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Comment. Math. Helvetici 55 (1980) 130-158 Birkhàuser Verlag, Basel

Balanced splittings of Semi-free actions of finite groups on
homotopy sphères

Douglas R. Anderson(1) and Ian Hambleton(2)

Throughout this paper we work in the smooth category. In particular, the
terms "manifold" and "action" mean "smooth manifold" and "smooth action"
respectively.

Let Xn+k be a homotopy sphère of dimension n + k and let p : G x X -* X be a

semi-free action of the finite group G on X. The fixed point set of this action is an

n-manifold, denoted by either Fn or XG, and G acts freely on X~F. A splitting
of such an action is a décomposition of X of the form X D1UD2 where Dx

(i 1,2) is a closed G-invariant (n + fc)-disk such that dDl=D1HD2 meets F
transversally. In this case, the splitting F F1UF2 where F^FHD, (î 1, 2) is

called the induced splitting of F. A splitting of the action is a (strong) balanced

splitting if the induced splitting is a (strong) balanced splitting of F in the sensé of
the following définition.

Let Fn be a closed n-manifold. A splitting of F is a décomposition of F of the
form F FlUF2 where F, 0 1,2) is an n-manifold with dFl=F1nF2. A
splitting is balanced if H}(Ft) is isomorphic to H}(F2) for ail /. A strong balanced

splitting is a balanced splitting F F!UF2 such that At is equal to A2 where

A, ker(H^CFo)-^H^Œ)) (i 1,2), m [n/2] and Fo^F.DF2.
In this paper, we investigate the problem(s) of whether a given semi-free

action admits a (strong) balanced splitting. We show that if dimF 2m, then a

balanced splitting of the action always exists. When dim F 2m +1, we introduce
a sort of "semi-characteristic" invariant which is the main obstruction to the
existence of a balanced splitting. A similar invariant is the obstruction to the
existence of a strong balanced splitting of the action without regard for the parity
of dim F. Finally, we construct examples of semi-free actions whose semi-

characteristic invariants are non-zero. Such actions, then, hâve no strong balanced

splittings.

(1)Partially supportée by the N.S.F. under grant number MCS76-05997.
(2) Partially supported by an N.S.F. grant at the Institute for Advanced Study, Princeton, N.J.
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One class of actions for which balancée splittings exist is obtained by the
"twisted double" construction. Namely, let p : G x Dn+k -» Dn+k be a semi-free
action of the finite group G on an (n + fc) disk. Let X D U +D where <f> : dD —>

dD is an equivariant diflfeomorphism. Our interest in the problem considered hère
arose from trying to understand the conditions under which a given semi-free
action is a twisted double. An action that admits a balanced splitting (respectively,
strong balanced splitting) resembles a twisted double (respectively, a double; i.e.
<f> is the identity), at least homologically. In that sensé, such an action exhibits a

rough sort of symmetry. An action with no (strong) balanced splitting is rather
strongly asymmetrical.

We remark finally that the class of finite groups G that can act smoothly and

semi-freely on a manifold is rather smail - it consists of exactly the finite groups
that admit a free linear représentation. Although thèse groups hâve been clas-
sified by Wolf [22], this classification is not used in proving Theorem A and B
below and it was used only to guide our search for the examples of Theorem C.

The first named author would like to thank McMaster University for its

hospitality during the period when the research contained in this paper was done.

1. Statement of résulte

In this section, we outline the main flow of our argument and state our main
results. We begin by setting the notational convention that for any finite group G,
3)(G) dénotes the category of finite abelian groups of order prime to |G|, the
order of G.

Let Fw be the fixed point set of a semi-free action of G on the homotopy
sphère 2n+k. It follows from Smith theory that Ht(F)e3)(G) for i < n. Similarly, if
the splitting F F1UF2 is induced from a splitting of the action, then H^F^e
2>(G) 0 1,2) for ail i, and Ht(F0)ea>(G) for i<n-l where F0 F1nF2. A
splitting satisfying thèse conditions will be called admissible.

We note that if Fn is any closed manifold such that Ht(Fn)s3)(G) for i<n,
then admissible splittings of F are abundant. For example, let Dn c Fn be an

embedded n-disk and set Fx Dn and F2 F-Int Dn. Suppose now that F XG

and that F F1UF2 is an admissible splitting of F. We wish to obtain an

obstruction to extending this splitting to a splitting of the action. This is done as

follows:
Let ^(G) dénote the category of finitely generated, cohomologically trivial

ZG modules. If we regard the groups in S (G) as trivial ZG modules, then Rim
has shown that they are cohomologically trivial [14; Theorem 4.7]. Hence, there
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is an inclusion k : 2(G) —> ^(G) and an induced homomorphism fc* : G0(2)(G)) —*

GqC^CG)) where G0(3)(G)) and GqC^CG)) are the Grothendieck groups of the

catégories 3) (G) and «(G) respectively and G0(<€(G)) G0(«(G))/([M] | M is a

finitely generated free ZG module}. On the other hand, every finitely generated,
projective ZG module is cohomologically trivial. Hence, there is also an inclusion

l:0>(G)-> <ë(G) where 0>(G) is the category of finitely generated projective ZG
modules. The induced homomorphism ^:K0(ZG)-> G0(^(G)) is an isomorph-
ism by another resuit of Rim [14; Theorem 4.12] (cf. Proposition 2.2 below) and

we identify thèse groups via this isomorphism. Finally, let A(G)
Im (fc* : GoO(G)) -* K0(ZG)).

Suppose now that X is a finite CW complex such that Ht(X)e3)(G) for ail i.

Let x(X\ G)€ G0(2(G)) and *(X; G)eA(G) be defined by

and

We are now ready to state our first main resuit.

THEOREM A. Let (X, p) be a smooth semi-free action of the finite group G on
the homotopy (n + fc) sphère S with connectée fixed point set Fn. If l<n^fc-2,
then the admissible splitting of F as FtU F2 is induced by a splitting of the action if
and only if x(Ft; G) 0.

We remark that x(Fû G) (-l)n*(F2; G) so the above resuit does not
dépend on the ordering of Ft and F2.

The reader will note that this theorem is similar in spirit to results of Jones [6]
and Oliver [9]. Indeed, it was inspired by their work.

An obvious necessary condition for the existence of a (strong) balanced

splitting of the action is that there be an admissible (strong) balanced splitting of
F. In section 4, we show that if n =2m, then F always has such splittings; but, if
n 2m + l and H1(tt1(F);M) 0 for ail tt^F) modules M then F has such

splittings if and only if \Hm(F)\ is a square. Thus \Hm(F)\ is a "primary obstruction"

to finding a (strong) balanced splitting of the action.
Now let Fn be a closed manifold such that Hg(Fn)e2>(G) for i<n and, if

n 2m + l, suppose \Hm(F)\ is a square. We define a semi-characteristic

Xm(F;G)eA(G) by setting Xm(F;G) k*pm(F;G) where pm(F;G)e
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G0(2)(G)) is given by

if n 2m

m-1
X (-l)l[H,(F)] + (-l)m[Z/q] if n 2m + l

=1

where q |Hm(F)|1/2.
Now let x -* x be the involution on K0(ZG) induced by sending [F] to -[F*]

where Pe&(G) and F* HomZG (F, ZG). In Section 2, we show that every
élément xeA(G) satisfies x x. In particular, *1/2(F; G) xm(F; G) if n 2m.
In Section 4, we show that if Fn XG, n 2m + l, and \Hm(F)\ is a square, then
Xm(F; G) -^i/2(F; G). In either case, then Xm(F; G) represents a well defined
élément of Hn(Z/2; A(G)) which we dénote by *i/2(F; G).

