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Slowly growing subharmonic function II

MATTts ESSEN

1. Introduction

Let u be subharmonic and not constant in the open z-plane and let

B(r)= B(r, u) = sup u(z). (1.1)

lz|=r

If B(r) grows sufficiently slowly, it is known that for “most” values of z =re®,
u(z) is not much smaller than B(r). In other words, for each £ >0, the set

E=E(e)={z:u(z)<(1-¢)B(r)}
must be small. In [3], Essén, Hayman and Huber proved that if
B(r)=O((log r)*), r—x, (1.2)

then a generalized Wiener condition will hold at infinity for E. In particular, E
can only be a small subset of each annulus o, ={z:2" <|z|<2"*'} when n is
large. The purpose of the present paper is to study the case when condition (1.2)
is replaced by

B(r)=O0((r)), r—o, (1.3)

where ¢ is an increasing function such that

lim sup ys(r)/(log r)*> = (1.4)

r—»c0

log y(r)/log r — 0, r— o, (1.5)

Here, the situation is different: E can now also contain almost all points in a
sequence of annuli {w, }7, although the sequence {n,} must be rather sparse.
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66 MATTS ESSEN

(References to earlier work on small subharmonic functions satisfying (1.3) and
(1.4) can also be found in [3].)

The emphasis is here on the study of E for subharmonic functions of order
zero, i.e., we assume that (1.5) holds. If this is not the case and we can consider
functions of positive order, the set E can be almost the whole plane, as simple
examples show.

The main results are stated in Section 2. In the proofs, we need certain results
from the theory of series which are given in Section 3. After the proof of the main
results in Sections 4 and 5, we give examples in Section 6. In Section 7, we
consider a question of J. M. Anderson: does there exist a path going out to
infinity which does not meet E(e)? We also sharpen a related result of M. N. M.
Talpur.

This work started as a joint effort by W. K. Hayman, A. Huber and myself to
study growth problems for small subharmonic functions. The first part of this
project deals with the case when (1.2) holds, and our results are given in [3]. It
turned out, however, that I was responsible for the research on the remaining part
of the project, and it was therefore decided that this work will appear as a paper
by one author only. I am grateful to my co-authors from [3] for their generosity.
Also, I want to thank W. K. Hayman for interesting discussions and J. M.
Anderson for suggesting the problem mentioned above.

2. The main results

Let u be a subharmonic function of order zero. Without loss of generality, we
can assume that u is harmonic in {|z|]<1} and that u(0)=0. Thus u has a
representation of the form

u(z)= | tog |1~ 28] du(®), @.1)

where p is the Riesz mass of u and the integral is taken over the open plane (cf.
[3, Section 4]). If n(t) is the mass in {|z|<t}, we have n(1)=0. We define

N(r)= J' n(t)/tdt (2.2)
u*(z) = j log|1+ 2/|¢| | du(2) = r log|1 + 2/t dn(t). 2.3)
B*(r) = sup u*(z) = u*(r). (2.4)

|zl=r
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As examples of possible growth rates, we mention, if « is a positive constant

tl/(r)z(log r)a, r=e, a>2’
Y(r) = exp {(log log r)*}, r=e, a>1.

More generally, we assume that :[0, <) — (0,) is a positive, increasing and
continuous function for which (1.4) and (1.5) hold and which is either such that

Y2n/P(r)—1, r—x, (2.5a)

or which is such that for some constant C=1, we have
| wone a=(cotyuim, 1 (2.5b)

The two examples mentioned above satisfy both assumptions (2.5a) and (2.5b)
with C=1. If we are interested essentially in functions ¢ which grow in this very
regular way, it is sufficient to use (2.5a). Our results hold, however, also for a
function ¢ satisfying the weaker assumption (2.5b). We note that when C=1,
(2.5a) and (2.5b) are equivalent. As a consequence of (1.3) and (2.5b), we obtain

B*(r)=O(y(r)), r—ow. (2.6)

Proof of (2.6). From Lemma 3.5.1 in Boas [2], we see that
B*(r)=N(r)+ J N(t)/t* dt=B(r)+ rJ B(t)/t* dt <Const. (r)

and (2.6) is proved. We have used that N(r)=< B(r).
If ¢>0 is given, we consider the set

E*=E*@)={z:u(z)<(1-¢)B*(r)}.

We clearly have E < E*. We can now state our main results which describe how
small the set E* is.

