l_—)“'__)Pq+l__)Pq > Pq—l-—)..._—)PO_éM—)O

IR
Ey:-+—>E, —-» E_,—>:---— E;, > E,b>N—-0

where Py — M, E,— N are resolutions of M, N respectively and 6: R, > M a
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q-cocycle representing g. Then 0 lifts to a chain map Py — E, of degree —q and
this chain map induces cup product with g

U g:Extig (N, —) — Extid (M, —)i = 0.

THEOREM 1.1. Let G be a group. Then the following statements are
equivalent:

(i) G has period q after k-steps
(i) There is a resolution of G

> P, > Fiq > > P, >Z >0

\

R,

and an element h € Exty; (R, R,) such that for every ZG-module A cup product
with h

Uh :EXtiZG(Rk, Aj——s Ethc? (R, A)

is an isomorphism for i=1 and an epimorphism for i=0. Note that
Extls (R, A)=H"**(G, A) fori=1, k=0.

Proof. (i)= (ii). Consider a resolution P, of G which is periodic, or period q,
after k-steps

Pi:--- > P} — P >+ o —— Pp—> Z— ()

N/

R
and the resolution P%| R} of R}

[s 3

/ * e s e ’ ’ P > ’ > ’ >
P; |Rk' —> P/—> P, — > P > R} > 0.

Now there is an element he€Ext%s (R}, R}) defined by ;Hq__i‘__, R} or in
Yoneda’s interpretation of Ext,g (—, —) by the multiple extension

a
0— Ri—>Piig1—> > Pil——> R} —> 0.

Clearly, for any ZG-module A cup product with h

U h :EXtiZG (R, A)—> EXt;c? (R, A)
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is the identity for i=1 and an epimorphism for i=0. (ii) = (i) can be easily
deduced from the following Theorem. It is due to C. T. C. Wall [[7], Theorem.
1.2]; however, we give here a different proof.

THEOREM 1.2. Let A, B be ZG-modules. If g € Exts (A, B) is such that for
any ZG-module E cup product with g

U g:Extzg (B, E) — Extzg (A, E)

is injective for i=1 and surjective for i =0, then g is represented by a multiple
extension

0—B » K e Py v 4 >Pp— A >0

with K, P; 0=<i=n—2 projective ZG-modules.

Proof. Let P, — A, E, — B be resolutions of A and B respectively, and let
0:R, — B be a cocycle representing g

P,:---—> P, > P, >P, ,—> P, > > Py > A >0
R,
1

E,:-- > E, >E,—> B— 0.

Now 6 lifts to a chain map P, — E, of degree —n which induces cup product with

Let

B—?K

be a push-out diagram. Then B is injective and coker B =coker y=R,_;.

Now g is represented by 0B —>K—P, ,— - -—> P,—> A — 0. We shall
show that K is a projective ZG-module.

Consider the diagram

0 'Rn A’‘Pn—l--_____>Rrﬁ-l'_-___)o

[

0 > B >»K— R, _;—>0.
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This gives rise to the following commutative diagram

-+ — Homg (B, E) = Ext,s (R,-;, E) = Ext,s (K, E)— Ext,s (B,E)— - - -

-+ — Homg s (R,, E) - Extzg (R,_1, E) = Extyg (P,_y, E) > Ext,s (R, E)—>- - -
By hypotheses 6*:Ext g (B, E) — Ext,; (R,, E)=Ext;g (A, E) is injective and

86* :Hom (B, E) — Ext,s (R,_,, E)=Ext%s (A, E)

is surjective. Moreover, Ext,s (P,_;, E) =0 since P,_, is projective. Thus by the
commutativity of the diagram we obtain that Ext,; (K, E) =0, and this holds for
any ZG-module E. Hence K is a projective ZG-module.

Remark. If P, ,, B are finitely generated ZG-modules then K is a finitely
generated module since from the push-out diagram we have an epimorphism

P, ,®BX5 K—0.

PROPOSITION 1.3. If G has period q after k-steps then so does every
subgroup H of G.

Proof. This follows from the fact that a projective ZG-module is a projective
ZH-module.

PROPOSITION 1.4. If G is an infinite group and has period q after k-steps
then k=1.

Proof. Let H be a group which has period q and consider a periodic resolution
of H

0—Z-t5pP_  —5 - - —>P,—>Z—>0.

Now im B > H°(H, P,_,). But P,_, is a direct summand of an induced ZH-
module, and it is well known that if A is a non-trivial induced ZH-module then
H°(H, A)#0 iff H is finite. The result follows.