THEOREM B. Let (X, p) be a semi-free action of the finite group G on the

homotopy (n + k)-sphere X with connected fixed point set Fn where n#3,4,
l<n<fc-2.

(i) // n 2 m, then the action has a balanced splitting. It has a strong balanced
splitting if and only if XmiF; G) 0.

(ii) If n 2m + l and H1(ir1(F);M) 0 for ail tt^F) modules M, then the

action has a balanced splitting if and only if it has a strong balanced splitting. The
latter occurs if and only if \Hm(F)\ is a square and Xm(F\ G) 0.

In particular, Part (ii) of Theorem B holds if tt1(F) 0 or if Hm(F) 0.

If G is cyclic of order n, then a resuit of Jones [6; Lemma 1.1] shows that
A(G) 0. Similarly, a resuit of UUom [18; Proposition 2.10] shows that the

exponent of A(G) divides the Artin exponent of G; which, in turn, divides \G\.
Hence, if G has odd order, so does A(G) and Hn(Z/2; A(G)) 0 for ail n. In
thèse two cases, then, Xm(F; G) always vanishes.

The simplest examples of non-cyclic, even order groups that admit free linear
représentations are the generalized quaternion groups Q2l (J>3). Thèse groups
hâve the présentation <a, b; a211 1, b2 a212, bab~l a'1) and hâve order 2\

THEOREM C. Let G Q2l and let d be the minimal dimension of a free
linear représentation of G. Let n and k be integers such that 6 < n < k - 6 and k 0
(mod d). If n# 1 (mod 4) then there exists a semi-free action of G on a homotopy
sphère Xn+k with fixed point set F having dimension n such that Xm(F; G)^0.

We remark that the fixed point sets of thèse examples are actually doubles.
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We also remark that since it is easy to show that Xm(F'> G) is a cobordism
invariant, thèse actions are not cobordant to linear actions.

2. Some algèbre

In this section, we obtain the basic algebraic results about the groups
G0(3)(G)) and A(G) that we will need.

PROPOSITION 2.1. The group G0(2)(G)) is free abelian on the generators
{[Zlp]\pisaprime, p *\G\}.

Proof. Any group Te 3)(G) is isomorphic to a direct sum Q© • • • ©Ct where

Ct is cyclic of order p\i for some prime pt where p,^|G|. Hence, [T]
[CJ+ • • • +[Ct] in G0(2)(G)). An easy induction argument using the exact

séquence 0 -> Zip'"1 -* Z/pr -» Z/p -* 0 shows that [Z/pr] r[Z/p] in G0(S(G)).
Hence, {[Z/p]|p is a prime, p*|G|} générâtes G0(2)(G)).

Now let F(G) be the free abelian group with generators {[p] | p is a prime,

p* \G\}. If Te2)(G) has order pi* • • • p}, let cr(T) r1[p1]+ • • • +rs[ps]€F(G). It
is easy to check that a induces an isomorphism o-^:G0{H){G))-^F{G). This
complètes the proof.

PROPOSITION 2.2. The inclusion of catégories l : 3^(G) -> «(G) induces an

isomorphism l*:K0(ZG)-+ G0(«(G)).

Froo/. If Me «(G), then by Rim [14; Theorem 4.12] M has a short resolution

()-»?!-? Po->M-»0 where Fo, 6 * (G). The map [M] *-* [PO] - [PJ induces a

well defined homomorphism inverse to 1%.

We wish now to give an alternate description of A{G). We recall that if r is a

positive integer such that (r, |G|) 1, then Swan [16; Proposition 7.1] has shown

that the submodule (r,N)<^ZG is in 9(G) where N^^^og. Swan also shows

[17; Lemma 6.1] that the map r->[(r, N)] defines a homomorphism d:(Z/|G|)*-»
K0(ZG) where <Z/|G|)X dénotes the group of units in Z/|G|.

PROPOSITION 2.3. (i) A(G) Imd.
(ii) Every élément x e A(G) is of the form x kJ_Z/q] for some integer q prime

to \G\. Furthermore9 x x.

Proof. Define a homomorphism r : GQ(3)(G)) -» (Z/|G|)X by sending [Zip] to p
where [Zip] is one of the generators of G0(2>(G)) given in 2.1. We note that
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dr= fc*, for if p is a prime not dividing |G|, then

0-> ZG -^-> <p, N) >Z/p > 0 (*)

is a projective resolution of Zip. Since t is obviously onto, A (G) Im fc* Im d

and (i) follows.
To prove (ii), note that x =d(q) for some qe(Z/|G|)x. If we take q to be an

integer 0< q < \G|, then x d(q) dr[Zlq] k*[Z/q]. To show x x it suffices to
show that fc#[Z/p] k*[Z/p] whenever p is an integer prime to \G\. To see this,
take the dual of the séquence (*) above. This gives an exact séquence

0 -* <p, N)* -> (ZGT -* ExtZG (Z/p, ZG) -» 0 (**)

The right hand term is isomorphic to Zip as abelian groups. It inherits a ZG
module structure from the maps "multiplication by g" (g g G) on ZG. However,
since the map, "multiplication by (g —1)" on ZG factors through xp:ZG->
(p, N), the ZG module structure on ExtZG (Z/p, ZG) is trivial. Hence k*[Z/p]
k*[ExtZG (Z/p,ZG)]= -[(p,N)*]=k*[Z/p] by the définition of ~~, and (ii)
follows.

PROPOSITION 2.4. (i) Let C* {C;,dl} be a chain complex such that Q=0
for i <0 and for i > n where n is some positive integer. If Q and H^C*) are in C(G)
for ail i, then

I 3:0

(ii) Let p and q be positive integers with q<p. Suppose that 0 —» H'p -* Hp —»

-* H^_! -» >Hq-*HZ-*0isan exact séquence of modules in ^(G). Then

t (-i)'[H,]= I (-di[h;]+ X (-i)'[H';]
i=q i=q i=q

Proo/. This follows easily by standard arguments.

3. The proof of Theorem A

In this section we give the proof of Theorem A. The necessity of having
x(Ft; G) 0 for an induced splitting is contained in the following lemma.
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LEMMA 3.1. Let Fn be the fixed point set of a semi-free action of G on Xn+k.

Then

(i) X(Fn-x;G) 0 for any xeFn.
(ii) If the splitting F F1UF2 is induced by a splitting of the action, then

fi;g) o.

(iii) For any admissible splitting F FtUF2,

Proof. We first show (ii). Let DtUD2 be the splitting of the action that
induces the given splitting of F. It has been shown by Illman [5] that the G-space

Dt has the structure of a finite G - CW complex. It now follows from the exact

séquence of the pair (Dl9 Fx) and 2.4 that

X(Fi; G)= - I (-l)l[Hl(D1,F1)]= - I (-mQiD^Fj}
l^rO 12:0

where C^(Dl9 Ft) dénotes the cellular chains on (Dl9 Fx). Since G acts freely on
D1-F1, CtiD^FJ is a free ZG module for ail i. Hence x(F\', G) 0.

To prove (i), we note that if x eFn then there exists a G-invariant disk DJ+k
with center x such that Ft Dt H F is a disk. Let D2 X - Int Dt and F2 D2D F.
Then by (ii) 0 *(F2; G) ^(F-x; G) and (i) follows.

To prove (iii), we note that a considération of the exact séquence of the pair
(F—x,Ft) yields the exact séquence

Hence, by 2.4 and (i)

For i<n — 1, we hâve the isomorphisms

Ht(F- x, Ft) -> Ht(F9 Ft) «-^î- HX(F29 Fo) J- Hn~t(F2)

where F0 F1nF2 dF2,e* is an excision, and d is duality. Since Hj(F2)e
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2>(G) for j^l, we also hâve the isomorphism

It follows that H,(F- x, F,) « Hn_,_1(F2) for i < n -2 and that Hn^(F-x, FJ 0.

