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Comment. Math. Helvetici §5 (1980) 97-129 Birkhauser Verlag, Basel

The homology of some groups of diffeomorphisms

Dusa McDurr'?

§1. Introduction

In this paper I will develop some methods, originated by Segal, for dealing
with groups of homeomorphisms and diffeomorphisms. Their main application
here is to proving the topological case of the Mather-Thurston theorem which
relates groups of homeomorphisms to Haefliger’s classifying space for foliations.
However, §5 will discuss the C"-case. Its conclusions are used in [8] to prove the
C"-version of this theorem, for 1<r<c,

The results can be stated as follows. Let X be a connected, topological
n-manifold, possibly with boundary and with trivial ends. (Thus X is contained in
a compact manifold X, where X — X is a possibly empty union of components of
the boundary of X.) Let #om X be the homeomorphism group of X with the
compact-open topology, and let Hom X be the same group with the discrete
topology. There is a natural map B Hom X—B %s.,»» X, and we denote its
homotopy fibre by B s X. Then the following is true:

ASSERTION. This homotopy fibre B %o X has trivial integer homology.

A completely equivalent statement is that the mapping B Hom X — B ¥om X
is a homology equivalence, i.e. induces an isomorphism on homology with all local
coefficients coming from B %0 X (see [5]). In some cases the homology groups
of B #om X are known (for instance the stability theorems of [6] V §5 give some
information about H;(B ¥0»mR";Z) for i=n+2), and so this amounts to a
computation of Hy(B Hom X).

This assertion will be proved in §2 for all closed manifolds and for compact
n-manifolds with boundary where n =2. The case of non-compact manifolds and
the case of the unit interval are not covered by this proof but do follow if we also
make use of Segal [21]. (See Remark 2.16.) When X is closed this theorem is due
to Thurston [23], but no proofs have yet been published except in the case n=1

! This paper was written at the Institute for Advanced Study, Princeton, with support from the
NSF.
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98 DUSA MCDUFF

(see [12] and [23]). However, in the C"-case, r=1, Mather [13] has worked out
the details of the proofs of Thurston’s results. See also [22].

More generally, if A is a closed subset of X there is a corresponding result for
B %om (X, 1el A), where ¥osm (X, rel A) is the group of all homeomorphisms of X
which are the identity near A, with the direct-limit topology. (See §2.) In the case
when X is compact and 0X < A, this result is due to Mather [12] for n =1 and to
Thurston [23] for n>1. Its main consequence is the following:

THEOREM 1.1. (Mather-Thurston) BI's is weakly contractible, i.e. has the
weak homotopy type of a point.

Here BI; is Haefliger’s classifying space for topological foliations of codimen-
sion n with trivialized normal bundles. Again, no published proof of this has
appeared except when n=1, see [12].

This paper is organized as follows. In §2, the above theorems are proved by
means of an inductive technique very like the immersion-theoretic method
described in [6] V. The arguments are based on two key results (Propositions 2.1
and 2.2). These are due to Segal, and I am very grateful to him for explaining
them to me. The first one, which is proved in §4, says that for certain nice pairs of
manifolds (X, Y), the inclusion B #smq (X, Y)=>B %0, X is a weak equivalence,
where ¥omo (X, Y) is the identity component of the submonoid of Hosm X
consisting of all homeomorphisms which embed Y into itself. The advantage of
considering #osmq (X, Y) instead of #o» X is that there is a restriction map from
Homo (X, Y) to Emé Y, the monoid of self-embeddings of Y, and it is on the
properties of this restriction map that the whole argument is based. Indeed, the
second result, which is proved in §3, says that this restriction map gives rise to a
homology fibration sequence. (See Proposition 3.8.) In §5, proofs are given of the
extensions of these basic results to monoids of C"-embeddings which are used in
[8] to relate these monoids to the classifying space for foliations. Readers who are
interested only in §5 should start there, referring back to §3 and §4 as necessary.
The Appendix is an erratum to [8]. (The “thin” realization of BI" was used there
instead of a ‘“‘thick” realization.) Also, errors in the proof of the homology
fibration theorem [9] Proposition 2 are corrected in Lemma 3.1 below.

I wish to thank D. B. A. Epstein very warmly for his detailed and constructive
criticism. As well as pointing out the errors mentioned above, he suggested many
improvements to the present paper, including the use of the category %% [24].

§2. The acyclicity of B %0om (X, rel A)

We begin by establishing some notation which will be used throughout §§2-4.
As already mentioned, X denotes a connected topological n-manifold, possibly
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with boundary, which has trivial ends. Y will denote an n-dimensional sub-
manifold of X which is cleanly embedded in X (see [6] I §2). This means that the
pair (X, Y) is locally homeomorphic to the pair (R*xR"™ ! R* x R* x R"~?) where
R" is the interval [0, ). Thus Y is a closed subset of X. Also its frontier Fr Y is
bicollared. We will call such a pair (X, Y) of manifolds a nice manifold pair.
(Essentially the same definition was given in [8], modulo compactness assump-
tions.) Finally, A will denote a closed subset of X such that the set (Fr Y)—A is
relatively compact in X.

We define #o» (X, Y, rel A) to be the subspace of o (X, rel A) consisting
of all homeomorphisms h which embed Y in itself. Since h need not take Y onto
Y, the elements of %ssm (X, Y,rel A) form a monoid instead of a group.
Hom (X, Y,rel A) is given the direct limit topology. Thus it is the limit
!i_l_ll_)%om (X, Y, rel U), where U runs over the set of all open neighbourhoods of
A in X, and where ¥om (X, Y, rel U)={he€Hom X :h(Y)< Y, h=id on U} is
given the compact-open topology. Since ¥4 (X, Y, rel U) is first countable, it is a
k-space (i.e. a compactly generated Hausdorff space). Hence the direct limit
Hom (X, Y, rel A) is also a k-space. We will work throughout this paper in Vogt’s
category X% (see [24] §5) which contains all k-spaces, and is better behaved than
the category of k-spaces. In particular, any product U X V is to be understood as
a product in #% and so has a topology which may be finer than the usual product
topology. (More information about #% is given in §3 below.)

Now let Homg (X, Y, rel A) be the identity component of #onme (X, Y, 1€l A),
and write Hom (X, Y, rel A) and Hom, (X, Y, rel A) for the corresponding dis-
crete monoids. Further, let Emb* (Y, rel A) (resp. Embg (Y, rel A)) denote the
quotient Hom (X, Y, rel A)/~ (resp. Hom, (X, Y, rel A)/~), where h~h' if and
only if h = h' near Y. Thus Emb{ (Y, rel A) is a discrete monoid whose elements
can be thought of as germs at Y of embeddings of neighbourhoods of Y, which
extend to homeomorphisms of X, are the identity near A, and moreover are
homotopic to the identity through such embeddings. Note that such an embedding
must take dX NAY into itself. Since (Fr Y)— A is relatively compact, it follows
from the isotopy extension theorem of Edwards and Kirby that Embg (Y, rel A) =
Emb{ (Y, rel YN A). (See Cor. 1.2 of [3], and the remark on p. 79 after its
proof.) This need not be true for Emb* (Y,rel A). Also, Emby (Y, rel A)=
EmbZ (Y, rel ZN A) whenever Z is a neighbourhood of Y in X.

Since Emby (Y, rel A) does not have a natural (non-discrete, Hausdorff)
topology, we define the associated topological monoid by a slightly different
construction as follows. Let &m46(Y,rel YN A) be the space of all self-
embeddings of Y which are the identity on some neighbourhood of Y N A, with
the direct limit topology as before, and write &6, (Y, rel YN A) for its identity
component. The monoid €msbx (Y,rel A) is defined to be the image of
Homo (X, Y, rel A) in Emb, (Y, rel YN A) under the restriction map, with the
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subspace topology. Since (Fr Y)— A is relatively compact, it follows from the
results of [3] that the subspace and quotient topologies on €mfy (Y, rel A)
coincide. Thus this monoid is a k-space. Notice also that &,:45 (Y, rel A) equals
Homo (X, Tel A) if Y=X, and, by the isotopy extension theorem, equals
Emby (Y,rel A) if Y is a compact submanifold in the interior of X.

The homotopy fibre of the natural map from B EmbJ (Y,rel A) to
B €mtX (Y, el A) will be called B €8x (Y,rel A). Since Hom (X, rel A) is a
group, it follows from Lemma 3.5 below that B ¥om (X, rel A)=
B %#0m (X,1el A). (Because it is not known whether the group ¥oss» X has the
homotopy type of a CW complex, the symbol = will be used to denote a weak
equivalence.)

We are now ready to state the two propositions which form the basis for our
argument.

PROPOSITION 2.1. If (X, Y) is a nice pair and A is a closed subset of X such
that (Fr Y)— A is relatively compact, then the inclusion

B Homo (X, Y, 1el AY>B Hom (X, rel A)

is a weak equivalence.