THEOREM 1. Let ¢ satisfy (1.4), (2.5a) or (2.5b) and let u be a non-constant
subharmonic function of order 0 such that (1.3) ¥ non-constant holds. For a fixed



68 MATTS ESSEN

positive €, let E¥ = E*¥* N w,. We then have
z:: {log (2**3/cap E¥)} ' = Const. £ {1 +log (2" *3)} 2.7
If y(r)=(log r)*, r>e, where a>?2 is given, (2.7) is replaced by
2? {log (2***/cap E¥)} ' =Const. £ (1+ « log (n + 3)). (2.8)

The constant does not depend on a or &.

COROLLARY. Let >0 be given. If (2.7) holds, there exists a covering of E*
by disks {z:|z — Rye'®|<r.} which is such that

Y (log QRy/r)) "2 =O(e ' log $(2"*?), n— . (2.9)

We have summed over those indices k which are such that the union of the
associated disks covers E*N{|z|<2"*'}.

Remark. In Section 6, examples are given which illustrate the precision of
(2.8) and (2.9). There are additional results which explain why a =2 is a critical
value and which will appear elsewhere. Let me mention one estimate of this type.
Let the sequences {c,} and {8,} be defined as in Section 3. Let a >2 be given and
assume that

¢, = O(n®), n— oo,

Then we have

lim sup (log n)™* Z O =cola—2),

n—» oo 1

where co=supp<,<; (1—x)*(log(1/x))"*=~0.407. There exists an admissible se-
quence {c,} which gives equality.

Next, we consider the following result of P. D. Barry ([1, Corollary to
Theorem 5, p. 475; also cf. Section 7.4]).



Slowly growing subharmonic functions II 69

THEOREM A. Let u be a subharmonic function such that (1.3) holds with
Y(r)=(log r)*, where a <3. Let € >0. Then

igf u(re’®)>(1-¢€)B(r),
outside a set F for which
j (tlog t)™! dt <oo.
F
This result can be strengthened in the following way.

THEOREM 2. Let u and ¢ be as in Theorem 1 and assume furthermore that
is strictly increasing and continuously differentiable on [1, ). Let f be a decreasing,
nonnegative and continuously differentiable function which is such that

J;w f(s) ds/s <.

If £>0 is given, then we have

ix;f u(re’®)>(1-¢€)B*(r), r=1 (2.10)
outside a set F such that

J f(@ (1)) dift <ce. (2.11)
F
COROLLARY. Let ¢(r)=(logr)*, a>2. Then for each h>0, we have

J (loglog t)" """ dift <co. (2.12)
F

Remark. An example given in Section 6 will show that we cannot take h =0
in the Corollary.
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3. A lemma on series.

As in [3], our problem will be reduced to a problem in the theory of series. In
this section, we give a simple lemma

Let ¢ be as in Section 2. Let {a,}T be a given non-negative sequence and let

bn = z aka Cn = Z bk'
k=1 k=1
We also define

5 _{an/cn, ¢, >0,
" 0, ¢.=0.

If ¢, = O(¥(2")), n —> =, {5,} is almost a Y-sequence as defined in Section 2 in
[3]. We say almost because we do not assume that (r) = O((log r)?), r —  (which
is part of the definition of y-sequence in [3]); we assume in fact that (1.4) holds.
In [3], we gave results on the series Y7 8}, where A =1/2; here we study Y7 8,.

Since we assume less on ¢, the situation is more complicated than that discussed
in [3].

LEMMA 1. Let ¢ be as in Theorem 1. Let {a,}, {b,}, {c.} and {8,} be as above.

If
. =¢2"), n=12,... (3.1)
then we have n=1,2,....
Y. 8, =<Const. +min {log ¢(2"), log (¥(22")/n)}. (3.2)
1

If furthermore we assume that a, = o(c,), n — *©, then we have

n

2 8 =o(log $(2")), n-—c. (3.3)

1
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Remark. In the case ¢(r)=(logr)*, where a>2 is given, we deduce from
(3.2) that

Il

Z & =Const.+(a —1) log n, n=1,2,.... (3.2)
1

The case a =2 is treated in [3, Theorem 4]: then we know that )7 §, <o.