A similar argument shows that Hn_!(F-x) vanishes. Hence so do H^^F,) for
/ 1, 2. It now follows that

and (iii) follows from the previous équation.
The proof that xCF^ G) 0 implies that the splitting of F is induced by a

splitting of the action is contained in the corollary to the following proposition.

PROPOSITION 3.2. Let m>6. Let Mm be a smooth (m - \yconnected m-
manifold with a semi-free G-action. Let Nn=MG be the fixed point set of this
action and let N1aN be a connected codimension 0 submanifold with boundary
such that Ht(Ni)e3>(G) for i>0. If 2n + l<m, then there exists an [m/2]-l
connected G-invariant submanifold M™<^Mm such that Mf Nx and

G) fori [m/2l

COROLLARY 3.3 // 2n + 2<m and x(Nl;G) 0, then there exists a G-
invariant disk Dm ci M"1 with DG Nx.

Proof of 3.2. Let p:E->N be a closed G-tubular neighborhood of N. Let
Q M-Int E, Q (M-Int E)/G, and q : Q -> Q be the obvious quotient map.
Using the facts that Ht(dE) —» Ht(E) is an isomorphism for i < m - n -2 and that
2n + l<m, it is easy to show that Q is [m/2]-l connected. Let E1 p"1(^i),
Qi StEO the sphère bundle of El9 and Qx SiEj/G. Then Qi e dQ. Note that
since p:Q1-^Nl has fiber S"1'""1 and 2n + l<m, p^iH^QO-^H^N!) is an

isomorphism for i < n -1.
We shall construct a séquence of submanifolds V, <= Q, 0<i<[m/2]-l such

that the following conditions hold:

(a) V, is a smooth regular neighborhood of a CW complex Xl Q1U cells of
dimension <i + l.

(b) (Q, Vt) is i + 1 connected.
(c) There exists a short exact séquence

l+1( V.)
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where V, =q""1(Vl), k:Qx-* V, is the inclusion, and Pe®{G) satisfies

(-ir1[P]=I(-DJ[HJ(N1)]

(d) For ;>î + l, K*:HjiQJ-*Hj(Vt) is an isomorphism.

If we let Ml ElU V, for i [m/2]-1, then Mx is the desired submanifold of
M. To see this, note that by (b), V, is [m/2]-l connected since Q is. Then
Mayer-Victoris and Van Kampen arguments show that Mx is [m/2]— 1 connected
and that for i [m/2], H,(A4)e0>(G) and satisfies (-1)1[H1(M1)] a:(N1; G),
where we hâve used (c).

The construction of the manifolds V, starts by letting Vo be a smooth collar
neighborhood of Qx in Q. Clearly (a) through (d) hold. Suppose V, satisfying
(a-d) has been constructed for some i, l<*<[m/2]-l. (The construction of Vx

from Vo is slightly différent from the gênerai case and will be described below.)
Let d+V^

LEMMA 3.4. The inclusion 7r,(Cl(Q- V,), ô+VJ-^tt^Q, V.) is an isomorphism

for /<[m/2].

Proof. Since V, has the homotopy type of Q, Ucells of dimension < i +1, and
the image of any map may be pushed ofï Qt by using a collar, (Vl9d+V%) is

m— (i + 1) — 1 connected by gênerai position. It follows that the inclusion maps
iTiid+Vt) —> 7r1(V,) —>• TTxiQ) are ail isomorphisms. Hence, so is tt^CI (Q — V,)) —>

TTtiQ). By homotopy excision ^(0(0 — V,), d+V,)-^ 7r}(Q, Vt) is an isomorphism

for / < m - i - 2. Since i < [m/2] -1, [m/2] < m - i - 2 and the lemma follows.
We note that (b) implies that V, is i-connected since Q is. Hence we hâve

isomorphisms, HI+1(V,) <~tt1+1(V1)-^ tTj+xCVJ since i>\. Since p*:Hl+1(Q1)--*'
Wi+iCNi) is an isomorphism, H1+1(Ôi)gS(G) and we may choose a resolution

with Pk € 0*(G) (fe 0,1) such that Po is a free ZG module with basis eu es.

Let p':P0—> Trl+2(C1(Q- V,), d+Vt) be a homomorphism such that the diag-
ram below commutes

tt1+2(C1 (Q - Vt),
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We note that if i <[m/2]-2, then d is an isomorphism and p' is unique, while, if
i =[m/2] —2, d is onto, but may not be an isomorphism. In this case then p' may
not be unique.

Let /^(D'^S'^-^CCUQ-V.Xa+V,) be a map representing p'(e,)

(l<j<s). General position, if i<[m/2]-2, or standard piping arguments if
i=[m/2]-2, show that we may assume the /j are embeddings with mutually
disjoint images. We now let Vl+1 be a smooth regular neighborhood if Vt U

Uj=i /, (Dt+2). It is obvious from the construction that Vl+1 satisfies (a), while an
examination of the exact séquence

shows that (b) holds.
To prove (c) and (d), we note that since (VI+1, Vt) is (î + 1) connected,

HP(VI+1, V,) 0 for p# i + 2 and HI+2(VI+1, V,) P0. It follows that k^H^QJ^
¦Hi(Vi+1) is an isomorphism for />/ + 2. Furthermore, the diagram below
commutes and has an exact row:

M-
ù

Since ker p Pu we obtain the short exact séquence

Since Po is free, we hâve

by the inductive hypothesis and since p* : H^iQJ -*> H^N^ is an isomorphism.
This complètes the proof of (c) and (d) and of the inductive step.
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The construction of Vt from Vo is similar to the above argument. In this case,
we note that there is a commutative diagram with exact rows and the indicated
isomorphism

since Ô is 2-connected and q : Ôi -* d is a covering. Hence, there is an

isomorphism tt2(Q, d) —» 'n'i(Qi). The argument now proceeds essentially as

above to kill tt2(Q, V0) 7t2(Q, Qx). The détails are left to the reader.

Proof of 3.3. If m >6, let Vn-X be the manifold constructed in the proof above
and notice that (c) implies that Hn(Vn^)€^(G) and that (- l)n[Hn(Vn_1)]
x(Nû G) since p*:Hn(Q1)—>Hn(N1) 0 is an isomorphism. Since x(Nx; G) 0,
we may attach trivial n-handles to Vn_! in O to make H^V^x) free over ZG.
Since 2n + 2<m we may then attach (n + 1) handles to Vn-X as above to kill
Hn(Vn_-i) without introducing new homology.

If the manifold so obtained is denoted by Vn, then Wn Vn U E1 is contracti-
ble manifold with simply connected boundary. Hence it is a disk and 3.3 holds
for m ^6.

If m <6, then n 1. In this case, Nt must be an interval and Ex is the desired
disk.

4. The proof of Theorem B

In this section, we give the proof of Theorem B. It is based on the following
lemmas whose proofs are given at the end of this section.

LEMMA 4.1. Let n^3,4. Let Fn be a closed n-manifold such that
3)(G) for i<n. If either n 2m or n 2m + l, H1(ir1(F);M) 0 for ail ir^F)
modules M, and \Hm(F)\ is a square, then there exists an admissible strong
balanced splitting of F.

ADDENDUM 4.2. The splitting above can be chosen so that Ht(Fj) -» Ht(F) is

an isomorphism for i <[n/2]-1 and j 1, 2.
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LEMMA 4.3. Let Fn XG where G acts semi-freely on the homotopy sphère X.

Suppose there exists an admissible balancée splitting Fx U F2 of F.