LEMMA 1.5. If G is a finite group and has period q after k-steps, then G has
period q.

Proof. By Theorem 1.1 (i)= (ii) there is a resolution of G

v
v
o
v
v

o

)
N/
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and an element h € Ext%; (R,, R,) such that for every ZG-module A cup product
with h

Uh :Extzg (Ri, A) = Extzd (R, A)

is an isomorphism for i=1.

Now since G is a finite group, a projective ZG-module P is a direct summand
of a coinduced ZG-module; hence H'(G, P)=0 for all i=1. Thus from (2) we
obtain an isomorphism

8 :Extls (R, R) —> H(G, Z).

Let h'e HY(G, Z) be the image of h € Exti; (R, R,) under 8. Then clearly for
any ZG-module A cup product with h'

Uh'":H'(G,A) —> H™*(G, A)

is an isomorphism for i=k + 1.
Let 0—>C—>P—>A—0 be a short exact sequence with P a projective
ZG-module. Then we obtain the following commutative diagram

H (G, A)- H (G, A)

anl lsn +q

H"(G,C)— H"™(G, O)

Uh'

where §,, 8,., are connecting homomorphisms. But since H'(G, P)=0 for all
i=1, §; is an isomorphism for i >1 and an epimorphism for i = 1. Thus it follows
that cup product with h’

Uh'":H(G, A)— H'"9(G, A)

is an isomorphism for i=1 and an epimorphism for i = 0. The result now follows
from Theorem 1.1 (ii) = (i).

PROPOSITION 1.6. If G has period q after k-steps then every finite subgroup
H of G has period q.

Proof. This follows from Proposition 1.3 and Lemma 1.5.

COROLLARY 1.7. If G has period 2 after k-steps then every finite subgroup
H of G is cyclic.
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Proof. 1t is known [[6], Lemma 5.2] that a finite group H has period 2 iff it is
cyclic; hence the result follows from Proposition 1.6.

Let G be a group such that the functors H'(G, —) and H'*(G, —) are naturally
isomorphic for some j=1. Consider a resolution of G

> > P, >Z > 0. 3)

> P, > i
N/

Then clearly Ext,s (R4, -)n;t' Ext,s (Rj+q-1, —)- Thus by [[4], Thm. 2.6] there
exist projective ZG-modules Q,, Q, such that

R_,®Q —>R.,_9Q, (%)

Now (3) gives rise to the following exact sequence

00— Rj+q—1® Qz"o—‘) i+q—2 D Q,— i+qg-3—> " —> P,_,——>
——')I)j——l®§‘1—-_)1)j—2®g:_—->l)j—3 > > P >Z—>0 (4)
R,_®0Q, R;

Hence it follows from (4) and (*) that:

PROPOSITION 1.8. If the functors H*(G, —) and H**%(G, —) are naturally
isomorphic for some A =2, then G has period q after A-1-steps.

Now let j=1 and q>0. Clearly it follows that H"(G, —) = H""(G, -) for all
n=1. Thus by Proposition 1.8 G has period q after 1-step. But G is finite since
there is a monomorphism ga:Z® Q,— P,_,® Q, (same argument as for the

proof of Proposition 1.4). Thus by Lemma 1.5 G has period q. Hence we have
proved:

PROPOSITION 1.9. If the functors H'(G, —) and H'*(G, —) are naturally
isomorphic for some q>0, then G is finite and has period q.

2. Periodic countable locally finite groups

In this section we state and prove our main Theorem. The proof is based on
direct limit arguments.
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PROPOSITION 2.1 [[1]]. Let (P, A;;); be a countable direct system of projec-
tive ZG-modules. Then there exists an exact sequence 0 — Q — Q — P — 0 where
P= li_I)n (P, Aj)r and Q is a projective ZG-module.

LEMMA 2.2. Let - - ~— A, —> A,_;— - *—>A, —> A, —> coker a;—0
be an exact sequence of ZG-modules such that for every n =0 there is a resolution
P,.— A, of the form 0—P,, 2 Po—> A, —0. If {ak}:Py— P_, are
chain maps lifting o;: A; — A;_, j=1 then there is a resolution Py— coker a;

a3 ] I3
Py:-++—P,—>P_,—>+—>P—>P,—>cokera;,—>0
where

P.=P_®Po k=0

Pk,O k_ (@ k-1 k > Pk-1.0®Pk—2,l
aog— a
ak - o 1 L] (4] k Z 1
) Foia Pi._10DP._,,
1 ay

and € = 1 9).