PROPOSITION 2.2. If X, Y, and A are as in Proposition 2.1, then the
sequence

B Homo (X, rel YUA)— B Hom (X, Y, rel A)L> B EmbX (Y, 1el A)

is an integer homology fibration sequence. In other words, the inclusion of
B #0omo (X,1el YU A) into the homotopy fibre of p induces an isomorphism on
(untwisted) integer homology. Here p is the map obtained by restriction of homeo-
morphisms to (a neighbourhood of) Y.

These two propositions are due to Segal, and will be proved in §3 and §4. The
following are immediate corollaries. Recall that a space is said to be acyclic if it
has trivial integer homology.

COROLLARY 2.3. If B #omo (X, rel YU A) is acyclic, then p is a homology
equivalence, i.e. it induces an isomorphism on homology for all local coefficients.

This follows easily by the arguments of [5].
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_ COROLLARY 2.4. Let X, Y, and A be as in Proposition 2.1. Then, if
B %0m (X, rel Z) is acyclic for Z=A, Y and YUA, it is acyclic for Z=YNA
also.

Proof. Consider the commutative diagram

B Homo (X, 1l YUA)—> B Homo (X, Y, 1el A)—> B &mtX (Y, 1el A)
a B =]y

B %0mo (X, 1€l Y) — B Homo (X, Y,1el YO A)—> B €mtX(Y,1el YN A),

where the vertical maps «, 3, y are inclusions. It was remarked above that vy is an
equality. Also, since for any Z

B ¥omo (X, 1€l Z) =B Hom (X, rel Z),

our hypotheses imply that both B ¥omo (X, rel YU A) and B ¥omo (X, rel Y) are
acyclic. Therefore, by Corollary 2.3, both o and + are homology equivalences.
But, by Proposition 2.1, B Homo (X, Y, rel A)=B ¥om (X,1el A) and so is acyc-
lic. Therefore, B &mtX (Y, rel A)=B &mbX (Y, 1el YN A) is acyclic. It follows
that B ¥om (X, rel YN A), which is weakly equivalent to B ¥omq (X, Yrel YN
A) by Proposition 2.1, is acyclic as well. [

Our first aim is to prove:

_ THEOREM 2.5. If X is as above and if X— A is relatively compact, then
B ¥om (X, rel A) is acyclic.

Of course, this implies that if X is any paracompact manifold then B #osm, X
is acyclic, where ¥om X is the group of all compactly supported homeomorph-
isms of X, with the direct limit topology.

We will prove Theorem 2.5 by an inductive procedure, analogous to the
immersion-theoretic method mentioned in [6] essay V. Because it is a double
induction over X and A, we have to modify the scheme given there. Our starting
points are Lemmas 2.6 and 2.6’ below. The inductive step is always completed by
an application of Corollary 2.4. We will often have occasion to use the fact that if
(X, Y) is a nice pair for which Y < Int X, then the spaces B ¥om (X, rel X—Y)
and B %om (Y,rel 0Y) are identical. We will refer to this as “‘excision.” For
convenience, we will often denote ¥om (X, 1rel 0X) by Hosm (X, rel 9). Also, if
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A >0, we will write AD" for the closed disc of radius A centered at the origin in
R".

LEMMA 2.6. B ¥om (D", tel 8) is acyclic.

Proof. Mather proved in [11] that B Hom (D", reld) is acyclic. Since
Hom (D", rel 3) is contractible by the Alexander trick, the result follows
immediately. [

LEMMA 2.7. For all n=1 and k=0,...,n, B %¥om (S*xD" ¥ reld) is
acyclic.

Proof. By induction on k. For k =0, this follows immediately from Lemma
2.6. So, suppose it has been proved for all k' <k, where k <n. Decompose S* as
L UM, where L is the lower disc {xe S*:x,.,, =31} and M is the upper disc
{xeS¥:x,,,=—1}, and let Y and A be the complements in X =S8*xD"™* of
certain thickenings of L and M, respectively. For instance, we may take Y =
Skx D" * —Int(LxiD" ™) and A =8*xD" % —Int (M x3D"¥). Then (X, Y) is
a nice manifold pair. It follows easily from Lemma 2.6 that B %om (X, rel Z) is
acyclic when Z = A or Y. Similarly, using the inductive hypothesis, one sees that
B %om (X, rel YUA) is acyclic. Therefore, B %#sm (X,1el YN A) is acyclic by
Corollary 2.4. But, by excision, #om (X,rel YN A)=Hom (S*x D" rel 9) and
so the inductive step is complete. []

LEMMA 2.8. Let (X, A) be a nice manifold pair with X < A. Then, if (X, A)
has a finite handle decomposition, B ¥sm (X, rel A) is acyclic.

Proof. The proof is by induction on the number, p, of handles in a handle
decomposition

A=X,cX;c---cX, =X

N\ /

S~——""
Figure 2.1. Here Y < S'x D! is shaded.
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Figure 2.2

of (X, A). Here, each handle H, = X, — X;_, is a cleanly embedded submanifold of
X such that (H,, H; N X,_,)=(D*, aD*)x D" * for some k. Suppose, inductively,
that we have proved the lemma for all pairs (Z, B) which have a handle
decomposition with <p handles, and consider the pair (X, A) above. Let
(H;, H N X,)=(D*, 0D*)xD"* and let C denote the core D*xiD"*c
D*x D" of H,.

Then, because X = A = X, the pairs (X, X,U C) and (X, X,UH,;)=(X, X,)
are homeomorphic. Therefore, B %om (X, rel X,U C) is acyclic by the inductive
hypothesis. Also, if Y =X =Int H,, it is easy to see that both B #om (X, rel Y)
and B o (X, el Y U X,U C) are acyclic. (The latter space is homeomorphic to
B %om (D*** x S"*~! rel 9) by excision, and so is acyclic by Lemma 2.7.) It now
follows from Corollary 2.4. that B %0 (X, rel X,,) is acyclic, which completes the
inductive step. [

NOTE 2.9. The details of the proof of Theorem C in [8] may be filled in by
the arguments of Lemma 2.7 and 2.8. Care should be taken to round off corners
properly.

We can sharpen Lemma 2.8, showing that B ¥osm (X, rel A) is acyclic for any
pair where X is compact and X < A, by the usual trick of using a handlebody
cover of (X, A). We first remark:

LEMMA 2.10. If A2 A,2 - is a sequence of compact subsets of X with
intersection A such that B ¥om(X,1el A)) is acyclic for each i, then
B %#0m (X, el A) is acyclic.

Proof. This is immediate. [J

LEMMA 2.11. Let X be a compact manifold, and A < X a closed subset
containing 3X. Then B ¥om (X, el A) is acyclic.



104 DUSA MCDUFF

- ——

Figure 2.3

Proof. Since dX c A, it follows from Lemma 2.10 that we may assume that A
contains a collar neighbourhood of 8X. Then X — A has a finite covering by the
interiors U,, ..., U, of closed discs D,,..., D, which are cleanly embedded in
Int X. Let us suppose that the lemma has been proved for all pairs (Y, B) as
above, where Y — B has a covering by <k such discs, and let X — A be covered by
U,,..., U, where k =1. Since D, is cleanly embedded in Int X, it is contained in
the interior of a larger closed disc, D say. Choose a sequence L, 2L,> - - of
PL -submanifolds of D which have intersection A N D and are such that the pairs
(X, X—DUL,) all satisfy the conditions of Lemma 2.8. Then each
B %sm (X, 1el X—DUL;) is acyclic. Moreover, by the inductive hypothesis
B %#0m (X, 1el Z) is acyclic when Z is D,UA or D;UAU(X—-DUL,). There-
fore, by Corollary 2.4, it is acyclic when Z=(D,UA)N(X-DUL,)=
AU(D,NL,). Hence, by Lemma 2.10, B ¥om (X, rel A) is acyclic, which com-
pletes the inductive step. [

In order to deal with the case when dX ¢ A, it is convenient first to consider
pairs of the form (X XI, X xX{0}UA XI), where A is a closed subset of X
containing 90X, since this will enable us to handle the boundary region. As
analogues of Lemmas 2.6 and 2.8, we have:

LEMMA 2.6". If n=1, B ¥om (D" X I, rel (D" x{0}UaD" xI)) is acyclic.

Proof. It is not hard to prove that B Hom (D" X I, rel (D" X{0}UoD" X I)) is
acyclic, using Mather’s techniques in [11]. Details will be left to the reader. Since
Hom (D" X I, rel (D™ x{0}UaD" X I)) is contractible by the Alexander trick, the
result follows. O

LEMMA 2.8'. If the pair (X, A) is as in Lemma 2.8 then

B ¥om (X X I,rel (X x{0}U A XI))
is acyclic.
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Proof. In the case that X has dimension 0, so that X — A is a collection of
points, this result is proved by Segal in [21] §2. When dim X =1, it may be proved
by modifying the proofs of Lemmas 2.7 and 2.8 in the obvious way, using Lemma
2.6' in place of Lemma 2.6. O

With these preliminaries, we may now prove Theorem 2.5.