Proof of Lemma 1. We know that b, =min {c,, c,,/n}. Using [3, (2.19)], we
deduce that

Z alc, = Z a,/b, =log b, —logb,,,

no

where n, is the smallest integer such that b, does not vanish. It is now clear that
(3.2) follows from (3.1). To prove (3.3), we note that if € >0 is given, there exists
an integer n, such that a,/c,<¢* n=n,. If n=n, and b,/c, > ¢, we see that
a,/b, <e. It follows that

Yaja=( T+ 2" ) @bibide)

ny bi/ck>€ bx/ck=e

= e(i b./c, + i ak/bk) =2¢(Const. +log ¢(2")).

In the last step, we used once more [3, (2.19)]. The lemma is proved.

Remark. If a, = o(c,), n = «, we claim that we also have
b, = o(c,), n— o, (3.4)

To prove this, let £ be given, 0 <e <1/2, and choose n, as in the proof of (3.3). If
p=[1/¢], we see that if n>n,, we have

bnsbn—p+82 z Ck—<‘bn—p+p82(:m

n—-p+1

n—p
¢, = ), (n+1-k)a,=pb,_,.
1
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It follows that
b./¢c, =(b,_, +pe®c,)c,=p ' +&=3e.

Thus (3.4) holds.

Lemma 1 is clearly a very simple result, but it is all we need in the proofs of
Theorems 1 and 2, assuming that ¢ satisfies (1.4), (2.5a) or (2.5b). Lemma 1 is
unsatisfactory from another point of view: it does not explain why the value a =2
is crucial when ¢(r) = (log r)®. This question was discussed in the Remark after the
Corollary to Theorem 1.

4. Proof of Theorem 1

We start with

LEMMA 2. Let u and ¢ be as in Theorem 1 and let &, be given, 0<g;,<1/6.
Let G be the set of positive integers k which are such that

oo

oo k
2"[ n(0)/ dt> gy ). 2"] n(t)/1* dt.
2!: i=1 2!

]

Let w(p) be the number of elements in G in the set {k};_,. Then

m(p)=<ey'log ¢(2°)+O(1), p—> . 4.1)

In the complement of G, we have

- -]

2k L n(t)/t> dt =3g,N(2%). 4.2)
Proof. We define g, =2*[5 n(t)/t* dt and Q, =Y., g, Then we have
eom(p)= 3. a/Qu =1+ Y. 10g(QUQ,)

k=1 k=2

=1+10g(Q,/Q,) = log( i 2’[: n(t)/t> dt) —log<2 J: n(t)/t? dt) +1. (4.3)

i=1
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To estimate the right hand side of (4.3), we note that

i zi{fpa— Lm }n(t)/t2 dt< sz n(t)/tz( Y 21’) dt

ji=1 J I=j2'<¢

p 2P

oo

+2p*1 Jm n(t)/t? dts2{

2P

n(t)/tdt+2"J.

2P

n(t)/t? dt}

2

> o

=201 N@)/2 dt=0WRP), p—. (4.4)

7P

In the last step, we used three estimates: the fact that N(r)< B(r), (1.3) and
(2.5b). Combining (4.3) and (4.4), we obtain (4.1).

To prove (4.2), we note that if k¢ G, it follows from (4.4) that

oo

) k
2"J n(t)/t> dt=g, ), 2"J'
2% =1 2

o

n(t)/t2 dt_<_280(N(2") +2kj

2k

n(t)/1? dt).

Since 0 <g,<1/6, we obtain (4.2). This completes the proof of Lemma 2.

Let w, be as in the introduction. We also define Q, ={z:2*"'=<|z|=2**%},
D, ={z:|z|<2* "}, F, ={z:|z|>2"*?}.

The exceptional set E*(g) is contained in the union of two sets E; and E;;. We
first define E; = U w,, k +2€ G, where G is the set of integers defined in Lemma
2; we shall see that we can take &, = ¢/35.

To define E;;, we have to study the potentials which are associated with the
subharmonic functions u and u™ (cf. (2.1) and (2.3)). Let us choose k such that
k+2¢& G and assume that z =re® € w,. We want to estimate

u(z)— B*(r)= {J'

D

,( +Lk +L }(logll—Z/C‘ du(f)

—log(1+r/t)dn(t))=1,+ L+ I,.