(i) Ifn 2m, let A ker (Hm^(Ft) -* Hm^(F)). Then

(ii) If n 2m + 1, then \Hm(F)\ is a square,

l;G), and *i/2(F, G) -*1/2(F; G).

LEMMA 4.4. Let n 2m (m>3) and q be any integer prime to \G\. Let
Fx U F2 be an admissible strong balanced splitting of F.

(i) For any integer l (l^l<m —1) there exists an admissible strong balanced
splitting F[UF2 of F such that

(ii) There exists an admissible balanced splitting F'[ U F'2f of F such that

It follows from 2.3 that if n 2m, then Xn2(F) represents a cohomology class

Hn(Z/2; A(G)). In this case any other représentative of this class differs
from Xi/2(F) by an élément of the form 2a for some a e A(G). If n 2m +1, then
Xm(F) represents an élément of Hn(Z/2;A(G)) by 4.3. In this case,

Hn(ZI2;A(G)) {xeA(G)\x -x}l{y-y\yeA(G)} {xeA(G)\2x 0} since

x x for ail xeA(G).

Proof of Theorem B. Suppose first that n 2m. By 4.1, there exists an
admissible strong baianced splitting FlUF2 of F XG. By 2.2, (-l)mx(Fl9 G)

for some integer q. By 4.4, there exists an admissible balanced splitting
such that *(FÏ; G) X(F1; G) + (~l)m-%[Z/q] 0. By Theorem A, the

splitting F" U F2 extends to a balanced splitting of the action. This establishes the
first sentence of Part (i) of Theorem B.

To establish the second sentence of Part (i), we use 4.1 and 4.2 and let Fx U F2

be an admissible strong balanced splitting of F such that ^^.^Fx) -» Hm_x(F) is

an isomorphism. From 4.3, we then see that x1/2(F; G) x(F1\G) + 2a for some
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aeA(G). But also if Xi,2(F;G) 0, then xm(F9G) 2b for some beA(G).
Hence x(Fi', G) 2(6 —a). We now use 4.4(i) and proceed as above to obtain a

strong balanced splitting of the action.

Suppose now that the action has a strong balanced splitting inducing the strong
balanced splitting F1UF2 of F with F0 F1nF2. In this case, since

ker(Hm_1(F0)^Hm_1(F1)) ker(Hm_1(F0)-^Hm_1(F2)) by définition, a simple
chase of the diagram

Hm(F, Fx) > Hm^l(F1) > H

-î
H( jo tj \ rr t? \ ^ TJ T7 \m\r2» ^0/ rifn — \\r0) * rim — l\ir2J

shows that A=ker(Hm_l(F1)-^> Hm^1(F)) 0. But also x(FûG) 0 by 3.1.
Hence by 4.3, xm(F; G) 2c from which it follows that *i/2(F; G) 0.

To prove (ii) of Theorem B, suppose the action admits a balanced splitting
DXUD2. Then \Hm(F)\ is a square and 0 X(F1; G) xm(F; G) *1/2(F; G) by
Theorem A, 4.3, and the remarks preceeding this proof. The first of thèse

conditions, however, implies that F has an admissible strong balanced splitting
Fi U F2 by 4.1; while the latter condition implies that the splitting Fi U F2 extends

to a strong balanced splitting of the action by 4.3 and Theorem A. Since a strong
balanced splitting of the action is balanced the proof of Theorem B is completed.

We turn to the proofs of 4.1-4.4.

Proofs of 4.1 and 4.2. If n 2, then Fn S2 obviously has an admissible

strong balanced splitting. Suppose now that n > 5. We consider first the case when

n 2m. Fix a handlebody décomposition of F and consider Km-1 where KJ

dénotes the union of ail handles of index < j. For i < m -1, H.OK"1"1) —» Ht(F) is

an isomorphism while, for i m — 1, there is an exact séquence

0 > Hm(Km) > Hm(Km, Km"1) > H^iK"1-1) —Î-» H^CK"1) > 0

where Hm_x(Km) -» fl^.^F) is an isomorphism, Hm(Km, Km'1) is free abelian on
the handles of index m, and Hm_1(Krn~1) is free abelian since Krn~1 has the

homotopy type of an m — 1 complex. Let T ker i*. Then T is free abelian and

d:Hm(Km,Km~1)-^ T is a split epimorphism. Hence, if xu...,xs are free

gênerators for T, we may regard thèse classes as lying in Hm(Km, Km~x). Since

(Xw, Km-1) is (m — l)-connected, thèse classes may be represented by maps
ft:(D™, Sm~1)-^(Km, Km~l), i l,...,s. Since n>5, by gênerai position and
standard embedding theorems we may factor f=Uft through an embedding
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f :[Jsl=i(Dir,Sm-1)-^(Km-lntK0,dK0), where K0 Km-l-an open boundary
collar, and the inclusion (Km -Int Ko, dK0) -* (Km, Km~x). Let Fx be a thickening
of K0U Uî-i D? where f is the attaching map.

A straightforward argument shows that H^FJ —» Ht(F) is an isomorphism for
i < m -1 and that H^Fx) 0 for i > m. An analysis of the exact séquence of the
pair (F, Fx), using techniques similar to those in the proof of 3.1, then shows that
W,(F2)-> Ht(F) is an isomorphism for i<m-l and that Hl(F2) 0 for i>m
where F2 F-IntF1. This establishes 4.1 and 4.2 when n 2m.

The proof of 4.1 in the case when n 2m + l requires the following lemma.

LEMMA 4.5. Let B be a finite abelian group such that \B\ is a square. Then
there exists a short exact séquence 0 —>A-*B-»Â—?() where Â is isomorphic to

A.

Proof. We divide the proof into several cases. For the first case, suppose
B Z/p2s. Then 0 -> Z/ps -> Z/p2s -> Z/ps -» 0 where the first map is multiplication

by ps, is the desired short exact séquence. For the second case, suppose
B =Z/pr(&Zlps where r and s are odd and r<s. In this case, set f (r + s)/2, let
p! : Z/p1 -> Z/pr be the obvious epimorphism, and let p2 : Z/ps be multiplication by
ps

0 > Zip1 v 2
> Zlpr®Zlp2 > coker (Pl, p2) » 0

is the desired short exact séquence.
In the gênerai case, write B as the direct sum of its p-primary components

where p is a prime. Each such summand can be written as a direct sum of groups
of the forms Z/p2s and Zlpr(BZ/ps where r and s are odd and r<s. The desired
conclusion now follows obviously from the first two cases.

The proof of 4.1 when n 2m + l and m>2 now proceeds as follows. Fix a

handle décomposition of F. Let K1 be the union of ail handles of index </ and

consider K™'1. As before, we hâve an exact séquence

0 >Hffl(D^Hm(r, Km~l)

and an epimorphism Hm(Km)-+ Hm(F). Since |Hm(F)| is a square, there exists a

subgroup A c Hm(F) and a short exact séquence 0 -» A -> Hm(F) -* A -» 0 with
À isomorphic to A. Pick éléments xl9..., xseHm(Km) projecting to generators
of A and a basis yl9..., yt for a direct summand of Hm(Km, Km~1) that maps
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isomorphically onto ker d. We may proceed as in the case when n 2m to add
handles of index m to Km~l to kill the classes j%xu ,j*xs; yu yt. The
resulting submanifold Fo <= Km has the following properties

(i) Fo is a smooth regular neighborhood of an m-complex;
(ii) (F, Fo) is (m -1) connected;
(iii) ï\jc:Hm_1(F0)-^Hm_1(F) is an isomorphism; and

(iv) i*:Hm(F0)-*Hm(F) maps onto A.

It follows from thèse properties that ail the groups tt^Fq), tt^F-Int Fo) and

tt^F) are isomorphic and that the pair (F —Int F0,dF0) is (m-1) connected.