Proof of Theorem 2.5. We have to show that B %o (X, rel A) is acyclic when
X —A is relatively compact. Recall that X has the form X—B where X is
compact and B is a union of components of 8X. Since X — A is relatively compact,
A must contain a neighbourhood of B in X. Therefore #om (X, rel A)=
Hom (X, rel A UB), and it suffices to consider the case when X is compact.

Suppose additionally that the pair (X, A NaX) satisfies the conditions of
Lemma 2.8. By Lemma 2.10 we may also suppose that A is a product near 9.X,
that is, that there is a collar neighbourhood 0 X X I=>X of 0X =X x{0} such that
ANEXxI=(AN3X)XL Set Y=X-9XX[0,3). Then B Hom (X,1el YU A) is
acyclic by Lemma 2.8'. Also, by Lemma 2.11, B ¥om (X, rel Z) is acyclic when
Z=AUdX and AUdXU Y. Therefore, since our hypotheses ensure that YU A
is a nice submanifold of X, it follows from Corollary 2.4 that B #om (X, rel A) is
acyclic.

The proof for general A is completed by an inductive argument as in Lemma
2.11. Thus one argues by induction over the number of discs in X which cover
the set 0X — A. Further details are left to the reader. O

COROLLARY 2.12. B %sm D" is acyclic.

COROLLARY 2.13. The restriction map B Hom, D" — B Hom, S™" ! induces
an isomorphism on integer homology.

Proof. Consider the commutative diagram

B Hom, D" —> B Hom, S™™!

| |

B8
B ¥omo D™ —> B Homy S™ .

The vertical maps are homology equivalences by Theorem 2.5. Also, because the
map Homo D™ —>Homo S™ ' splits and has contractible fibre, B8 is a homotopy
equivalence. Thus a must induce an isomorphism on homology for all coefficient
systems on B Hom, S"™! coming from B o, S""'. These coefficient systems
will always be trivial, since B #omo S™ ' is simply connected. [
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Note. The same argument as that given above shows that
B Hom D" — B Hom S™*

is a homology isomorphism for all local coefficients induced from B #om S™'.
Now Hom, S"~! is perfect (in fact simple —see [3] p. 80) and therefore any
abelian coefficient system on B Hom S"7! is induced from my(#om S™"'). (The
definition of abelian coefficient system is given in §3.) It follows that
B Hom D" — B Hom S™ ! is an abelian homology equivalence. We remark that
o(Hom S" ) =Z, if n#5 and is unknown if n=35 (see [6]).

COROLLARY 2.14. If (X,Y) is a nice pair in which Y is a compact
submanifold of Int X, then B &mty Y is weakly contractible.

Proof. By replacing X by a compact neighbourhood of Y in Int X we may
suppose that X is compact. Since both B #smq (X, rel 8) and B #smy (X, rel Y U d)
are then acyclic by Theorem 2.5, it follows from Corollary 2.3 that B €m6X Y is
acyclic. However, 7, B €»¢X Y is abelian (see Corollary 5.5) and so the homotopy
groups of B €»¢X Y all vanish. [

COROLLARY 2.15. B €»£R" is weakly contractible.

Proof. Since €méR" =X om R" (see [7], Theorem 1), it follows from Lemma
3.5 that B &t R" = B &mé, R". Consider the maps

Z ol D" < G by (R", D") > Sty R,

It is easy to check that the inclusion i is a weak equivalence. Further, by [3], the
restriction p is a weak fibration whose fibre consists of all embeddings which are
the identity on D™. Since this fibre is contractible, p is a weak equivalence. Segal
considers the corresponding diagram for B Emb in [21] (2.7), (2.8) and shows that

B Emb®" D" «— B Emb, (R", D")c—> B Emb, R".

Thus B €mb, R* =B &N D™, and the result follows from Corollary 2.14. O

REMARK 2.16. Segal proves in [21] that if X is any compact C"-manifold,
where 0 <r=<o, then B Diff" (X x[0, =), rel X x{0}) is acyclic. Since

Deff (X x [0, =), rel X x{0})
is contractible, B Déff (X x [0, ), rel X x{0}) is acyclic too. (Here Diff X denotes
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the group of C"-diffeomorphisms of X, with the compactopen C’-topology.)
Therefore, if X is any manifold with trivial ends, one can prove that B %sm X is
acyclic by using Segal’s result instead of Lemma 2.8'. More generally, Segal’s
argument can be adapted to show that if A is any closed subset of a compact
manifold X then B Diff" (X %[0, «), rel X x{0}U A X[0, ©)) is acyclic. Hence,
B ¥om (X, rel A) is acyclic for any pair (X,A), where X is a manifold with trivial
ends and A is a closed subset of X which is a product near .

We finish this section by proving Theorem 1.1.

Proof of Theorem 1.1. We will show that BI't=B €,»6R" and then apply
Corollary 2.15.

Haefliger defines BI'y in [4] II 4 to be the homotopy fibre of the ‘differential’
v:BI'G— B J0p,, where I is the topological groupoid of germs of homeomorph-
isms of R" with the sheaf topology and Joz, is the quasi-topological group of
germs at 0 of homeomorphisms of R" which fix 0. Thus BJos, classifies
(numerable) microbundles. (Recall that we are working in Vogt’s category 9.
Since this is isomorphic to the category of quasi-topological spaces, we will
consider both o4, and B Jo4, to belong to it. Also, we use thick realizations
here: see the beginning of §3.)

Consider the following commutative diagram:

a, B,
B EmbR" «—EmbR"\R" — BI7j

I —

B €mtR" —— €mt R*\R" — B Jop,,.

Here, the spaces Emb R"\R" and &,»4 R"\R" are formed, as explained in §3
below, from the natural actions of the monoids of embeddings on R". The
left-hand vertical maps are the obvious bijections. The maps a;,, a, are obtained
by collapsing R" to a point, and are weak equivalences by Lemma 3.1. The map
B, is induced by the functor €(Emb R" \R")— I'j (notation as in §3) which is the
identity on objects and which takes the morphism m : x — mx to the germ of m at
x. Similarly, B, is induced by the functor which takes the morphism m : x — mx to
the germ of w, . mu, at 0, where p, is translation by x. Segal shows in [21] §1 that
B, is a weak equivalence. The map B, is also a weak equivalence. This is perhaps
most easily seen by considering the commutative diagram

€mb R"\R" —> B o,

B gmﬂ R" «——B Hom (R“, 0)
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where ¥om (R™, 0) is the group of homeomorphisms of R" which fix 0, with the
compact-open topology. The maps a,, as are the obvious inclusions, and «; is
induced by the homomorphism which takes an element of ¥, (R", 0) to its germ
at 0. Since €4 R"™ =X 0sm (R", 0) by [7], the map a5 is an equivalence. Kister also
shows that B s (R", 0) classifies microbundles over finite complexes. Hence a5
is a weak equivalence. Thus B, is a weak equivalence. It follows that B €,»¢ R" =
BI'% as required. [

§3. Homology fibrations formed from monoids

The aim of this section is to prove Proposition 2.2. Before beginning the proof
we will recall some facts about classifying spaces of monoids. As in §2 we work in
Vogt’s category #% [24]. This is a full subcategory of the category I of
topological spaces which is convenient to use because it contains the spaces of
interest to us, and has a categorical product which commutes with quotient maps.
In fact, there is a retraction k : 7 — %% which preserves weak homotopy type and
is defined as follows: for each space X in J the space k(X) has the same
underlying set as X and has the finest topology such that any continuous map
from a compact Hausdorff space S to X is continuous when considered as a map
S — k(X). Thus #% contains all k-spaces, and is closed under taking quotients. In
particular, if € is a topological category, such as the groupoid I', whose spaces of
objects and of morphisms are in #%, then any realization of € also belongs to #%.

A topological monoid M is a space (in ¥%) with a strictly associative multipli-
cation M X M— M and identity element e. We will assume throughout this paper
that M is good (see [19] Appendix A). This means that the inclusion e < # is a
closed cofibration. For this, it suffices that # be normal and locally contractible,
and so all the monoids mentioned in §2 are good.

Suppose now that 4 acts on the left on a space Z. We denote by €(#U\ Z) the
(topological) category whose space of objects is Z and whose space of morphisms
is M X Z, where the pair (m, z) represents the morphism m : z— mz. The realiza-
tion of this category will be called #\Z. For reasons which will soon be
apparent, we use the ordinary or ‘“‘thin” realization here, except when it is
explicitly mentioned to the contrary. When 4 is good, the simplicial space
associated to €(#N\ Z) is also good and all its realizations have the same weak
homotopy type (see [19] Appendix A). Therefore, as far as homotopy theoretic
statements go, the choice of realization for €(#\ Z) is immaterial. (However, one
must always use a thickened realization for BI. For the thin realization of BI'
may well have a different homotopy type from the thickened ones, and it is the
latter which classify foliations. For example, Haefliger uses the join realization in
[4], which is a thickened realization: see [21] §4.)