First, we estimate I, and I; from below:

L={ log((z|-0/(lz|+ 1) dn(t)= —log 3n(2*"Y),

Dy

r

L= log((t—|z)/(t+|z])) dn(t)= —2log 3lz|j t! dn(t)

'Fk Fk

= —2**"?]og 3(j

Fi

n(t)/tZ dt - n(2k+2)/2k+2)
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Adding up, we obtain

I+ IL,=-2?log 3‘[ n(t)/t* dt= —3g,log 3AN(2X*?), k+2¢G.

Fi

It follows that

u(z)- B*(r)= f log (1 — 2[27"%) du(2) — 3eo log IN2**?), k+2¢G.

o
(4.5)
Let E, be the set in w, where
| 108(2-21277) du(@) = —eoNQ*), (4.6)
(0"
We define E;; = U E,, k+2¢ G. From (4.5), it follows that
u(z)=B*(r)=—¢o(1+31log 3)NQ**?)=-35¢,B*(r), z¢& E,UE,,. 4.7)

In the last step, we used the inequality
N(Q2***)=B*(2***)<8B*(2*)<=8B*(r).

Choosing &, = &/35 we see that E*(¢)< E; U E,,.
It remains to prove that the set E;UE,; is small in the sense described in
Theorem 1. We first claim that

2": {log (2**3/cap(E; N »,))} ' =Const. ¢ (1 +log ¢(2"*?)). (4.8)
k=1

For each k, there are two possibilities: either E,Nw, = w, or E;Nw, = J. In
the first case, we have (E;Nw, )2 *?>={z:4=<|z|=<3}, and the sum in (4.8) is
majorized by the number of indices in GN[1,n+2] times the constant
(log (1/cap w_3))"'. Our conclusion follows from Lemma 2.

To discuss Ej, let a, be the Riesz mass in (2, i.e., a, = n(€2). Applying
Lemma 4 in [3], we see from (4.6) that

cap E, =exp {—&,N(2*"?)/a, }2"*>,

i (log{2*?/cap E.}) '=¢;' i a,/N(25*3). (4.9)
1 1
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Starting from {a,}7, we define {b,} and {c,} as in Section 3. We note that

k+2 k

3N =3 ) n(2*)log2=(log?2) ). b, =c, log2.
v=1 v=1

Hence the right hand member of (4.9) is majorized by Const. €'Y} a,/c,.
Since ¢, = O(Y(2"*?)), n — =, we can use Lemma 1. Combining (4.8) and (4.9),
we obtain (2.7) in Theorem 1.

To prove the Corollary, we argue in exactly the same way as in the proof of
Theorem 7 in [3]. We omit the details.

S. Proof of Theorem 2
We start from the Corollary to Theorem 1. Let § >0 be given and consider a
covering of E*(e) by disks {A,}={{z:|z— Ree"*|<r}} which is such that (2.9)

holds. Furthermore, we assume that o =R,, k=1,2,.... It is known that

Dx = (log 2x)'*®, x=1,
where D is a positive constant which depends on §. It follows from (2.9) that

Y n/2R, =D}, (log 2R/n)) " *=0(e ' log (2"*?),  n—>oo; (5.1)

we sum over those indices k which are such that the corresponding disks intersect
Ut w,. We now define F={r=1:r=|z| for some ze |JT A.}. It is clear that
(2.10) holds outside F. It follows from (5.1) that

j dt/t <Const. £ ' log Y(167). (5.2)
FN[1,r]

Applying a standard argument, we see from (5.2) that

J f(w(161)) dt/t < Const. e“ljr f(w(161)) d log w(161)
FN[1,r] 1

Y(16r)

=Const. ¢! j f(s) ds/s. (5.3)

¥(16)
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Letting r— o, we see that the integral in the left hand member in (5.3)
converges, and we have proved (2.11).

Proof of the Corollary. We choose f(s)=(logs) ' ™" s=e.

6. Examples

We shall give examples of subharmonic functions of order zero where excep-
tional sets of type E, and E;; occur. We start with E,,.

Let ¢ and the nonnegative sequences {a,}, {b.} and {c.} be as in Section 3. We
assume that ¢, = O(¢(2")), n — « and that a, = o(c, ), n — «. From (3.4), we see
that we also have

n=0(c,), n—x (6.1)

If Dy,={z:1/8<|z|<1/4, Rez=0}, we put L=log(l/cap D,). If Dc
{Re z=0}Nw,, we know that

0={log (2"*"*/cap D)} '=L"".