Note that P;; is understood to be zero if i <0 or j<O0.

Proof. We have the following commutative diagram

«

e A > A —— e > A, —> A, —— coker a; —> 0

aST aS"‘T 66T Tag

n 1
Qo % o
n—1,0 i PI,O PO,O

" 1
aq - Qay
° ""Pn,l' "’Pn~1,1 'P1,1"‘“”P0,1

>
>

v

A 4

Now it is easily seen that this gives rise to the resolution P, — coker «;.

We shall need the following notion.

Let (G, v;); be a direct system of groups. For i€ I let (Ck, 85) be a ZG;-chain
complex. If i=<j then let c;:(Ck,d)— (Ck,d%) be a ZG;-chain map, where
(Ck, d) is considered as a ZG;-chain complex via vy, : G; — G;, such that

(1) ¢; is the identity chain map of (Cj, d5), for all ie I and
(2) if i=j=k then c;c; = cy as ZG;-chain maps.
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We call ((C, d), ¢;); a direct system of chain complexes over the direct system of
groups (G, v;)r. In particular let (A;, o;); be a direct system of modules over the
direct system of groups (G, v;);. Clearly (A, a;); is a direct system of abelian
groups and if A =lim (A;, a;;); then G =lim (G, v;;), acts on A in a natural way
[[2], ch. 2, §6, nos 6, 7].

Moreover, if B;=ZG® A, and B;:B,— B,
ZG,

xQa—xQ a;a,
ZG, ZG,
then it follows that (B, B;); is a direct system of ZG-modules and lim (B;, B;;); =
A as ZG-modules.
Recall that if X is a class of groups, then a group G is said to be locally an
X-group if every finite set of elements of G is contained in some X-subgroup of

G.

THEOREM 2.3. Let G be a countable locally finite group all of whose finite
subgroups have period q. Then G has period q after 1-step.

Proof. 1t is easily seen that there is a direct system of finite subgroups of G
over I={1,2,3,...}, (G, e;),, with ¢, : G, — G; inclusions and G =lim (G, e;);.
By hypothesis for each i€ I we have a periodic resolution Py of G;

A\ 4
4

Pi:0—>Z—> P _, > P —> ZG, ——> Z —> 0.

Now consider the following diagram

Pi 0—Z— P, | —> - —> P — ZG, —> Z—>0
o{ml hl l l I lidz
Pi' 00— Z—s Pl s s P 5 Gy, i Z— 0,

Since Pi'' is evidently a resolution of G; via e;;.,:G; — G,,, we can lift id, to a
ZG;-chain map g!;.,: Pi — Pi'".

Then p!;,, induces a map h:Z — Z (multiplication by h) which need not be
the identity on Z.

Our aim is to find a periodic resolution Pi*! of G,,,; and a ZG;-chain map
0ii+1: Pi — Pi*" which lifts id, on the right and induces id, on the left. Now the
map g!;,, induces an isomorphism between the cohomology groups of G; defined

using P. and those defined using Pi''. On H%(G, Z) this map is obviously
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multiplication by h. Since H*(G,, Z)= Z/|G;| Z by the periodicity, it follows that
(h,|G;]) = 1; hence there are integers A, A, such that 1=Ah+A,|G,].

Let A=A, +x|G,| where x=p,---p, with pj 1=<j<m primes such that
p; |1Gi+1| and p;*|Gy|, p;*A, for all 1=<j=<m. If no such primes exist, take x = 1.
Then

(A, |Gis))=1 and 1= Ah+(A,—xh) |G| (*).
Consider pi' as a projective resolution of G,,,. Then id, is a g-cocycle
which defines an element g;,,€ H*(G;,,, Z). Clearly Ag,,,€ H(G,,,, Z) is rep-

resented by the g-cocycle A : Z—Z (multiplication by A). We shall show that
Ag 1€ HY(Gi,,, Z)=Extys;  (Z, Z) is represented by a multiple extension

P>§<+120——->Z——->P:;t11 ’P;tlz o APilﬂ > 272G, —>Z—>0

with P,"' 1<k =q—1 projective ZG,, ;-modules. By Theorem 1.2 it is enough to
show that for any ZG;,-module A cup product with Ag;,,

U)‘gi+1 3Hk(Gi+1y A)—> Hk+q(Gi+1, A)

is injective for k=1 and surjective for k =0. This follows easily since cup
product with Ag; ,, is multiplication by A for k =0, 1 and we have that (A, |G, ,4|) = 1.
Note that |G,,,|H*(G,,,,A)=0 for all k=1 and by the periodicity
HY(G;,y, A)= A% (Y ci.,, 8)A where A% =Homyg ,, (Z, A).