The homology of some groups of diffeomorphisms 109

We will often be in the situation when two monoids # and & act on Z, one on
the left and one on the right. We may form #\ Z as above, and Z /¥ similarly.
If the actions of # and & commute, then # and W also act on Z Z AN and M\ Z,
respectively, so that we may form M\ (Z 7 N) and (M\Z) 7 N. It is not difficult
to check that these spaces are homeomorphic. (The proof uses the fact that
products and quotients commute in the category #%. See [24] 3.8.) The two
spaces * /M and M\ *, where * denotes a one point space, are also
homeomorphic, see [17] p. 83, and are called BA.

Now, recall from [9] that a coefficient system & of abelian groups on Y is
called abelian if it is the pullback over Y— K(G, 1) of a coefficient system on
K(G, 1), where G is an abelian group. Further, a map f:X—Y is called a
homology (resp. abelian homology, integer homology) equivalence if it induces an
isomorphism Hy (X, f*)— Hy(Y, ) for all coefficient systems & on Y (resp. for

all abelian systems, for & =Z). Finally a sequence of maps F ANy LN B
(where B is connected) is called a homotopy (resp. an abelian homology) fibration
sequence if there is an associated map of F into the homotopy fibre of B which is
a weak homotopy (resp. an abelian homology) equivalence. We will usually be
concerned with sequences of pointed spaces in which F< 87'(*). In this situation
there is a natural inclusion of F into the homotopy fibre of 8 at *. For example, if
K is the kernel of the monoid homomorphism #— A, then the image of BX in
B is the single point B{e}. (Notice that if we had used one of the alternative
realization functors of [19], then B{e} would have been a large contractible space.
This would have complicated certain proofs (e.g. Proposition 3.8, Lemma 5.6).)

LEMMA 3.1. Suppose that N acts on Z on the right, and that, for each ne X,

the map zv>zn of Z to itself is a weak (resp. an abelian homology) equivalence.
Then

Lo>ZJN—>*x N

is a homotopy (resp. an abelian homology) fibration sequence.

(There are, of course, corresponding results for the other kinds of homology
equivalences.)

Proof. When N acts on Z by weak equivalences, it follows by applying [2]
(1.3) (1.4) (1.5) that the map ZZN— * /N is a quasifibration with fibre Z.
(Quillen proves this result in [17] p. 90 in the case when & is discrete.) When
acts on Z by homology equivalences, the result is Proposition 2 of [9]. D. B. A.
Epstein pointed out that there are two errors in the proof given there, namely:

(i) Since the path space P in Proposition 5 need not be paracompact even if B
is, one cannot assume that B is paracompact in Proposition 6.
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(i) Since A is not necessarily closed under finite intersections, it is not clear
why |8|=B in Proposition 6.

In fact, both these errors may be corrected by appealing to the covering
lemma [21] Proposition A.5, which is quoted as Lemma 4.2 below. For, in that
lemma take X = B, let € be the discrete category formed by the sets in % and
their inclusions, and let F be the inclusion functor. Then |9| is just B. Since the
sets in & form a basis for the topology of B, one can, given sets U,,..., U, in &
andapointxeU;N---NU,, findaset Uin B suchthat xeUcU,N---NU,.
It follows easily that each category €, is filtering. Therefore, each space ||€,|| is
contractible, and B —> B as required. [J

Notice that if & is grouplike (that is, if 7oA is a group) then any action of & on
a space is by homotopy equivalences. Hence Z—>Z /N — * /N is always a
homotopy fibration sequence in this case. As an example, suppose that Z =X
Since ¥ /N is contractible (see [18]), one obtains the following well known result
of Dold-Lashof [2].

LEMMA 3.2. ¥=0BWJ if and only if woN is a group.

Now, consider a continuous monoid homomorphism B of # onto N. Then #
acts on the left of & by the action n—>m - n = B(m)n, which commutes with the
right action of & on itself by multiplication, n+—> nn’. Therefore, we may form
MNN and (UNN)ZN =M\ (N ZN). Since N 7N is contractible, UN\NN /N is
weakly equivalent to B#, and by taking Z equal to M\N in Lemma 3.1, we
obtain:

LEMMA 3.3. If, for each n € N, right multiplication by n induces a weak (resp.
an abelian homology) equivalence MN\N— M\N, then the sequence

MNN—>BM—> BN
is a homotopy (resp. an abelian homology) fibration sequence.

Note. Lemmas 3.1 and 3.3 remain true if right and left actions are inter-
changed.

Let us apply this first to the map B : M— #, where # is a topological monoid
which is called M when it is considered with the discrete topology. As usual, B
denotes the homotopy fibre of BM— B.# at the base point B{e}.

LEMMA 3.4. If woM is a group, then M\ M= B M.
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Proof. Since M is grouplike, this follows immediately from Lemma 3.3. [
Let 4, be the identity component of 4.

LEMMA 3.5. If each component of M contains an invertible element, then the
inclusion Mo\ My<> M\ M is an equivalence. Thus BMy,=BM, and so BM is
connected.

Proof. Let I:€(My\My;)—€(MN\ M) be the inclusion functor. We will define
a functor F:€@(M\M)—€(My\M,) which is inverse to I in the sense that
FoI=1Id and there is a natural transformation T:[o F— Id. Thus, F is right
adjoint to I. It then follows from [18] that the maps of classifying spaces induced
by I and F are mutual homotopy inverses.

Choose an invertible element in each component of #, and, for each m e M,
write 8(m) for the chosen element in the component of m. Let F take the object
m to the object §(m) 'm and the morphism m’':m—m'm to the morphism
O(m'm)"'m'8(m):0(m) 'm—>0(m'm) 'm'm. It is easy to check that F is a
(continuous) functor. (Observe that # is locally connected because it is good.)
Further, because the following diagram commutes

-1 a(m)
O(m)"'m ——m

a(m'm) ‘l

o(m'm) 'm'm —— m'm,

we may define the natural transformation T by T(m)=6(m).

To see that B, is connected, use the exact sequence ,BM,—> moBM,—
woBM,. Since w,BM,=wsM, by Lemma 3.2, both m BM, and w,BM,
vanish. O

Let us now consider a surjection of discrete monoids 8 : M— N, with kernel
K =B7!(e). Unless additional conditions are imposed, there need be no particular
relation between BK, BM and BN. (For instance, if M ={(i, j):0<i<j}cZDZ,
N={jeZ; j=0}and B(i, j)=]j, then K =B7"(0)=(0, 0), while the fibre of BM =
B(Z®Z)— BN =BZ is BZ=S".) Segal proves the following proposition in [21],
§2.

8
PROPOSITION 3.6. Suppose that 1 —-K—M —> N—1 is an exact sequence
of discrete monoids, and that

(i) there is a section s : N— M such that B ° s = id., and, for each n € N, the map
k—s(n)k is a bijection K— B~ '(n); and
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(ii) for each n € N the endomorphism c, : K— K defined by ks(n) =s(n)c,(k) is
a weak (resp. an abelian homology) equivalence.

Then BK— BM— BN is a homotopy (resp. an abelian homology) fibration
sequence.

(This follows from Lemma 3.3. For condition (i) implies that the inclusion
K\ * S MN\N is an equivalence, and it then follows from (ii) that the map
induced on K\ * by right multiplication by n is the appropriate kind of
equivalence.)

Here is a sufficient condition for each c, to be an abelian homology equival-
ence.

LEMMA 3.7. Suppose that for each ne€ N and finite subset {k,..., k,} <K,
there is an invertible element k € K such that c,(k;))=k 'k;k fori=1,...,p. Then
C, acts as the identity on Hy(BK, o), for all abelian systems & of local coefficients
on BK.

Proof. (See [21] (2.10).) If the map f: BK— BK is induced by conjugation by
k € K, then, for all abelian systems & of local coefficients, f*&f = & and f induces
the identity map Hy(BK, &) — H4(BK, o). Therefore, because the homology of a
monoid is the direct limit of the homology of its finitely generated submonoids,
the same is true for ¢,. O

PROPOSITION 3.8. Suppose that

K—-M—>N

| 1]

K —->M—->N'

is a commutative diagram of monoids and monoid homomorphisms such that K
and X' are contained in the kernels of the homomorphisms M— N and M'— N'.
Suppose further that the bottom row is a homotopy fibration sequence in which M’ is
connected, and that BK— BM— BN is an abelian homology fibration sequence.
Then woX' is an abelian group and

BA' —BM — BN

is an integer homology fibration sequence, where B¥' denotes the homotopy fibre of
BK—BY¥X', etc.
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Proof. The first step is to show that B¥'— B#'— BN’ is a fibration sequence.
This is essentially well known (for instance, May proves similar results in [14]),
but I know of no convenient reference and so give a proof here. Notice first that
because M’ is assumed connected, w X' is a quotient of the abelian group 7 N’
and so is itself an abelian group. “Therefore %' is grouplike. Since the monoids 4’
and &' are connected, they are also grouplike. Hence, by Lemma 3.2, the
sequence (B¥X' — QBM'— OQBA’ is equivalent to #'— M'— N’ and so is a
fibration sequence.