Suppose that the positive number ¢ is given. Since a, = o(c,), n — «, there
exists n, such that a,/(2ec,)<L™', n=n,. Thus for n=n,, there exists a closed
subset E, < w, N{Re z =0} which is symmetric around the real axis and such that

{log (2" *?/cap E,} '=a,/(2ec,).

If n<n,, we put E, = .

Let w, be the equilibrium distribution on E,,. In particular, the total mass of u,
is 1 and we have

[ 1oglz =41 dua(2)=10g (cap E.) pp. on E..

We now define the measure u =3 u,a, and the subharmonic function
u(z)= | tog |1 -2/2] du(®). (62
We claim that for this function u, we have

B(r)=B(r,u)=(1+0(1))N(r)=(log 2+ o(1))c,, 2t =r=2""1, (6.3)
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To prove (6.2), we first note that (cf. (4.21) in [3])
Coo1log2=N(r)=c,log2, 2"=r<2"*!, (6.4)

N(r)= O(y(2r)), r— o, (6.5)

It is known that

@0 oo

r(t+r)" 'n(t)/tdt = J r(t+r)"2N(t) dt.

0

B(r)sj

0

Since (6.1) holds, we have n(r) = o(N(r)), r — », and thus

N(r)=B(r)=N(r)+ Jm r(t+r) " tn()/tdt=<

o0

=N(r)+ o(l)rj'oo N(t)/t* dt=N(r) + 0(1)4I r(r+1t)72N(t) dt

=N(r)+o(B(r)). (6.6)

Formula (6.3) now follows from (6.1), (6.4) and (6.6). From (6.5), we see that
B(r)= O(y(2r)), r — oo,

Since supp u, <{Re z=0} and E, is symmetric around the real axis, we have
B(r)=u(r). As in the proof of Theorem 1, we write, if z € w,,

u(z)—B(r)=” +L +L }(logll—z/cl*logll—r/gl)du(§)=ll+12+13.

DH n n
Estimates similar to those in the proof of Theorem 1 show that if z € w,, we

have |J,|=(log 3)n(2" ") = O(b,_,) = o(c,), |J5| = o(c,2) = o(c,,).
We also have

log|r—¢|=nlog2+0O(1), rew, {ec(suppu)Ni,.

We deduce the following representation formula which can be compared to
(4.11) in [3]. Uniformly as n — «, for z € w,, we have

u(z)—B(r)= J log |z —¢| du({)—(nlog 2+ O(1))(a,-, + a, + a,.,) +o(c,).
' (6.7)
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In particular, we have
u(z)-B(r)=—-2¢c, +na,log2+(a,_,+a,,.)(nlog2+0(1))

—(nlog2+0O())a,_,+a,+a,,,)+ol(c,)=-2¢ec,+o(c,) p.p. on supp w,.

From (6.3), we finally obtain
u(z)=(1-¢€)B(r), Z ESUPP Ky, n=n,. (6.8)

The exceptional set E = U;, E, is such that

i {log 2" */cap(ENw )} ' = (28)“‘2 a,/c.

ni n;

Thus the upper bound in (4.9) is of the right order of magnitude for sequences
which satisfy (6.1): furthermore, we have from (3.3) that

n

Y ade =2 8, =o(ogn), n—ow (6.9)

ni

It is easy to construct examples of sequences such that ). §, is close to the
upper bound in (6.9), when n — .

The subharmonic function u constructed above has the property that for all n,
the exceptional set E is such that E Nw, is a small subset of w, in the sense that

{log 2"*3/cap(E Nw,))} ' — 0.

In our next example, we shall consider an exceptional set E of type E; which is
such that ENw, is for certain indices a large part of the annulus w,.

Let a>2, 6€(0,a—2) and A €(0,1) be given. If we want to construct a
subharmonic function with the property B(r) = O((log r)*), r — o, we must clearly
have n(r)= O((log r)*~"), r— . We shall construct n(r). We choose sequences
{A.}, {B,} and {K,} tending to infinity which are such that

(log A, )" '=(log A,)*>"%,  B,=(logA,)’, K,=(logB,)*". (6.10)
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In the sequel, we consider the example given by A, =exp {exp y”}, where
vy>(a—1)(a—2—-8)"". The increasing, continuous function n(r) is defined by

n(r)=(og A,_,)* ', A,_,=r=A,)/B,, v=1,2,....
dn(n=a,dr, AJB,<r<A, v=1,2,....

where a, =((log A,)* '—(og A,_))* " HA;*(1-B;*) '=A;* (log A,)*"". In the
interval (0, e®), we let n(r) be 0 in (0, 1] and then increase to the value n(e®)=e
in [1, e°]. Our example is the subharmonic function

u(z)= J log |1+ z/t| dn(t). (6.11)
0

It is easy to prove that B(r) = u(r) = O((log r)*), r — . We note that u(A2)~
(log A,)*. The sequence {AZ} is well outside the support of the measure dn(r).