LEMMA 4.6. If H^tt^F), M) 0 for ail tt^F) modules, then the Hurewicz

map h : 7rm+1(F- Int Fo, dF0) -> Hm+1 (F- Int Fo, aF0) is onfo.

Proof. Since tt1(F) 7r1(6F0) Tr1(F-Int Fo), the spectral séquence of the
universal covering p : (F-ÏHTFo, dF0) —» (F—Int Fo, dF0) shows that
p» : Hk+1(F-Int Fo, 3F0) —» Hk+1(F—Int Fo, 0Fo) is onto. But so is h:7rk+1
(F—Int Fo, dF0)—» Hk+1(F- Int F0,dF0). The lemma now follows easily.

We remark that the proof really requires only that H1(tti(F),M) 0 when
M Hm(jFWntF0,dF0). In particular the lemma holds if tt^F) 0 or if Hm(F)
0.

It follows from 4.6 that the Hurewicz map h below is onto.

7rm+1(F-IntF0,dF0)

Hm+1(F-IntF0,dF0)

I-
d

> H^iF, Fo) > Hm(F0) > Hm(F) >

In particular, if we let zu..., zr generate a free abelian direct summand S of
Hm+1(F, Fo) such that d : S -> Im 6 is an isomorphism, then there exist maps
/,:(Dm+1, Sm)^> (F-Int F0,dF0) such that /t represents zr By standard embed-

ding theorems, the maps fx may be taken to be embeddings. We may now proceed
essentially as before to construct a submanifold Fl(^F such that (F,Ft) is (m — 1)

connected, i<B:Hm_1(F1)->Hm_1(F) is an isomorphism, and i<E:Hm(F1)->Hm(F)
is an isomorphism onto A. But then F1? F—Int F! is the desired strong balanced

splitting of F.

Proof of 4.3. Suppose first that n 2m + l. Let A =ker(Hm_1(F1)-*
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Hm_!(F)) and B ker (H^F^ -» Hm(F)). Then the exact séquence of (F, Ft) may
be factored into the exact séquences

0 -> A -> «^(FJ -> /^(F) -*••-> H^F) -* H^F, F,) -> 0

0 -» ^^(FJ -> H2m_!(F) -» > Hm+l(F) -> Hm+1(F, FO -> J5 -> 0

where the expected terms of degree 2 m hâve dropped out of the third séquence
by duality (cf. the proof of 3.1). By applying the second part of 2.4 to the third
séquence, we obtain the équation

2m-l 2m-l 2m-l
(-l)m[B]= X (-l)l[H,(F)]- X (-îytH^Fi)]- I (-l)l[Hl(F,F1)l

i=m + l i=m + l i=m +

The proof of 3.1 shows that Hl(F)«H2m_l(F) and that H,(F, F1)«H2m_l(F2)«
H2m_l(F1) where the last isomorphism follows from the fact that FlUF2 is a

balanced splitting of F. Hence

m—1 m—1

(-l)m[B]= I (-1)'[H,(F)]- 1 (-D'CH^Fx)]- I (-DWFx)
1 1 1 1 i=m+ l

A similar computation starting with the first séquence gives

Hence [A] [B] in
Similar reasoning applied to the second séquence shows that

Hence [Hm(F)] 2{[Hm(F1)-[A]} in G0(3(G)). It now follows from 2.1 that
|Hm(F)| is a square and that

where |Hm(F)| q2. By combining this with équation (1), we seee that
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Since FtUF2 is a balancée splitting of F, and n 2m + l
; G) by 3.1. Hence, from above, Xi,2(F; G)= -Xi,2(F\ G). The conclusion

that xU2(F; G)= -Xm(F;G) now follows from 2.3.
The argument above establishes 4.3 in the case when n 2m + l. If n 2m,

the formula for Xi/2(F; G) is obtained by similar arguements starting with the first
of the exact séquences above.

Before proving 4.4, we introduce some notation and prove a sublemma. Let
n, l, and q be positive integers with l<n. Then Mn(l, q) will dénote any n-
manifold with boundary such that

SUBLEMMA 4.7. Let n>5 and 1< J<n-4. Then Sn has a splitting of the

form Mn(I,q)UMn(n-l-2,q).
Proof. Let X S1]^^2 where q dénotes a map of degree q. Then X embeds

in S5 and by suspending, we obtain embeddings S'Uq^1*1 Xl~~1X-^ 2l~1S5
Sl+4aSn. Let F! be a regular neighborhood of S'Uq^1 and F2 Sn-IntF!.
Then Fx is an Mn(l, q); while F2 is an Mn(n-l-2, q) by Alexander duality.

We shall dénote Sn together with the splitting of 4.7 by Sn(l, q). lfF FtUF2
is a splitting of Fn, we may take the connected sum of this splitting with Sn(l, q)
along F0 FlD F2 and Mn(l, q) n Mn(n -1 -2, q) Mo to obtain the new splitting
F! # Mn(l q)UF2#Mn(n-l-2, q) of F. We dénote this splitting by F# Sn(/, q).

Proof of 4.4. Let Fl U F2 be an admissible strong balanced splitting of F. To
prove (i), consider the splitting F#Sn(l, q)#Sn(n-l-2, q) F[UF2. A simple
computation shows that the homomorphism JFf.CF,)—> H^F',) (/ 1,2) is an

isomorphism for i^l, n — l-2 and that the séquence

is split exact for i l, n — l- 2. In this case, H^F',, F,) Z/q and it follows easily
that x(F[; G) x(F1; G) + (-l)l2[Z/q] when n 2m. It is also easy to see that

Fi U F2 is an admissible strong balanced splitting of F; hence, (i) follows.
The proof of part (ii) is similar. One takes F#Sn(m-l,q).

5. The proof of Theorem C

In this section, we prove Theorem C by constructing the appropriate examples.

We first set some notation.
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Let X be a finite CW complex. Then Fn(X) will dénote the double, Nn(X)U
Nn(X), where Nn(X) is a smooth regular neighborhood of X in JRn where

We will let /5|e:Hn(Z/2; A(G)-> Hn(Z/2; K0(G)) be the map induced by the
inclusion / : A(G)-+ K0(G) and H:Hn(Z/2; K0(G))^> L*(G) be the hyperbolic
map of Ranicki [12; Theorem 4.3]. We recall that there exists an exact séquence

H"(Z/2; K0(G)) -^-> Lhn(G) > L»(G)

due to Shaneson [15], and Ranicki [12; Theorem 4.3]. (The reader will note that
the usual dimension, n + 1, for the cohomology group has been replaced by n
since we are using the involution [F]—> — [P*] instead of the usual involution.)

Theorem C will be deduced from the following propositions whose proofs are

temporarily deferred.

PROPOSITION 5.1. Let G be a finite group admitting a free linear représentation

of dimension d. Let X be a finite CW complex such that Hl(X)e3)(G) for ail
i >0. Let n >2 dim X + 2 and k > n + 6 be such that k=0 (mod d). Suppose that
either

(i) n + k is even and Hj*[x(X; G)] 0; or
(ii) n + fc is odd, \G\ is even, 2X(X; G) 0 in A(G), and Hj*[X(X; G)] 0.

Then there exists a semi-free action of G on a homotopy sphère Xn+k with
SG=Fn(X).

In this proposition [*(X; G)] dénotes the class of *(X; G) in Hn(Z/2; A(G)).
The condition that 2#(X; G) 0 in (ii) above is needed to insure that [x(X; G)] is

defined.

PROPOSITION 5.2. Let G Q2l be the generalized quaternion group of order
2l and let H:Hn{ZH\KQ{G))->Lhn{G) be the hyperbolic map.