Now let F be the homotopy fibre of the map B#'— BN’ at the point B{e},
and let a be the natural inclusion B¥' < F. Then QF is the homotopy fibre of
the map 2BM' — Q2BAN' so that Qa:Q2B¥X' — OF is an equivalence. But B¥' and
F are both connected. Hence a is an equivalence, as required.”

Now, consider the commutative diagram

OBK—> QBM —> (BN’

N/

where F, is the homotopy fibre of 2BM#M'— QBN’, and similarly for the other
rows. By the previous remarks, both «, and a; are weak equivalences. We have
assumed that «, is an abelian homology equivalence, and want to deduce that a;
is an integer homology equivalence.

Since B¥' is the homotopy fibre of BK—B%’, the map B¥ —BK is a
fibration with fibre 2B%’'. Therefore, m,BK acts on Hy(Q2B¥X') via the group
mBX' =m,%', which as remarked above, is abelian. Similarly, 2B.M'— BM —
BM and QBN — BN'— BN are fibrations, from which it follows that F,— F,—
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F, is, also. Moreover, it is easy to check that F, is the homotopy fibre of F,— F;.
Therefore, m,F, acts on Hy(F,) via the abelian group 7 F;=m,B¥X’'. The result
now follows by comparing the homology spectral sequences for the fibrations
OBX'—>B¥'—BK and F,—»F,—F,. 0O

Proof of Proposition 2.2. Let M be Hom,(X, Y,relA) and N be
Emby (Y, rel A), and let K be the kernel of the restriction p: M— N. Then it is
easy to see that any section s for which B os =id satisfies the first condition of
Proposition 3.6. The second condition is also satisfied. For, if {k,,..., k,} is a
finite subset of K as in Lemma 3.7, there is a neighbourhood U of YUA in X
which is disjoint from the support of each k;. By the isotopy extension theorem
[3], each embedding n € N extends to a homeomorphism h € M with support in U.
Thus s(n)c,(k;) = k;s(n) = hk;h™'s(n) =s(n)k~'k;k, where k = h~'s(n)e K. There-
fore BK— BM — BN is an abelian homology fibration sequence, as required.

Now, let M’ be Homy (X, Y,rel A), and N’ be Emby (Y, 1el A), and let K’ be
the kernel of the restriction M — AN'. Then M’ is connected and ¥' > M — N is a
homotopy fibration sequence by [3]. It remains to identify B¥X' with B %omq X
(X,rel YUA). But clearly ¥’ is weakly equivalent to ¥om (X, rel YUA)N
Homo (X, Y, rel A), as we see by using a collar on the frontier of Y. Let us
denote the monoid Hosm (X, rel YU AYNHomy (X, Y, rel A) by . Thus X is a
union of components of the group #o» (X, rel YU A). Because moH =mo X' is a
group, ¥ must in fact be a group. Notice also that K is just % with the discrete
topology. It is easy to see that B¥ =B%’. It follows that B¥ =B%’. By Lemma
3.5, which we may apply because ¥ is a group, B¥=B¥X,. Since ¥*,=
Homg (X, rel YU A), the result follows. [

§4. On monoids of homeomorphisms which embed a submanifold in itself

In this section we will prove Proposition 2.1. Since B ¥omqo (X, 1el A)=
B %om (X,rel A) by Lemma 3.5, it suffices to show that if (X, Y) is a nice pair
and if (FrY)—A is relatively compact in X then the inclusion
B ¥omo (X, Y, el A) <> B Homo (X, 1el A) is a weak equivalence. Our argument
uses the compactness condition and the fact that Y has the same dimension as X.
For purposes of comparison, consider the situation when Y is a single point {y,}
and X =[0, 1]. Then om, (X, {yo}) is a contractible group, and by comparing the
fibrations ¥osme— B ¥ome— B Hom, for X and (X,{y,}) one sees that
771§ Homo (X, {yo} # ’ﬂ'lB— Homo X.
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Proposition 2.1 is a consequence of the following lemma.

LEMMA 4.1. Let M be a connected submonoid of a topological group 6 which
is contained in an open subset U of ¢, and suppose that the following conditions are
satisfied:

(i) the inclusion M — is a weak equivalence;
(i) for all ge€4, gU<U if and only if ge M,
(iii) if zegUNhAU for some 2,8 he¥, then there is fe§ such that zefalc
guUN ha.
Then, the inclusion BM <>B<% is a weak equivalence.

Before proving this, let us apply it to our situation. So, ¥ =Homy (X, rel A)
and M = Homo (X, Y rel A). In order to define %, recall that, because Y is cleanly
embedded in X, the frontier, Fr Y, of Y in X is bicollared in X. Choose a bicollar
Fr Y x[—-1,2], with Fr Y X[0,2]< Y and Fr Y x{0} identified with Fr Y < X, and
for each A €[0, 2] let Y, be the submanifold Y —(Fr Y %[0, A)). Without loss of
generality, we may assume that A NFr Y x[—1, 2] is a product. We now define %
to be the component of the set {ge€%:g(Y,;)< Y} which contains the identity
element, where Y denotes the relative interior Y—Fr Y of Y. Then % is open
because (Fr Y;)— A is relatively compact. Also, # < %, and it is not difficult to see
that conditions (i) and (ii) above are satisfied. Thus it remains to prove (iii). Now
the hypothesis of (iii) implies that z(Y,;)< g()o’)ﬂ h(Y). Since (FrY,)—A is
relatively compact and Y is open, there is A€[0,1) such that z(Y,)c<
g(?) Nh(Y). Also, because z, g and h are the identity near A, there is a
continuous function ¢ :Fr Y—[0,A] such that ANFr Y<Int ¢y *(0), and z, g,
and h are all equal to the identity on {¢y'([0,A))}x[0,1]. Put Y, =
Y —{y %[0, ¢(y)):yeFr Y}. (See Figure 4.1). Then Y, c Y,, and z(Y,)c<
g(Y)N h(Y). Moreover, there is a shrinking map w, which is homotopic to the

FrYx [0,1)

Figure 4.1
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identity and is such that w =id on Y, UA and w(lo/) c Y,. Then w™'e€a, so that
z € zw. Clearly, zw¥c guNha. Thus all the conditions of Lemma 4.1 are
satisfied, and so it follows that B Homo (X, Y,rel A)=B Homy (X, rel A).

The proof of Lemma 4.1 has several steps. Notice first that, by condition (ii),
M (which, as usual, means # taken with the discrete topology) acts on % by
multiplication on the left, so that we may form M\ as in §3. Since M=, it
follows from [19] Prop A.1(ii) that the inclusion MN\#M >MN\% is a weak
equivalence. Therefore, by Lemma 3.4, it suffices to prove that the inclusion
MN\U =G\ Y is a weak equivalence. Now recall from the proof of Lemma 3.3
that, in order to understand the map B4: BM— BN, we enlarged BM = M\ * to
(MNN) 7N, and looked at the projection (MN\N)ZN— * /N instead of B4. In
exactly the same way, we here enlarge M\ 4, replacing it by the equivalent space
(M\UxG)7G, where we suppose that M acts on UXG diagonally by
m :(u, g)—>(mu, mg), and that G acts on the right by h:(u, g)—(u, gh). Notice
that these actions of M and G commute, so that (M\UXG)7G=
M\ (UXG 7 G) can be formed as in §3. Now, M\UX G lies over ¥. In other
words, the map UXG—% given by (u,g)~>g 'u takes each M-orbit
{(mu, mg): me M} in UX G to the single point g”'u, and so extends naturally to a
projection 7:MN\UXG—%. Further, if we suppose that G acts on ¥ by
h:g—>h"'g, then the map w is G-equivariant and so gives rise to a map
(M\UXG)7G—>%7G.

Consider the following diagram:

MN\NU<—MN\NUXG7G)=(M\UXG)7G—%7G

G\Y9<—G\(¥XG7G)=(G\¥xXG)7G—%7G.

(Here, the bottom row is formed just as the top, and all vertical maps are
inclusions.) Clearly, the conclusion M\%= G\ ¥ will follow, once we show that
the projections w: MN\UXG—% and 7' : G\¥YX G—¥ are weak equivalences.
To do this, we need the following covering lemma, which is proved by Segal in
[21], Prop. (A.5).” We will use the thick realization ||- || here to be consistent with
[21]. Since all realizations of €(M\ A X G) are equivalent, this is permissible.