We note for later reference that all constants in the O- and o-relations in the
inequalities occurring in the deduction of the estimate of C,(r) below can be
chosen to be independent of A.

Let z =re* and assume that K A /B, <r=A, /K, We have from (6.10) that

A
J log (1+1/1) dn(1)=(log A,)(log A,_,)" ' =(log A,)"'~*.
0

oo oo

L log (1+1/t) dn(t) < J (r/t) dn(t) = O((r/ A,)(log A,)* 7).

It follows that

A

u(z)= J v log |1+ z/t| dn(t)+ O((r/ A, )(log A,)*™ 1)

A./B,

=(log A,)*'(1+ 0(1)){{r— LA”/B"— J: } log |1+ z/t| d(t*/ A% + O(r/A,,)}.

0

We need the following estimate:

A /B, K,/B,
[ log (1+(A/K.,0) d(1A,) = K;* J log (14571 ds*
0 0
K /B,

=<B,*log(1+B,)+ K;"J s* tds=B;*log(1+B,)+A7Y).

0



80 MATTS ESSEN

Simple computations now show that
lu(z)—(log A,)* '(1+ 0(1))m(sin wA) 'Re(z*/ A%)| = C,(r).
where

C.(N=(og A,)* '(1+o(1))(B,*log (1+B,)+A7'B;*+ O((rA,)(1-A)"")
=O(r/A,)(1-1)"'(log A,)*"",  KA,/B,=r=AJK,

We finally obtain
u(z)=(log A,)* '(r*/ A){m cos A0(sin wA) "' + o(1)}, (6.12)
KA, /B,=r=A,JK,;

the error estimates are uniform in z as v — oo,

We note that if £ >0 is small, the set E¥(¢) is almost the whole annulus w, for
indices k which are large and such that 2*e|J,[K,A,/B,, A,/K,]. Since
cap E¥~2* it follows that

lim sup (log n)~'Y, {log (2*3/cap E¥)}’

n—so 1

= Const. lim (log n)"'(log B, —2 log K,,) = Const. 8.

n—w

From (2.8), we see that

lim sup (log n)™'Y. {log (2*3/cap E¥)}! < Const. o/«.

n—sco 1

Since 6 can be chosen close to a —2, the discrepancy between the orders of
magnitude in these two estimates is essentially the factor £'. The upper bound
given by (2.8) is not far from the lower bound which holds for the function u
defined by (6.11).

This function u also gives an example which shows that the Corollary of
Theorem 2 is sharp. If F={r=1: re’ € E¥(¢) for some 6} we have

J di/(tloglog )= (log B,)/(loglog A,) ~ Z 1=o00
E; 1 1
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7. The growth of u on paths going out to infinity

Let u be a subharmonic function in the plane such that B(r) = O((logr)*),
r— . In the case a =2, Hayman proved in [4] that for almost all 8 in [0, 27], the
ray {arg z = 0} meets the set E(¢) in a bounded set. An improvement of this result
is given in Theorem 6 in [3]: the exceptional set of 65 is in fact of capacity zero.
Hayman’s result [4] led Dr. Milne Anderson to ask the following question in the
case a >2 (private communication): if £ € (0, 1] is given, does there exist a path I"
going out to infinity such that u(z)=(1-¢)B(|z|), zeI'?

M. Talpur proved in [5] that if u is subharmonic and non-constant in the
plane, there exists a path I' going out to infinity on which u(z) — «. Clearly, we
have u(z)>0, zeT, z large. The answer to Anderson’s question is thus yes when
£ =1. In the remaining case, we have the following result which answers Ander-
son’s question in the negative.

THEOREM 3. Let a>2 be given. There exists a subharmonic function u such

that B(r, u) = O((log r)*), r — %, and such that for any path I" going out to infinity,
we have

lim inf u(z)/B(|z|) =0, z —> zel.