Moreover, from the proof of Theorem 1.2, we obtain the following commuta-
tive diagram

-
o
N
l:
v
v

PP —s ZG, — Z—0

’1 t+1 h Y a I ldz
¥ v v

PV 00— Z P\ — P — - — P —ZG,,— Z—0
VA | e
P:;rl O """Z M+1) P‘i;;ll —_> P;t_12 > v ‘Pil—‘_l 'ZGi+l \Z A0

Clearly L'g!;,,: Pix— Py is a ZG;-chain map.

Now consider P as a resolution of G, Then id, is a g-cocycle which defines
an element g € HY(G,, Z).

Clearly the g-cocycle Ah:Z — Z represents Ahg. But from (*) Ahg, = g; since
|Gi| g = 0. Hence the cocycles h and id, represent the same element. So there
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exists y:P,_, — Z such that id; — Ah = yu,. If we now take Ba + ;,,7y instead of

Ba we still have a chain map Py — Pi'' which now induces id, on the left. We

call this chain map g;;,;, i.e. we have the following commutative diagram

P. 0—Z—> > P} > ZG, —> Z 0

o T T e

Pi' 0—>Z——> P — - — P — ZG,,, 5 Z —> 0.

v
v

A 4

Take Pji = Px. Then given P4 and P we construct as above a periodic resolution
P; of G, and a ZG,-chain map o, ,: Px — P% which lifts id, on the right and
induces id, on the left. In this way we construct inductively a direct system
(Px , o)1 of periodic resolutions over the direct system of groups (G, e;),. Clearly
0ii<j: Px — Pk are given as g; = g;_y; * * * 0,:+1 and they lift id, on the right and
induce id, on the left.

Now since direct limit preserves exactness, taking the direct limit of (Px, g;);
we obtain the following exact sequence of ZG-modules

£

0—> Z—>lim P{_; =5 lim P} ,— - —lim P, —> ZG——>Z—>0

By splicing together copies of (*)' we obtain an exact sequence of ZG-modules

*1 5 7G a“>lgI1P;_1&2>"'—91£nPii>ZG~—>

%5 lim P!, 225 . .. — lim P}~ ZG —>Z —0 (1)

where a, = 0.
By Proposition 2.1 we have resolutions Q,, — lim P; of the form

0—> Q;—> Qy——lim Pj——>0 forall 1=j=q-1.

Now the hypotheses of Lemma 2.2 hold for (1). Moreover, it is clear that we can
choose here the chain maps {ax} of Lemma 2.2 so as

{af" Y ={a;}, {a}={ai} 1=j=q-1, k=0, A=l
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Thus by Lemma 2.2 we obtain a resolution of G

R Oz,oea O, iy Ql,o_a‘U—I)ZGe9 Qq—1,1‘—““> T

N

Rq+1

—902,0@01,1-—63-901,0 a“ZG = > 7 >0
N

with 8,.,,=0,: Q,,®D Q;; — Q,,. Hence R,.;= R;; whence the result follows.

Remark. Note that in view of Proposition 1.4, Theorem 2.3 is the best
possible we can obtain if G is an infinite countable locally finite group.

COROLLARY 2.4. Let G be a countable locally finite group. Then the
following statements are equivalent:
(i) G has period q after k-steps.
(ii) Every finite subgroup of G has period q.
Moreover, k =0 if G is finite and k =1 if G is infinite.

Proof. (i) = (ii) follows from Proposition 1.6, (ii) > (i) is a consequence of
Theorem 2.3.

Now if G is a finite group and P a projective ZG-module then H'(G, P)=0 for
all i=1. We have an analogous result for a countable locally finite group:

PROPOSITION 2.5. Let G be a countable locally finite group and P a
projective ZG-module. Then H' (G, P)=0 for all j=2.

Proof. 1t follows easily from the following result [[5], p. 158, Lemma 4.1].

If G is a countable locally finite group and A a ZG-module such that for some
n=2

H"(K, A)=0=H""'(K, A) for all finite subgroups K of G, then H"(G, A) = 0.