(i) // n# 1 (mod 4), then H 0.

(ii) If n 1 (mod 4), then H is injective.

Proof of Theorem C. Let X be the Moore space S1 \Jfe2 where f:S1-^S1 has

degree 3. Then *(X; Q2*) [<3, N>]*0 in A(Q2I) Z/2 by [18; Proposition 3.5].
Theorem C now follows directly from 5.1 and 5.2.

Proof of 5.1. Since k =0 (mod d), there exists a free orthogonal représentation
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Wk of G of dimension k. Furthermore, k is even since d is. Let G act trivially on
Rn and diagonally on Rn x W\ Then Rn xO is the fixed point set. Embed X in
Rn xO with smooth regular neighborhood Nn(X). Let the pair (Rn x Wk, N(X))
play the rôle of the pair (M, Nt) in Proposition 3.2.

Following the notation of 3.2, we let Q Rn x(W-IntD(W)), Qi
N(X)xS(W), O Ô/G, and Qj Q/G where D(W) and S(W) are the unit disk
and sphère of W respectively. We also let Vo c: Q be the submanifold, constructed
in 3.2, that was denoted there by V, for i=[n + fc/2]— 1. The proof now breaks up
into two cases:

Case L n is even. In this case, we set n 2p, fc 2q, and n + fc=2r. The
restrictions on n and fc imply that p + 2<q and that n + 3<r<fc — 3. By 3.2 and

its proof, (Q, Vo) is r-connected and Hr(V0) Poe@(G) and satisfies (- l)r[P0]
\(X;G). Furthermore, since O is fc-2 connected and r<fc-3, there are

isomorphisms

Hr( Vo) ^~ 7Tr( Vo) -^ 7Tr( Vo) ^- 7Tr+1(Q, Vo)

Let <r:Hr(V0)-» Trr+1(O, Vo) be the composite isomorphism. By the methods of
[20; Chap. 1] each class xGHr(V0) détermines a preferred class of immersions
fx : Sr xDr —» Vo which may be used to define mutual and self intersections, À and

jul respectively, as in [20; Chap. 5].

LEMMA 5.3. For ail x, y e Hr(V0), À(x, y) 0.

Proof. Let Srx and Sry be immersed sphères in Vo representing cr(x) and <j(y)
respectively. Then by [20; Chap. 5], À(x, y)eZG is given by

A(x,y)= X (S^S^g^g
geG

where Sx and Sy are immersed sphères in Vo covering Sx and Sy and dénotes
the usual intersection pairing on Hr(V0).

Let ;: V0->(V0,dV0) be the inclusion. Then for ail u, veHr(V0), (u,v)
(w, j*v) O since the following commutative shows that /# is the zéro map:

Hr(V0) ^ Hr(V0,aV0)

i -i-
0 Hr(Rn x W) > Hr(Rn x W, Rn x W-Int Vo))

The lemma now follows.
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It follows from 5.3 and formai properties of self-intersections that
jul : Hr( Vo) ~> ZG/{v + - l)r+1 v\ve ZG} is a homomorphism of groups where
"bar" is the anti-involution of ZG that sends XgeG ng g to XgeG ng g"1. But also
5.3 shows that jui(x) (-l)r+V(x) for ail x. Hence, |x:Hr(V0)->
Hr+l(Z/2;ZG) {ueZG\u={-iy+1a}l{v + (~l)r+1v\veZGh and, in fact, jul

is a ZG homomorphism.
In gênerai, jul is not the zéro homomorphism. The next step in the proof of 5.1

is to replace Vo by a new manifold V1 of the same homotopy type such that ail
mutual and self-intersections of the classes in Hr(Vx) vanish. In order to do this,
we let V c Q be the manifold corresponding to i [n + fc/2]- 2 r - 2 in the proof
of 3.2. Then (Q, V) is (r —1) connected and there is a short exact séquence

0 -> fWÔO -> fWV) -> P -» 0

where Pe&(G) satisfies (- l)r"1[P] 5IrIï (-1)J[H,(X)]. In fact, our numerical
restrictions imply that Hr_1(Ôi) 0, that Hr_1(V) P, and that (-l)'"1^]^
X(X;G).

We can regard Vo as having been obtained from V by choosing a resolution

where F is a finitely generated free ZG module with base xu jcs ; by letting p'
be the unique homomorphism that makes the diagram

commute; by representing each class p'(x,) by an embedding {{'.(D^xD^S] *x
Dr)-H>(C1(Q- V),d+V); and by then attaching the handles f^D'^D') to V via
the embeddings /f /; | : Sp1 x Dr -> d+ V where KV Cl (dV- Qt).

Let ti':F-*Hr+1(Z/2;ZG) be a homomorphism such that fx'|P0=|u,. Since

Po is a direct summand of F, such a homomorphism exists. Following [20; Chap.
5], we let hj :Srs~1xDrxI-*d+VxI be a regular homotopy from /j to a new

embedding g, such that the mutual intersection of the h} vanish, while the self

intersections of h, are given by -fx'Oc,). Let Vt VU U?=i Dr}xDr where the

attaching map for D[xDr is gr
In effect, Vx is obtained from V by doing surgery on classes p'(*i), • • •,
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ttt(Qi V) irr(î) to make the inclusion map i: V—>Q r-connected. Thus, there
exists a map ^ : Vt —> Q and a stable framing Fx of tVx®$*vo where rM and vM

respectively dénote the stable tangent and normal bundles of the manifold M. In
fact, there exists an immersion \\f: Vo—» V\ such that t/^i/* is homotopic to i; for
we may map VcV0 into V<^V1 by the identity on the complément of a collar
dVxI of dV and by shrinking dVxJ onto dVx[|, 1] leaving aVx 1 fixed (where
dVci V corresponds to dVxO). This immersion may then be extended over the

/th handle DJrxDr S;"1xDrxJUDJrxDr of Vo by mapping the collar S^x
Drxl into dVx[0,§] via h} (with the parameter changed) and by mapping
DjXDr onto the corresponding handle of Vx via the identity.

It is easy to see that ^ is a homotopy équivalence that makes the following
diagram commute

ÏTr+l(a Vo) ^-> TTr( Vo) +-^- 7Tr(V0) -^-> Hr( Vo)

J -!*• "h "h
>Hr(Vl)

In particular, if <f>x:Sr xDr -> Vo is an immersion in the preferred class of
immersions corresponding to xeHr(V0), then the composite immersion i/k£>x is in
the preferred class of immersions determined by <£*(*) g Hr(Vx). We may combine
this observation with the following lemma to compute the mutual and self
intersections of classes in Hr(Vx).

Let V0=V'UH where V'=V minus an open collar of dV and H
Vo-IntV.

LEMMA 5.4. Let xeHr(V0). Then there exists an embedding <f>+:(Dr+x

Dr,Sr~1xDr)->(H,aV) and an immersion fc:(Dr_xDr,Sr-lxDr)-+(V\dV)
such that 4>x\ S1^1 x&r <t>x\ Sr~xxDr and such that <f>x fâU<f>~ is an immersion

representing x.