Remark. For convenience, we have restricted ourselves to the case ys(r) = (log r)°.
The method used in constructing the example also works for a general growth rate
¢ satisfying the conditions of Theorem 1.

In [6], Talpur proved that if u is subharmonic in the plane and of order zero,
there exists a path going out to infinity on which u(z)>(1-¢)B(|z|'"®). Assuming
that a little more is known about the growth of B(r, u), we can prove the
following resuit.

THEOREM 4. Let ¢ be as in Theorem 2 and assume furthermore that

lim sup loglog ¢(r)/loglogr<1. (7.1)

r—oo

log ¥(r?) =< Const. log ¢(r), r>1. (7.2)
Let u be a subharmonic function in the plane of order zero which satisfies (1.3) and

let £€(0,1) be given. Then for all positive h, there exists a path I' going out to
infinity and a constant C(h) such that

u(z)>(1-¢£)B(|z] exp (—C(h) log ¢(z))' ")), Z—> o, zerl.
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If in particular §(r) = (log r)*, where a >2, we have
u(z)>(1-¢)B(|z] exp (—C(h) loglog |z])'*")), z—>», zel.

Proof of Theorem 3. Let 6 €(0, a —2) be given and let {A,} be an increasing
sequence of positive numbers tending to 1 which is such that A, =1/2 and

n(l1-A,)/logn— oo, n— oo, (7.3)

The sequences {A,} and {B,} are defined as in Section 6. Also here, we can take
A, =exp{exp y"}, where y>(a—1)/(a—2-8). We also introduce K, =
(log B, )**.. Next, we define three nondecreasing, continuous functions n,(r), n,(r)
and n;(r) via the relations

(log A,)*"'d(r/A), A,/JB,<r<A,/B? v=1,2,....

v

dn,(r)= {0, ré U(A/B,, A,/B!?),

(log A,)* "1 d(rlA,), AJBIP<r<A,v=12,....
dn,(r) =

0, ré U(A,/B2 A),
. {(log A Td(A), AJB,<r<A,v=1,2,....
n.(r)=
’ 0, ré U(A,/B,, A,).
We consider the subharmonic functions

r oo

u,(z)=| log|1+z/t| dn,(t),

Jo

u,(z)= B log |1—z/t| dn,(t),

0

v(z)= Jm log |1+ z/t| dns(t).

0

It is easy to see that n, (r) = O((log r)*™ "), r—> o, k =1, 2, 3. Consequently, the
maximum moduli of these three functions are all O((log r)*), r — .

Our example is the subharmonic function U = max (u,, u,). We clearly have
the following property of the auxiliary function v:

u (iy)<v(iy), yeR, k=1,2. (7.4)
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To find the properties of these subharmonic functions, we use the same
method as in the proof of (6.12). The only difference is that in each interval
[A,/B,, A,], we replace in all formulas the constant A by A,. If this change is made
in the function u defined in (6.11), we obtain the following estimate of C, (r)
which is the crucial quantity in the proof of (6.12):

C,(r)=(log A,)*'(1+o(1))(B,™log (1+B,)+(r/A,)(1-A,)7")
=o((r/A,)(log A,)* " )(1-1,)), K,A,/B,<r=<A,JK,.

In the last step, we used the fact that (1—A,)log K, +2log(1—-A,)—>® v—>»
which is a consequence of (7.3) and our special choice of A,. Arguing in this way,
we obtain
u;(z)=(og A,)* (1) A ){m cos A,0(sin wA,) "+ 0(1—-]A,)},
K,A,/B, <r=A,/(K,B,">),
u(z) = (log A,)* '(r/A,){m cos A, (m— 8)(sin wA,) '+ 0(1—-A,)}
K,A/B}?=r=AJK,,
U(iy) = v(iy) = (log A,)* (1 A,)™(m cos (mA,/2)(sin 7A,) "' + o(1 - A,)},
K,A,/B,=<r=A /K.

In the last estimate, we used (7.4). The error estimates are uniform in z as v — o,
Let us now consider u, when K, A /B, <r=A,/(K,B*?). From (6.10) and
(7.3), we see that

v

u(z)< { J;AH + JA + j: } log (1+1r/t) dn,(t)

A,,/BEB
=(log A,)* "2 +(log A,)* '(rA,)(1—A,) 1B20-A)/3

+(r/A,)(log A,,)* ' BYTP(1-4,,1) 7" =o((log A,)* ! (r/A,)(1-A,)).
For all large v, we thus have

{ U(z) = uy(2), Re z=0, K,A,/B,<r=A,/(K,6B>?).