2 Philip Trauber has also given a proof of this (unpublished), in a rather different spirit. Readers of
Segal’s proof should note that the definition of the sets V_ given in §5 is not quite correct. One could
define them as follows. For each simplex o in (C) let \70 be the union of the (closed) stars of the
vertices of o in the first barycentric subdivision of the simplicial complex (C). Put V_ =Int V_. Then
V,NV_ =V___ and the V, form an open covering of (C). It is not too hard to show that the space
Y =Ugecy Fs XV, has the desired properties.
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LEMMA 4.2. Let € be a category and F a functor from € to the discrete
category of open subsets of a space X and their inclusions. For each x € X, define €,
as the full subcategory of € spanned by the objects a such that x € F(a). Let X; be
the realization of the topological category whose objects are pairs (a, x) with
a € Obj €, x € F(a), and where there are morphisms (o, x)— (B, y) only if x =1y, in
which case they correspond to the morphisms a« — B in €. A projection w: Xg—> X is
defined by (a, x)—>x. If |€,|l is contractible for all xe X, then =w is a weak
homotopy equivalence.

To apply this, let € be the category €¢(M\G), where M acts on G by
multiplication on the left, and let F be the contravariant functor, which takes the
object g € G to the open set g~ ' in ¢, and takes the morphism m : g— mg to the
inclusion g7'u — g 'm™'4. Clearly Xg is just M\ %X G. Therefore, in order to
prove that M\UX G—¥ is a weak equivalence, we need only check that each
€.l is contractible. We may think of €, as the category of the partially ordered
set G,, whose objects are {ge G:xeg 'U} and where g=<h if and only if
g 'uc h™'a, or equivalently, if and only if hg '€ M. (These are the same by
condition (ii) of Lemma 4.1.) But condition (iii) of Lemma 4.1 implies that every
pair of elements of G, has a common lower bound. Hence €, is filtering and so
has contractible realization: see [17] p. 85. The result follows.

Exactly the same argument applies to show that G\N9X G —% is an equival-
ence. (This may be proved more easily by noticing that the categories €(G\¥X% G)
and €({e}\¥) are equivalent, so that G\¥YXG={e}\¥=%. Here, {e}
denotes the trivial group.) This completes the proof of Proposition 2.1. [

§5. On monoids of embeddings

In this section we prove the versions of Propositions 2.1 and 2.2 which are
used in [8] §3. That paper deals with monoids of C"-embeddings rather than
groups of homeomorphisms, and, because the proofs given above use the fact that
Hom (X, rel A) is a group instead of just a monoid, they do not immediately
extend to this case.

Before going further, it is convenient to change our notation slightly. We will
work in the C"-category for some r in the range 0 =r =, For any C"-manifold X,
and closed subsets Yy, ..., Y, A of X, we denote by &»é (X, Y,,..., Y, rel A)
the monoid of all C"-self-embeddings of X which take each Y, into itself and are
the identity near A, with the C"-version of the topology defined in §2. Its identity
component is Emby (X, Y, ..., Y, rel A), and, as usual, we write
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Emb, (X, Y,,..., Y, rel A) for the corresponding discrete monoid. Let X* de-
note the union of X with a collar neighbourhood of 4X. Thus X*=
Xn,,. 90X %[0, 1]. Then we define Emb® (X, Y,,..., Y, rel A) to be the quotient
Emb (X*, X, Y,,..., Y, rel A)/~, where h~h' if and only if h = h’ near X. (The
label “g” indicates that Emb® X consists of germs of self-embeddings.) The
monoid Emb§ (X, Y,,..., Y,,rel A) is defined similarly. Notice that, if X is
compact, Embg X is just the C"-analogue of the monoid EmbY~ X defined in §2.

We write B &mfg (X, Y,,..., Y, rel A) for the homotopy fibre of the map
BEmb§(X,Y,,..., Y, rel A)>B &mby (X, Y,,..., Yy, rel A). Notice that if X
is compact, the obvious restriction maps B &mf8 (X, rel A)— B Eomb, (X, rel A)—
B €mé6, (Int X, rel A) are weak equivalences. (This is proved in Proposition 5.7 at
the end of this section.) It is convenient to use B &mf% rather than B &md,
because the conditions of Lemma 3.7 hold for Emb§ but not for Emb,: see the
proof of Proposition 5.1 below. As in §2, we will say that (X, Y) is a nice manifold
pair if X is a C"-manifold, possibly with boundary, and if Y is a C"-cleanly
embedded submanifold of X, which may have codimension 2 corners if r=1, and
which has the same dimension as X. Thus we again make no compactness
assumptions, although in practice X will usually be compact. Finally we remark
that, because monoids of C"-embeddings have the homotopy type of CW com-
plexes when r=1 [15], all weak equivalences involving such monoids are in fact
homotopy equivalences.

We prove the following versions of Propositions 2.1 and 2.2.

PROPOSITION 5.1. If (X, Y) is a nice manifold pair such that X is compact,
and if A is any closed subset of X, then the inclusion

B €mts (X, Y, rel A) B &mts (X, 1el A)
is a weak equivalence.

PROPOSITION 5.2. If X, Y, and A are as in Proposition 5.1, then

B &mbs (X, tel YU A)— B &mfs (X, Y, rel A)— B &mfs (Y, el A)
is an integer homology fibration sequence. Moreover, m,B EmtE (Y,rel A) acts
trivially on Hy(B Emb§ (X, 1el YU A); Z).

In order to prove these propositions we need some information about
7B Emb§ (X, Y, rel A). Let A’ be the union of A with all components of X — A

which do not intersect dX and let A"=(X—-A')UA. Then A’'UA"=X and
A'NA"=A. Also Emb§ (X, rel A)=Emb§ (X, rel A") XEmb} (X, rel A"), where,
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because 9X< A", the monoid Emb§(X,rel A”) is, in fact, the group of
diffeomorphisms Diff, (X, rel A”).

LEMMA 5.3. If X—A is relatively compact, then w;B Emb§ (X, rel A)=
Diff, (X, rel A").

Proof. We must show that ;B Emb§ (X, rel A’)=0. Since for any discrete
monoid M the image of M in 7;BM generates the group m,BM, it suffices to
show that if 6 is any homomorphism of M =Emb§ (X, rel A’) to a group, then 6
maps M onto the identity element, {e}.

Let ¥ be a covering of X—A' by open sets whose closures are each
diffeomorphic to the closed half-disc D% (where n=dimX and D&} =
{xe D":x,=0}). Then, by [3] if r=0 and [16] if r=1, M is generated by
embeddings with support in some V e ¥. Moreover, because each component of
X—A'" intersects 93X, there is, for each VeV, an embedding m, €
Emb§ (X, rel A’) such that VNmy(X)=. (If vy is a C"-path in X — A’ connect-
ing X to V, we may take my to be an embedding which is the identity outside a
neighbourhood of V Uy and which is the result of poking X along v.) Therefore,
for any element neM with support in V, we have nm, =m,, so that
6(n)@(my)=0(m,). Since 0 is a homomorphism into a group, 6(n)=-e. Thus,
because these elements n generate M, 6 maps M onto {e}. [

LEMMA 5.4. If (X, Y) is a nice pair and X — A is relatively compact, then
7B Emb§ (X, Y, rel A')=0 and

m,B Emb§ (X, Y, rel A)=m,B Diff, (X, Y, rel A").

Note. It is not necessarily true that =, B Diff, (X, Y, rel A”)=Diff, (X, rel A").
For example, if X is the circle S* and Y is a contractible arc in S’, there is an
exact sequence

0—Z— m,B Diff, (S, Y)—Diff, S'—0.

Figure 5.1
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In fact, m,B Diff, (S', Y) is isomorphic to the group of orientation preserving
periodic diffeomorphisms of R. This follows because, by the C>-version of
Proposition 2.1, the map B Diff,(S*, Y)— B Diff, S' has the same fibre as
B 2iff, (S*, Y)— B 2iff, S!. Since Diffo (S', Y) is contractible, while Déff, S' =
S!, this fibre is just S'.

Proof of Lemma 5.4. Again, we must show that n,BM =0, where M=
Emb§ (X, Y, rel A’). The proof is similar to that of Lemma 5.3, except that, if vy
crosses dY, the m,, constructed there need not take Y into Y. To get around this
difficulty, let us suppose that the closure of each Ve ¥ intersects at most one
component of Y, and for each V choose y so that it crosses dY a finite number
of times and ends at a point of VN Y, if VN Y#J. Then, let j;, be the number
of times y crosses dY if V lies entirely in the same component of X —9Y as the
end point of vy, and let it be this number plus 1 otherwise. We will prove that
0(n)=e, for all n € M with support in V, by induction on jy. For, if j, <1, the
embeddings m, with VNm,(X)= may be constructed to lie in M. Thus
nmy = my, for all n € M with support in V, which implies, as before, that (n) = e.
Suppose this statement has been proved for all V with j, <j, and let V, have
jv, = jo- Then there is a half-disc V' slightly further down <y with jy, = j,— 1. (See
Fig. 5.2.) We may assume that V" lies either entirely inside or entirely outside Y.
The arc y crosses dY at most once in between V, and V'. If V' Y, there is a
diffeomorphism m € M such that m(V,) = V'. Therefore, if n,€ M has support in
V,, there is n' € M with support in V'’ such that mn,= n'm. Since 6(n') = e by the
inductive hypothesis, 6(n,) =e as well. In the case where V'NY = (J, there is a
diffeomorphism m e M which takes V' onto V,, and the argument proceeds
similarly. This completes the inductive step. [

COROLLARY 5.5. If X— A is relatively compact, then
m BEmbE (X, Y, 1el A')
is abelian.