Proof. Consider the following commutative diagram

0 > 7Tr+1(Q, Vo)^ 7Tr( Vo, V) > 7Tr(Q, V) > 0

I- î- I-
Hr(V0) *r(H, dV) > 7rr(O, dV)
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It follows from the previous discussion and homotopy excision that the row is

exact and that the indicated maps are isomorphisms. Hence d(x) can be rep-
resented by a map /+ : (D+, Sr~l) -> (H, dV) such that /+ | S1""1 extends to a map
f_:(D'L,Sr~1)-*(V'9dV'). But then x itself can be represented by a map
g:(Dr+1;Sr,D;D1)->(O; V0,H, V) such that g|DL=/±. In particular, the
stable bundle représentation TSrxDr-> tVo that defines the regular homotopy class

of immersions representing x restricts to stable bundle représentations r(Dr+x
Dr)-*r(H) and T(D1xDr)-> t(V') that yield the same représentation of

Let ^+ : (Dr+ x Dr, S''1 x Dr) -> (H, dV) and $_ : (Dr_ x Dr, S'"1 x Dr) ->
(V, dV) be immersions corresponding to thèse représentations. Since Tr^dV)—»
tti(H) is an isomorphism, we may regularly homotope ij/+ to an embedding
<j>+ :(Dr+xD\ Sr~l xDr)-+ (H,dV). Since <^|Sr~1xDr and ^_|Sr~1xDr
correspond to the same représentation of stable tangent bundles, they are regularly
homotopic. By splicing the regular homotopy onto i/>_, we may replace t/r_ with a

new immersion <j>~:(Dr_xDr,Sr~lxDr)-*(V\dVr) such that <£x | S'"1 xDr
<f>~\Sr~1xDr. It follows immediately from the construction that <£xU</>* is an
immersion representing x.

LEMMA 5.5. AU mutual and self-intersections of classes in Hr{y^ vanish.

Proof. Let x'eHr{Vx) and suppose x' ^*(x). Let <£x :Sr xDr -^ Vo be the
immersion representing x constructed in 5.4. Then \\f<\>x represents x' and the
self-intersections of iW>x(Srx0) détermine jti(x'). The descriptions of ^ and <£X,

however, show that the self-intersections of il/<t>x(Sr xO) are just the sum of those
of i/r<k(DlxO) and #x(Dr+x0). The self-intersections of i^x(DLx0) are just
those of <f)x(D1x0) which are the same as those of <^x(Srx0) since <£X is an

embedding. Hence, the self-intersections of <^X(DL xO) equal jul(x). On the other
hand, since <l>x(Dr+x0) is embedded, the self-intersections of i/k£x(D+ xO) ail arise

from the behavior of il/. The description of \\f given above, however, shows that
the self-intersections of i^>x(D+x0) are -fi/(x)= -jx(x). Hence, jul(x') O.

A similar argument shows that A(x, y)z=0 for ail x, y gH^V^)-
The proof of 5.1 in the case when n is even is now completed as follows: Let

Mï V1\j (N(X) xD(W)) with corners equivariantly rounded and let M2r be the
double of Mx. Then M2r is (r—1) connected and supports a semi-free G-action
with MG =Fn(X). If we delete a G-tubular neighborhood of MG and pass to the
orbit space, we obtain Vx U Vx where the union is along d+ Vx Cl (d Vx - Qi). We
note that H irr+1(/) Hr(D(V1)) and A and fx are the mutual and self-
intersection forms on H. But now, the inclusion V1->D(V1) induces a

monomorphism HriV^-^H whose image is totally isotropic by 5.5. It follows
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that (H, À, /ul) is the hyperbolic form on H^V^. Since (- l)r[Hr(Vl)] *(X; G), it
now follows that if Hj*[x(X; G)] 0, / may be made (r +1) connectée! via surgery
relative to dD(Vx). Let g:V2-+ Q be the resulting map.

Since dV2 dD(Vl) is the double of Ql9 dV2 is the double of Q^
N(X)xS(W) where V2 is the universal cover of V2. We now let Xn+k

V2U(Fn(X)xD(W)). Then 2n*k supports a smooth semi-free G-action with
2G=Fn(X). On the other hand standard arguments show that Xn+k is a

homotopy sphère. This complètes the proof of 5.1 in the case when n is even.

Case IL n is odd. In this case, we let n 2p + l, k=2q, and n + k=2r + l.
Hère, the manifold Vo constructed at the beginning of this proof has the following
properties which may be derived easily from 3.2 and properties of Ch:

(a) Vo is a smooth regular neighborhood of a CW complex X Qx U cells of
dimensions ^r.

(b) (Q, Vo) is r-connected.
(c) Hl(Vo) 0 for 0<i<r and H^Vo^^o is in &(G) and satisfies

(d) For i>r, k^iH^Q^-^ H^Vq) is an isomorphism.

It follows immediately from (c) that [Po] k*[Z/p] [(p, N)] for some integer
p prime to \G\ (cf. section 2 for notation). By stabilizing, if necessary, we may
assume that P0 (p, N)(BF0 where Fo is a free ZG module. Combining this with
the exact séquence (*) of 2.3, we obtain an exact séquence

where FX^FO®ZG is a free ZG module and Zip is trivial ZG module.
We now proceed as in the proof of 3.2. We identify Fo with 7rr+1(Cl(Q —

^o^d+^o) where d+V0 Cl(aV0-Q1). We pick free generators xl9... ,xs of Ft
and represent them by pieeewise linear embeddings /, :(Dr+1, S1")-*

(C1(Q- V0),d+V0) with mutually disjoint images. We then attach the cells

/,(Dr+1) (; l,...,s) to Vo and let Vx be a smooth regular neighborhood of
Vo^ UjS=i/,tDr+1) in Q. It is easy to see that Vt has the following properties:

(a') (Q, Vx) is r-connected.
(b') Hl(V1) 0for0<i<randHr(V1) 2:/pwhere(-l)rk*[Z/p] A:(X;G).
(c') For i>r, k^iH^QJ-* Ht(Vi) is an isomorphism.
Let b:Hr(Vl)xHr(V1)-> QG/ZG dénote the linking form as defined in [19;

Section 5]. Similarly let q : Hr(VJ -> QG/{v + - l)r+1û | v e ZG} be the quadratic

map defined by self-linking.
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LEMMA 5.6. (i) For ail x, y eH^VO, b(x, y) O.

(ii) If \G\ is even, then q(x) O for allxeH^V,).

Proof Since Hr(V1) Z/p is cyclic, it suffices to show that b(x, x) 0 for x a

generator of Zip. It follows immediately from the construction of Vl from Vo that
there exist embeddings /:Sr-^IntV0 and g:(Dr+\ Sr)-> (Cl^- V0),a+V0)
whose lifts to Vt represent the class x and a chain whose boundary is px. Since
b(x, x) is just the intersection of f(Sr) with g(Dr+1) and thèse sets are disjoint,
b(x, x) 0 and (i) is established.

To prove (ii), we note first that (i) and [19; p. 252] imply that q is a

homomorphism. On the other hand, q(x) b(x,x) 0 modulo ZG by
[19; p. 252]. Hence q iH^)-* ZG/{v + (- l)r+1v | veZG}. If \G\ is even, then
Hr( V) Zip has odd order. Furthermore, it is well known that the only torsion in
ZG/{u + (-l)r+1t51 veZG) has order two. Hence q(x) 0.

The proof now proceeds as in the even dimensional case. We let Mx
V1U(N(X)xD(W)) and M2r+1 be the double of Mx. Then M2^1 is (r-1)
connected, has Hr(M) Zip®Zip, and supports a semi-free G-action with MG
Fn(X). As before, the complément of a G-tubular neighborhood of MG covers

ViUVt where the union is along d+V1 and there is an r-connected map
/ : Vx U Vx —» Q, representing a surgery problem, with H 7rr+1(/) Hr(M).
Furthermore, since i^'.H^V^-^ Hr(M) is monomorphic with totally isotropic
image by 5.6, the form (H, b, q) is the hyperbolic form on Zip where b (respec-
tively, q) is the linking (respectively, self-linking) form on 7rr+1(/). (cf. [19; Section
5]). It now follows that the class of (H, M) in V{r+2(ZG, Z-{0}) is H'((p,N))
where Lfr+2(ZGr, Z-{0}) is the group L2r+2(A, S, e) of Ranicki [13; Proposition
2.4 and Section 7] for A=Zit, S Z-{0}, e 1, and X {0} arising from (split)
e-quadratic linking forms and Hr:H2r+1(Z/2;K0(G))-*Lf2rr+2(ZG,Z-{0}) is the
hyperbolic map.