U(z)=U(i|z]), Rez<0,
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The next step is to consider u, when K, A /Bl*<r=<A /K, We have

A /B)3 o
u,(z)s{j +I }log Q+rt)ydn,(t)=1,+1,.
0

Au+l/Bv+1

To estimate I,, we write

v “&,‘/B,‘”3 v
I=) J log (1+1/t) dny()= ), J,.
k=

k=1 JA/Bx 1

Since n,(A,/B}?) —n,(AJ/By) = (log A,)* 'B*'?, an integration by parts shows
that for k=1,2,..., we have J,=(logA,)* !B ™*(log(1+rB,*/A)+
(2/3) log By ). Since r= A /K,, we obtain

I,=3(log B,)(log A,)* " 'B;>.

In the second term I,, we use the crude estimate n,(r)<(logr)*~'. If r<A,/K,,
we have

oo

L= j it dn () =(B, 1, A, . )ny(A,) + rj (log 1)~ dy/?
A,+1/By 41

A, +1/Bysa

= Z(Ava+l/Av+l)(log Av+1)a ! .
Since r=K,A,/B.”, we finally obtain the estimate
u(z)=Ii+ 1= o((log A, )* ) (r/A)(1-1,)), Vo> ®

where K,A,/B.*<|z|< A, /K,.
It follows that for all large v, we have also

{ U(z)= U(i|z|), Re z =0,

K, A,/B*<=r=AJ/K,.
U(z) = uy(2), Re z <0, AJB, =T K,

Thus, if |z|=r, we have

U(z)=(1+0(1)) cos (wA,/2)B(r, U), zel,,
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where I', is a closed curve which consists of the following arcs:

|z| = K,A,/B,, larg z — 7| = 7/2,
|z| = A,/K,, larg z|<=/2,
K,A,/B,<|Imz|=<A,/K,, Re z =0.

Clearly, each curve I', separates the origin from infinity. Since cos(mA,/2) — 0,
v —, we have our example and Theorem 3 is proved.

Proof of Theorem 4. In the discussion of (4.11) in [3], we use Lemma 2 in [3]
which says that there exist K>1 and r, such that if r, =r,K", we have

u(z)>(1-o0(1)B(r,), |z|=r1, v (7.5)
This result is based on a covering result of Hayman (cf. (1.4) and (1.5) in [3])
which is true only if B(r)=O(ogr)?, r—x. If we only assume that B(r)=

O((log r)*), r = «, where a > 2, we can use the Corollary of Theorem 2 to deduce
a similar, but weaker result which is the starting point of this proof.

We claim that there exists a positive number h and an increasing sequence {r,}
tending to infinity such that (7.5) holds and which is such that

log (r,,4/1,) = O((log y(r,))'" "), —

To see this, we first note that if the interval [r, R] is contained in F (where F is
defined as in Theorem 2), it follows from (2.11) that if h >0, there is a constant C
such that

r (log ¢(1))" " "dyt<C. (7.6)

It follows from (7.6) that log R <2logr. In fact, if log R>2log r, we deduce
from (7.6) and (7.2) that

log r < Const. (log ¢(r))**".

Taking logarithms dividing by loglog r and letting r — %, we obtain

1<(1+ h) lim sup loglog y(r)/loglog r.

r—»00
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It follows from (7.1) that there exists h >0 such that this is a contradiction. From
now on, we work with such an h; then we know that R <r? and our claim follows
from (7.6) and (7.2).

Consider now the set G, ={z:u(z)>(1-¢)B(r,), r, <|z|=r,.,}. The work of
Talpur (cf. [6, Lemma 1]) shows that there exists a path going from {|z|=7r,} to
{|z| = r,.1} which is contained in G,. The curve I' mentioned in Theorem 4 is the
union of these paths and circular arcs with radii {r,} which are chosen in such a
way that I" will be connected. If ze G, NTI', we have

u(z)>(1-¢)B(r,)=(1-¢€)B(r,., exp (—C(h)(log ¥(r,))' "))
=(1-¢€)B(|z| exp (—C(h)(log ¢(|z|))**").

This completes the proof of Theorem 4.
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