Figure 5.2
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Proof. By Lemma 5.4 it is a quotient of the abelian group
7r2B gM6O (X, Y, rel A')- D

We can now prove a special case of Proposition 5.2.

LEMMA 5.6. Suppose that (X, Y) is a nice manifold pair such that Y is a
compact submanifold in Int X, and let Z be any closed subset of Y. Then

B &mbs (X, 1el YUA)—>B EmtE (X, Y, Z, rel A)— B &mts (Y, Z,rel A)

is an integer homology fibration sequence. Moreover, (B €mtE(Y, Z, rel A)) acts
trivially on Hy(B Emt§ (X, rel YU A); Z).

Proof. Let us adopt the notation of Proposition 3.8. Thus, we write M for
Emb§ (X, Y, Z,rel A), N for Emb§ (Y, Z, rel A), and K for the kernel of M— N.
Similarly, M’ is &Embo (X, Y, Z,rel A), N' is Emby (Y, Z,rel YN A) and ¥’ is the
kernel of M'—N'. Then, H'— M — N' is a homotopy fibration sequence. Also,
because Y clInt X, every embedding in Emb§ (Y, Z,rel A) extends to a
diffeomorphism of X. It is easy to check that if, for each n € N, we choose s(n) to
be some diffeomorphism in B~ '(n), then condition (i) of Proposition 3.5 is
satisfied. Condition (ii) is also satisfied (see the proof of Proposition 2.2 given at
the end of §3). Therefore, by Propositions 3.6 and 3.8, the sequence B¥'—
B#M'— BN is an integer homology fibration sequence. We now have to identity
Bx' with B Emfb§ (X, rel YU A) as was done in the proof of Proposition 2.2
mentioned above. 4

Let X =&mb (X, rel YU A)N&mby (X, Y, rel A). Then, by a collaring argu-
ment, we have as before that ¥'=%. Also w,X =m K is a group. However ¥
itself will not be a group in general, and so, in order to apply Lemma 3.5, we must
check that each component of ¥ contains an invertible element. To see this, let g
be in . By definition of ¥, there is an isotopy g, 0<t=<1, in &mdb, (X, Y, rel A)
with g, = id and g, = g. Since Y is a compact submanifold in the interior of X, we
may extend g, |Y, 0<t<1, to an isotopy & in Diff, (X, rel A). Then &, is in ¥,
and is isotopic to g by the isotopy g,8.'g, 0=<t=<1. Because &, 'g =id on Y, the
elements g and g, lie in the same component of ¥. Therefore, we may apply
Lemma 3.5 to %. Hence BX' = B &»45 (X, rel Y U A) as required. This completes
the proof of the first half of the lemma.

It remains to show that 7, BA” acts trivially on H*(I§.‘7{ ;Z). Let A’ be the
union of A with all components of Y—A which do not intersect Y and let
A"=(X-A"YUA. Then X=A'"UA"” and A'NA"=A. Since X—-Y< A", the
spaces B#' and B’ split as products: BAM'=B &mfs(X,Y, Z rel A") X
B2, (Y, Z,rel A”) and BN =B &t (Y, Z, rel A'YX BDiff, (Y, Z,rel A").
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Therefore it suffices to consider the case when A=A'" By Lemma 5.4,
m,B Emb: (Y, Z,tel A')=0, and so m,BA’ surjects onto ,BA". Notice that
m,BN' =N, because N is connected (see Lemma 3.2). Since wy¥ is a group, it
follows from Lemma 3.4 that B¥ = K\ %. Similarly, because both #' and A" are
connected, BM' =M\ M and BN’ =N\ N'. Therefore, we have a diagram

KN\¥ —> MN\M —> N\N,

[« 3

F

where F is the homotopy fibre of M\ #'— N\ and « is an inclusion, and we
must show that ;4" acts trivially on Hy(K\¥)= Hy(F).

We first claim that the action of 7N on Hy(K\ %) may be described as
follows. Let £(t), 0<t=<1, be a loop in N’ based at e which represents the element
A of m, N, and let £ be a lifting of £ to 4’ with £(0) = e, chosen so that £(1) is the
identity near Y. Then (1) is in K, and so acts on K\% by multiplication on the
right. We claim that this induces the action of A on Hyu(K\¥). To justify this,
observe that the elements of F are pairs (z, p), where ze M\ #' and p(t),
0<t=<1,is a path in N\ W’ with p(0) = e and p(1) = p(z). The loop ¢ acts on F by
(z, p)—>(z,£ "o p), where £~ " o p is the path obtained by going first round ¢~ and
then along p. It is easy to check that this action is homotopic to (z, p)—(z - £Q1),
(¢ 'op)-£). Here ({'op)- ¢ is the product of the paths /~'op and ¢, which is
defined because A" acts on N\ N’ by right multiplication. If p is the constant path
then ({ 'ep)-¢ is a loop which canonically contracts to the constant loop.
Therefore, because a(K\¥)c{(z,p)e F:p is constant}, there is a homotopy
commutative diagram

K\¥——F
mult by #(1) action of €

K\¥<>F

as claimed. -
It remains to show that multiplication by ¢(1) induces the identity map on

H(K\%). Consider, for each open neighbourhood U of YU A, the subgroups
Ky, ={keK:k=id on U} and ¥, ={keX:k=id on U} of K and ¥ respec-
tively. Clearly, it suffices to show that right multiplication by #(1): Ky, \¥y,—
K\ ¥ is homotopic to the inclusion map. It follows from the isotopy extension



The homology of some groups of diffeomorphisms 123

theorem that we may choose the lifting ¢ so that #(1) has support in U —(Y U A).
Then #(1) commutes with ¥. Therefore, there is a natural transformation T,
from the inclusion functor I:(K,\¥,)<>(K\¥) to the right multiplication
functor R(£(1)), which is defined by T(k)=¢(1), for all ke X u- It follows as in
Lemma 3.5 that the maps induced by I and R(Z(1)) are homotopic. This
completes the proof of Lemma 5.6. [

Proof of Proposition 5.1. If X = J, this is just the C"-version of Proposition
2.2. Therefore we may suppose that X is connected and has 0X #J. Further if A’
and A” are as in Lemma 5.3, then B &, (X,rel A) is the product
B &mtE (X, rel A)X B €mfE (X,rel A”), and similarly for B-&mf8 (X, Y, rel A).
But the inclusion B €68 (X, Y, rel A") <> B &mt8 (X, rel A”) is a weak equival-
ence by the C'-version of Proposition 2.1, because X< A”, so that
Emb§ (X, rel A”) is a group. Therefore it suffices to prove that the inclusion
B &mf8 (X, Y, rel A')—> B Emtbs (X, rel A') is a weak equivalence.

Let S be the double of X, and consider the diagram:

B2iff, (S, rel X)—B Diff, (S, X, Y, rel A')— B &Emfbs (X, Y,1el A)
=11 i2

E@i;% (S, rel X)—>B Diff, (S, X, rel A= B &mfg (X, rel A).

Here j, is a (weak) equivalence. To see this, let i be the inclusion
B Diffo (S, X,rel A'Y=>B Diff, (S,rel A’). This is an equivalence by the C'-
version of Proposition 2.1. The proof of this proposition given in §4 may be easily
adapted to show that the composite icj, is an equivalence as well. In fact, in
order to apply Lemma 4.1 in this case one only has to find a suitable open
neighbourhood U of M=2iff, (S, X, Y,rel A) in ¥=Diff, (S, rel A’). Because
(X, Y) is a nice pair, one can define sets X, and Y, much as before and then put
% equal to the set of elements g such that g(X,)c X and g(Yy)c Y. Thus ji1s an
equivalence. Our aim is to show that j, is also an equivalence.

By Lemma 5.6 both rows in the diagram are integer homology fibration
sequences in which 7r,(base) acts trivially on Hy(fibre). Moreover both the groups
m(base) are abelian by Corollary 5.5. By comparing the exact sequences of terms
of low degree in the spectral sequences associated to the rows, one sees that j,
induces an isomorphism on H,( - ;Z). Therefore, it induces an isomorphism on
;. By considering the corresponding fibrations over the universal covers of the
base spaces and comparing spectral sequences there (cf. [10] XI), one finds that j,
induces an isomorphism on the integer homology of the universal covers. Hence it
is a (weak) equivalence, as required. [J
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Proof of Proposition 5.2. Let X* be the union of X with a collar neighbour-
hood of aX as before, and consider the following commutative diagram:

B &mfE (X*, rel YU A)—> B &0l (3{*, Y, rel A)— B &mbE (Y, rel A)
=1j =],

- — U —

B &mfE (X*, X,1el YU A)—>B &mf8 (X*, X, Y, rel A)— B &mf5 (Y, el A)

=1 D =|P2

B &mtE (X, rel YU A)— B &l (X:'Y, rel A)— B &mf8 (Y, rel A).