Now let G be a countable locally finite group which has period q after k-steps.
Then by Corollary 2.4 G has period q after 1-step. Thus by Theorem 1.1 (i) = (ii)
there is a resolution of G

—> - —> P —>Z—0

Pi T hi-1
N



190 OLYMPIA TALELLI

and an element g’ € Ext%s (R,, R,) such that for every ZG-module A cup product
with g’

U g’:EXtiZG (Rla A) — Ethg (Rl’ A)

is an isomorphism for all i=1.
By Proposition 2.5 if P is a projective ZG-module then H'(G, P) =0 for all

j=2. Having this result one obtains from (2) that Exti (R,, R,) —— H*(G, Z):;
note that g =2 since by Proposition 1.6 q is a period of every finite subgroup of
G, and that is known to be even [[3], ch. XII, p. 261].

Now if ge HI(G, Z) corresponds to g'€Ext%;(R;, R;) under & then one
clearly has that for any ZG-module A cup product with g

Ug:H' (G, A)y—H"(G, A)
is an isomorphism for all i =2. Thus we have proved that:

PROPOSITION 2.6. Let G be a countable locally finite group which has period
q after k-steps. Then there is an element g€ H%(G, Z) such that for any ZG-
module A cup product with g

Ug:H (G, A)—> H'*(G, A)

is an isomorphism for all i =2.

§3. Periodic locally finite p-groups

The following well known theorem characterizes the finite p-groups which
have period q>0.

THEOREM 3.1 [[3], ch. XII, Thm. 11.6]. For a finite p-group G the following
statements are equivalent:
(i) G has period q>0
(ii)) G is either cyclic or is a (generalized) quaternion group.
Moreover, a cyclic group has period 2 and a (generalized) quaternion group has
period 4.

We shall characterize the infinite locally finite p-groups which have period
q >0 after k-steps.
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I. Consider an infinite locally cyclic p-group. It is easily seen that such a group is
uniquely determined up to isomorphism by the prime p and is given by

Co=(c1,Ca ..., Ch...5¢ch=1,c8=cy,...,cl1=0¢,.. ).
II. Recall that a (generalized) quaternion group Q,i is given by
Qui=(x,y;x* "=y> xyx=y) i=3.

One easily shows that a (generalized) quaternion group Q,i contains a normal
cyclic subgroup C of index 2, which is characteristic if i >3, and every element of
Q,i\ C is of order four and inverts every element of C. Having this result and
following the proof of Proposition 1.1.2 [8], one shows:

PROPOSITION 3.2. Let G be a locally quaternion group. Then G has a locally
cyclic normal subgroup C of index 2, and every element of G\ C is of order four and
inverts every element of C.

COROLLARY 3.3. Up to isomorphism there exists only one infinite locally
quaternion group, namely

—_ v A2 2 _ 2 _
Q,0=(Ciy .. sCpyev-sy;€CiI=1, ., Cor1=Cpy-v.r Yy =0y,

cle;=1 all i=1).

Proof. This follows easily from Proposition 3.2 and the fact that up to
isomorphism there exists only one infinite locally cyclic 2-group, namely, C,».

PROPOSITION 3.4. (i) An infinite locally cyclic p-group has period 2 after
1-step.
(ii) An infinite locally quaternion group has period 4 after 1-step.

Proof. (i) Clearly it is enough to consider C,... Now C,. is a countable group.

Moreover, every finite subgroup of C,. is cyclic, hence by Theorem 3.1 it has
period 2. The result now follows from Theorem 2.3.
(ii) By Corollary 3.3 it is enough to consider Q,,. Clearly Q,. is countable.
Moreover, if K is a finite subgroup of Q,, then K is contained in some
(generalized) quaternion group; hence by Theorem 3.1 and Proposition 1.3 K has
period 4. Now the result follows from Theorem 2.3.
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THEOREM 3.5. For an infinite locally finite p-group G the following state-
ments are equivalent:
(i) G has period q >0 after k-steps.
(i1) G is either C,, or Q,..
Moreover, k =1. If G=C,, then q=2 and if G= Q,,, then q=4.

Proof. (i) = (ii). Let G have period q after k-steps. By Proposition 1.6 every
finite subgroup of G has period q and therefore by Theorem 3.1 every finite
subgroup of G is either cyclic or is a (generalized) quaternion group. Thus G is
either an infinite locally cyclic p-group or an infinite locally quaternion group, i.e.
G is either C,, of by Corollary 3.3, G is Q,.. (ii) = (i) follows from Proposition
3.4.
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