On the other hand, there is a commutative diagram [13; Proposition 7.1]

H2'+1(Z/2; K0(G)) -^ Lf2rr+2(ZG, Z -{0})

j-
H2r+1(Z/2;

and it follows from the géométrie interprétation of cr given by Pardon [10] that
<r(H, b, q) H((p, N» is the obstruction to doing surgery relative to d(Vx, U V^)
to make / (r + l)-connected. Hence, if H((p, N) Hj*[x(X; G)] 0, there exists

an (r + l)-connected map g:V2-*Q where dV2 d(Vx U Vx) and g | dV2

/|a(V1UV2). The remainder of the proof for the odd dimensional case now
follows exactly the proof of the even dimensional case.
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Proof of 5.2. By the results of [8] and [3] the 2-primary component of
K0(Q2l) is Z/2 (cf. also [1; Section 4]) and the restriction map
r* : Hn(Z/2; K0(Q21)) -» Hn(Z/2; K0(QS)) is an isomorphism. Hence,
Hn(Z/2;K0(Q2l)) Z2 for ail n.

If n 3 (mod 4), H is the zéro map by [4]. Assuming that H 0 for n 0

(mod 4) the resuit for n 1 (mod 4) and l 3 follows easily from the exact

séquence

H\ZI2; K0(QS)) -^ Lht(QS) > LÇ(Q8) -U H°(Z/2; K0(Q8))

using the facts that / is onto, LÇ(Q8) has order 4 by [11; Theorem 9.24b], and

LÏ(Q8) has order 4 by [21; Theorem 5.2.4]. The gênerai case follows from this

case by applying the restriction map.
The proofs for the cases when n 2m use the commutative diagram [13;

Proposition 7.1]

Lp2m+2(ZQ2\ Z -{0}) -U H°(Z/2; K0(Q21))

i i-
H°(Z/2; K0(Q21)) — Lh2m{Q2l)

where the upper left hand term is the torsion L-theory of [13; Section 7] for
Y K0(Q2I). We shall show that j is onto by constructing an appropriate
e-quadratic linking form. This construction is facilitated by the following resuit.

LEMMA 5.7. Let e ±1 and (M, À) be an e-symmetric linking form over

(ZG, Z-{0}). If M has odd order, then there exists a unique function /ll:M->
xeZG} such that (M, A, jx) is an e-quadratic linking form.

Proof Since this resuit is well known, we only sketch its proof. Let Ae

{yeQG/{x+ex\xeZG}\y g y} and Be ={ze Qtt/Ztt | z ez}. Then

À(x, x)eBe for ail xeM. Furthermore, since M has odd order, À(x, x)e(Be)odd,
the odd torsion subgroup of Be. The natural map QG/{x + ex \ x e ZG} -> QG/ZG
induces an isomorphism p:(Ae)odd-^(Be)odd. Set jul(x) p~1à(x, x).

The proof of 5.2 in the case when n 2 (mod 4) is now completed as follows:
Let Z/r be endowed with the trivial ZQ21 module structure and define À : Z/r x
Z/r -> QQ2l/ZQ2l by A (s, t) (st/r)N where NeZQ2l is the norm élément. Then
A is a symmetric linking form on Z/r. Hence, (Z/r, A) détermines an élément

[Z/r,A,|i] of L5m+2(ZQ2I;Z-{0}) such that j[Z/r, A, fi] [(
H°(Z/2;K0Q2l). Since [<3,N>] générâtes the latter group the resuit follows.
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Suppose now that n 0 (mod 4). We consider first the case when 1 3. In this
case we make use of a construction shown to us by R. Oliver. Note first that there
is a pull-back diagram.

ZQ8

-i
ZD4

where D4 Z/20Z/2 is the dihedral group of order 4 with éléments 1, S, T, ST
and Fp is the field with p éléments. By [7], the map d : K^F^) -^ K0(Q8) in the

corresponding Mayer-Victoris séquence is onto and carries any unit a + bS + cT +
dST of F2D4 with exactly three of a, 6, c, d odd onto the generator (3, N) of

Let p be a prime, p 3 (mod 4) and choose a, b, c, d such that p
a2 + 62 + c2 + d2. Let w a + W + c/ + dfceZ[i,/, fc]. Then right multiplication by
u, • u:Z[i,/, fc]—>Z[i,/, fc] is injective. A tedious computation shows that this

map has cokernel Zip®Zip (additively); hence,

0- • Z[î, /, k] > Z[i, /, k] > Zip® Zip ¦

is exact. Furthermore, Zip®Zip inherits a ZQ8 module structure via the

epimorphisms ZQ8—? Z[i,/, fc]-> Zip®Zip. Let P be kernel of this composite
and M dénote Zip®Zip with this ZQ8 module structure.

LEMMA 5.8. (due to R. Oliver). The ZQS module P is a projective module

representing the non-trivial élément of K0(Q8).

Proof. Let û g F2D4 be given by û à + bS + cT + dST where â, b, c, d are the
mod 2 réductions of a, b, c, d respectively. Since p 3 (mod 4), exactly three of â,
b, c, d are odd and û is a unit of F2D4. Consider now the following commutative
diagram

ZD4

F2D4

Z/p®Zlp
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where the unlabelled maps are inclusions and t makes the triangle on the top
commute. A diagram chase shows that

is a pull-back diagram. Hence P is a projective module representing d(û). The
lemma now follows from the remarks above.

LEMMA 5.9. The module M supports a ZQ8 invariant skew-symmetric link-
ingform <)>:MxM-+QIZ.

Proof. Define <j> by setting <f>((r, s),(rf, s')) (rs'-r's)/p where r, s, r', sr are
integers representing classes in MxM (Z/p(BZ/p)x(Zlp(BZIp). Clearly <f> is

skew-symmetric; in fact, <f> is the form with matrix

-1 0

On the other hand, M is an indécomposable ZQ8 module. Since FPQ8
(FP)4©M2(FP), it follows that the Q8 représentation on M is given via the
inclusion Q8 —? SL2(p) Sp2(p) [2]. Since Sp2(p) is the group of isometrics of the
form with matrix

/ 0 IX
V-i or

the lemma now follows.
The proof of 5.2 in the case when n 0 (mod 4) and / 3, is now concluded as

follows: We define A:MxM^ QQ8/ZQ8 by

A(x,y)= X «Mx.yg"1)*
geQ8

Then À is a — 1 skew)-symmetric linking form in the terminology of [13]. Since

M has odd order, 5.8 shows that (M, À) détermines an élément x=[M, À, jul]g

LÏ(ZQ2l,Z-{0}) such that /(x) [<3,N)]#0.
The proof of 5.2 in the case when n 0 (mod 4) is completed by observing that

the 2-Sylow subgroup of SL2(p) is Q2l [2] when p -l (mod 2l). Hence, the
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action of Q8 on M given above extends to an action of Q2l and the form <f> of 5.8
remains invariant under this extended action. Hence, we can construct a (-1)-
quadratic linking form representing an élément y e L\(ZQ2\ Z — {0}) whose restriction

to ZQ8 is x. The commutative diagram

L\(ZQ2\ Z-{0}) -î-> H°(Z/2; K0Q2l)

i i-
LÇ(ZQ8), Z -{0}) > H°(Z/2; K0QS)

coming from restriction now shows that j is onto in gênerai. This concludes the
proof of 5.2.
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