Now j, is an equivalence by Proposition 5.1 which we have just proved. A
similar argument shows that j, is an equivalence. We will see in a moment that
both the restriction maps p,, p, are equivalences. Proposition 5.2 will then follow
because Lemma 5.6 applies to the top row.

To prove that p, is an equivalence, it suffices to show that the corresponding
maps for €»6, and B Emb§ are equivalences. But

Emby (X*, X, rel YUA)>Emby (X, rel YUA)

is a weak fibration with fibre &x.4, (X*, rel X), and so is an equivalence because
the monoid €6, (X™*, rel X) is contractible. The space B Embg (X*, rel X) is also
contractible, and, by applying Proposition 3.6, it follows that the map on B Emb§
is also an equivalence. (Details of this argument may be found in [21] (2.7).) Thus
p: is an equivalence. Similarly, p, is an equivalence. [J

This completes the proof of the main propositions used in [8]. We end this
section by looking at the effect of “boundary conditions’ on B &,xf.

PROPOSITION 5.7. If A is a closed subset of the compact manifold X, then
the restriction maps

B &mt8 (X, rel A)— B &mb, (X, rel A)— B Emb, (Int X, rel A)

are (weak) equivalences.

Proof. Segal proves in [21] Proposition 2.8 that the restriction maps
B Emb§ X — B Emb, X — B Emb, (Int X)

are equivalences. His argument uses the manifold X*, which is the union of X
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with a collar on 8 X. If we assume that A = A*N X, where A* is a closed subset of
X* which is a product near the collar X*— X, then his argument adapts easily to
show that

B Embs (X, rel A)—> B Emb, (X, rel A)—> B Emb, (Int X, rel A).

However, any A which is a product near dX has this form. Therefore, by an
obvious limiting argument, the above equivalences hold for all A.

To complete the proof it remains to show that the restriction
Emby (X, rel A)—>&mb, (Int X, rel A) is a weak equivalence. Again, we may as-
sume that A is a product near X*—X. Consider the diagram

Emby (Int X™* rel A) e—ED%’méo (Int X*, X, rel A) 2ty Emby (X, el A)

19 1 P3

Emby (Int X, rel A),

where ¢ is the isomorphism induced by a  diffeomorphism
¢ :(Int X*, A*)—=>(Int X, A) which pushes the collar X*— X into X. As in the
proof of Proposition 5.2 above, the restriction p, is a weak equivalence. Also, i is
a weak equivalence because any compact subset of &ud, (Int X* rel A) rel A) may be
deformation retracted into €s6, (Int X*, X, rel A). (In fact, if A f‘\(X* X)=

it is not difficult to define a homotopy inverse for i.) Finally, note that the
restrictions of i and @ © p, to any compact subset of &6, (Int X*, X, rel A) are
homotopic. When A N(X*—X)=F, an explicit homotopy ¢, from i to ¢ p,
may be defined as follows. Let ¢, be an isotopy in €xé X*, with ¢, =id and
©o = @, which takes X* onto X UdX X[0, A] for all 0<A<1, and then put

U ()=fop,, for O0=<t<

1
2
=@z °fogy for j=t<l.

It follows that p, is a weak equivalence. Hence p; is too. [

Note. Taking X =D" in Proposition 5.7 we find that B &6 D"~
B Emby D" =B &mb, R™. It is easy to adapt the proof of Proposition 1.1 given at
the end of §2 to show that B &4, R"=BI", (notation as in [8]). Hence
B EmfE D™ =~ BI™,. This result is the starting point of the inductive argument of

[8].
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Appendix: Erratum to [8]

The following two mistakes occur in [8].

(1) The thin realization of BI' was used. This is incorrect because, as was noted
at the beginning of §3, the thin realization may well have the wrong homotopy
type.

(i) Lemmas 1 and 2 rely on Proposition 2.8 of [20], whose proof contains a
small error.

There are also some misprints, namely:

(a) p. 431 line —3 and p. 433 line 6: replace f, by fx;
(b) p. 434 line 9: replace B Emb by B Emb§;

(c) p. 435 line 9 should read ‘“morphism m:s—ms’”’;
(d) p. 439 line 7: replace E(XX Y)N&(X X Y)X Y by

CEXXY)NEXXY)XY)

and similarly on lines 8 and 11;
(e) p. 443 line 3: replace Emb, (Y, rel A) by &é, (Y, rel A);
(f) p. 444 line 8: A=Y, not A+Y,,.

The errors mentioned in (i) and (ii) above may be corrected in the following
way.

(i) If we use the thick realization ||-|| of [19] Appendix A instead of the thin
realization then, because all the monoids considered in [8] are good, the only
thing which will be affected is the construction of the commutative diagram (1) in
Proposition 1. As before, we start from the diagram (**) of categories and
functors:

C(ENEX X)—> I'(X)

b) v

€(e\X) - 4¢(X)y gn.

We will realize this diagram using the thick realization for the top row and the
thin realization for the bottom row. Notice that ||¢(E \ & x X)|| is homeomorphic
to |[€(EX8)||x X. We therefore get a diagram:

IlFH
[€(EN&)|x X — |I(X)||
w Y v (#)

X——————|%9€(X)|p u-
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We will see in (ii) below that [20] Proposition 2.8 holds for the thick realization.
Therefore Lemma 1 holds for this realization. Also, Lemma 2 holds for the thin
realization because all the simplicial spaces involved are good. Therefore,
v IC(X)|| — |9€(X)| is a model for BI' — BGL. Let L be the pull-back over 7 of
the Hurewicz fibration associated to », and consider the commutative diagram

e\ X~ [P

X———194(X)|,

where p is the obvious projection. As before, the inclusion y gives rise to a
canonical section s, of L. Observe that p :||€(e \ X)||— X is a product bundle with
contractible fibre ||€(e\ e)||. We will denote its image in L by D. Then syo(X) < D,
and D contracts fibrewise onto s,(X).

We now define ¥(X) to be the space of continuous sections of L. over X with
the compact-open topology. If U < X is open, let (X, rel, U) (resp. (X, rel U))
be the subspace of ¥(X) consisting of sections which take values in D (resp. equal
So) over U. Finally, if A < X is closed, define ¥(X, rel, A) to be the direct limit
l_igl)EF(X, relp U), where U runs over all open neighbourhoods of A in X, with the
direct limit topology. Define ¥(X, rel A) similarly. Then it is not hard to check
that the inclusion (X rel A)=>%(X,relp A) is a (weak) equivalence. (This
follows because #(X, rel, U) deformation retracts into (X, rel V) whenever U
and V are open sets such that V< U.)

Observe that diagram (#) gives rise to a map fx : EN&— $(X) just as before.
This map behaves well under restriction to a submanifold Y. Also, one can check
that fy takes E(X,rel A)N&(X,rel A) to ¥(X, relp A). Therefore, given Y, Z,
and A as in Proposition 1, we have a strictly commutative diagram:

B &mnts (Y,rel ZUA) —> BEmtE (Y, Z,tel A) —> B &mli(Z,rel A)

FY,rel,ZUA) —> (Y, relp A) — F(Z,relp A)

P(Y,rTel ZUA) —> (Y, rel A) —> P(Z,rel A),

where the top row is formed using thick realizations. The bottom row is a
homotopy fibration sequence by [8] Lemma 3. Therefore, the middle row is, too.
We may now apply all the arguments of [8] using this diagram instead of diagram
(1), and hence prove all the theorems in [8].
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(i) We will prove [20] Proposition 2.8 using the thick realization | - || and
assuming that the spaces of objects and morphisms of the category C are in ¥%.
Then the spaces ||C|| and ||[EC,|| %y lICll are homeomorphic, and it is enough to
show that 7 :||[EC,||— ||EC,|| is shrinkable. (The notation is as in [20].) The original
proof fails at this point because the sets {EU,}.. do not form a covering of EC,,
In fact, one can construct a section s of 7 as follows. Choose a well-ordering of A
and a partition of unity ¢, subordinate to the covering U. If y=(xq,..., Xy;
tos - - - » ) is an element of |EC,|, where the x; are in C, and ), t, =1, set

s(v) = ((x0, @(0, 1)), . . ., (x0, @(0, po)), (x1, (1, 1)), ..., (x, a(k, pi));

to* Pa0.1)(X0)s - - -5 bk * Potiep(Xi))s

where, for each i, the «a(i, j), 1 <j=<p, are chosen so that a(i,1)<--- <a(i, p;)
and ) @,i(x:)=1. Notice that s is well defined since degeneracies are not
collapsed when the thick realization is formed. (Thus in ||EC,|| the elements
(x, x, ¥; to, t1, t5) and (x, y; to+1,, t,) are not the same unless either t, or ¢, equals
0.) It is now easy to see that |[EC,|| contracts fibrewise onto the image of s. Hence
7r 1s shrinkable, as claimed.
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